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Plane Fields

ξ: a plane field on a 3-manifold;
τ : a nonsingular vector field in ξ.

There are local coordinates (x , t , z) in which τ = ∂t and
ξ = ker α where

α = dz − y(x , t , z) dx .

Then
α ∧ dα = ∂ty dx ∧ dt ∧ dz,

so α ∧ dα does not vanish iff (x , y , z) are local coordinates.
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Contact Structures

A contact form on an oriented 3-manifold is a 1-form α
such that α ∧ dα is everywhere positive.
A contact structure is a (cooriented) plane field ξ defined
by a contact form.

Equivalently (Darboux’ Theorem):
A contact strucutre is a plane field ξ locally defined by
dz − y dx = 0, where (x , y , z) are coordinates compatible
with the ambient orientation.
A contact manifold is a manifold equipped with a contact
structure.
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Second Model

The 1-form on R3 defined in cylindrical coordinates by

α = f (r) dz + g(r) dθ

is a contact form iff the parameterized curve

r 7→
(
f (r), g(r)

)
∈ R2 \ {0}

revolves about 0 counterclockwise. Indeed,

α ∧ dα =
(
f (r)g′(r)− f ′(r)g(r)

)
dr ∧ dθ ∧ dz.

Example

The contact form dz + r2dθ is equivalent to dz − y dx :

dz + r2dθ = dz + 1
2(x dy − y dx) = d(z + 1

2xy)− y dx .
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Third Model

The 1-form on R3 defined in Cartesian coordinates by

α = cos ϕ(t) dx1 − sin ϕ(t) dx2

is a contact form iff ϕ′ > 0:

α ∧ dα = ϕ′(t) dx1 ∧ dx2 ∧ dt .

Moreover, α is equivalent to dz − y dx via the change of
variables:

x = t , y =
(
sin ϕ(t) x1 + cos ϕ(t) x2

)
ϕ′(t),

z = −
(
cos ϕ(t) x1 − sin ϕ(t) x2

)
.

Example

The contact form cos(2nπt) dx1 − sin(2nπt) dx2, for every
n ≥ 1, descends to T3 = R3/Z3.
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Conjugation and Isotopy

Two contact structures are conjugate if there is a
diffeomorphism φ whose differential takes one to the other;
They are isotopic if there exists such a φ which is isotopic
to the identity.
Then they are homotopic among contact structures: take
the path ξt = (φt)∗ξ0.

Theorem (Gray)
Two contact structures on a closed manifold are isotopic iff they
are homotopic among contact structures.

Corollary
On a closed manifold, there are at most countably many isotopy
classes of contact structures.
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Tight / Overtwisted Contact Structures

Definition (Eliashberg)

A contact structure ξ on V is overtwisted if there is an
embedded disk D ⊂ V which is tangent to ξ at all boundary
points:

TpD = ξp for every p ∈ ∂D.

D itself is called an overtwisted disk.
A contact structure ξ is tight if it is not overtwisted.

Example

The contact structure on R3 defined by

cos r dz + r sin r dθ = 0

is overtwisted: the horizontal disk of radius π centered at 0 is
overtwisted.
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Ground Results

Theorems
Let V be a closed oriented 3-manifold.

(Lutz-Martinet) Every plane field on V is homotopic to an
overtwisted contact structure.

(Bennequin) The standard contact structures on R3 and S3

are tight.

(Gromov) Every fillable contact structure on V is tight.

(Eliashberg) If two overtwisted contact structures on V are
homotopic among plane fields then they are isotopic.

(Eliashberg) R3 and S3 have a unique tight contact structure
up to isotopy.
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Transversal Triangulations

Theorem (Lutz-Martinet)
Any plane field on a closed oriented manifold V is homotopic to
a contact structure.

Lemma (Thurston’s Jiggling Lemma)

Given a plane field ξ0 on V, there exists an arbitrarily fine
smooth triangulation such that :

ξ0 is transverse to the 1- and 2-simplices;
the direction of ξ0 is nearly constant on each 3-simplex.
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Deformation near the Skeleton

Near any 1- or 2-simplex Σ, there are coordinates (x , t , z) in
which

ξ0 is defined by dz = y0(x , t , z) dx ;
Σ ⊂ {t = 0}.

Now replace y0 by a function y1 satisfying

y1(x , 0, z) = y0(x , 0, z) and ∂ty1 > 0.

This yields a plane field ξ1 which is contact on a neighborhood
U of the 2-skeleton and is an arbitrarily C0-small deformation of
ξ0.

In each 3-simplex ∆, choose a ball B = D3 such that
∂B = S2 is contained in U and transverse to ξ1 except at
its poles;
ξ1 is transverse to the vector field ∂z in B = D3.
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Digging Circular Holes

Connect the north pole of B to its south pole by a path A ⊂ U
transverse to ξ1.
Take a small tube N = D2 × A around A and consider the solid
torus

W = B ∪ N = D2 × S1.

Then:
ξ1 is a contact structure near ∂W ;
ξ1 is transverse to the vector field ∂z , z ∈ S1.

So ξ1 can be defined in W by

dz + u(r , θ, z) dθ + v(r , θ, z) dr = 0

where v vanishes near ∂W — provided we suitably identified
W to D2 × S1.

Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures



Digging Circular Holes

Connect the north pole of B to its south pole by a path A ⊂ U
transverse to ξ1.
Take a small tube N = D2 × A around A and consider the solid
torus

W = B ∪ N = D2 × S1.

Then:
ξ1 is a contact structure near ∂W ;
ξ1 is transverse to the vector field ∂z , z ∈ S1.

So ξ1 can be defined in W by

dz + u(r , θ, z) dθ + v(r , θ, z) dr = 0

where v vanishes near ∂W — provided we suitably identified
W to D2 × S1.

Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures



Digging Circular Holes

Connect the north pole of B to its south pole by a path A ⊂ U
transverse to ξ1.
Take a small tube N = D2 × A around A and consider the solid
torus

W = B ∪ N = D2 × S1.

Then:
ξ1 is a contact structure near ∂W ;
ξ1 is transverse to the vector field ∂z , z ∈ S1.

So ξ1 can be defined in W by

dz + u(r , θ, z) dθ + v(r , θ, z) dr = 0

where v vanishes near ∂W — provided we suitably identified
W to D2 × S1.

Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures



Digging Circular Holes

Connect the north pole of B to its south pole by a path A ⊂ U
transverse to ξ1.
Take a small tube N = D2 × A around A and consider the solid
torus

W = B ∪ N = D2 × S1.

Then:
ξ1 is a contact structure near ∂W ;
ξ1 is transverse to the vector field ∂z , z ∈ S1.

So ξ1 can be defined in W by

dz + u(r , θ, z) dθ + v(r , θ, z) dr = 0

where v vanishes near ∂W — provided we suitably identified
W to D2 × S1.

Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures



Filling the Holes

Consider on R2 ×S1 the overtwisted contact structure ξ defined
by

cos r dz + r sin r dθ = 0.

The function

r ∈ (3π/2, 5π/2) 7−→ r tan r ∈ (−∞,+∞)

is a diffeomorhism.
Therefore, for any point (θ, z) ∈ S1 × S1 = ∂W , there is a
unique r(θ, z) ∈ (3π/2, 5π/2) such that

r(θ, z) tan r(θ, z) = u(1, θ, z) .

The restriction of ξ to the solid torus

{(r , θ, z) | r ≤ r(θ, z)}

gives a contact structure on W which coincides with ξ1 on ∂W .
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Lutz Modification

Any closed transversal curve C ⊂ (V , ξ) has a standard
neighborhood

W = D2 × S1 ⊃ C = {0} × S1

in which ξ is defined by

α0 = 0 where α0 = dz + εr2dθ .

Let r 7→ (f (r), g(r)) ∈ R2 \ {0} be an arc revolving about 0 and
joining (1, 0) to (1, ε2) after one complet turn.
Then the contat structure defined on W by the form

α = f (r) dz + g(r) dθ

is homotopic to ξ rel. ∂W via the plane fields defined by

(1− s)α0 + sα + s(1− s)r(ε− r) dr = 0 .
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Irreducible Manifolds

Definition
A 3-manifold V is irreducible if every embedded 2-sphere in V
bounds a 3-ball.

Examples

R3 and S3 are irreducible, as well as all manifolds covered
by R3 or S3.
S2 × S1 and the connected sum of two closed 3-manifolds
different from S3 are not irreducible.
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Compressible Surfaces

Definition
An embedded surface S ⊂ V is compressible if there exists an
embedded disk D ⊂ V such that D ∩ S = ∂D.

Theorem (Dehn-Papakyriakopoulos)
An oriented surface S ⊂ V is incompressible iff the
homomorphism π1S → π1V induced by the inclusion map is
injective.

Example
If S is a compressible torus in an irreducible 3-manifold V then
either S bounds a solid torus or S is contained in a 3-ball inside
V .
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Atoroidal Manifolds

Definition
A 3-manifold V is toroidal or atoroidal depending on whether it
contains an incompressible torus or not.

Examples

T3, torus bundles over the circle, circle bundles over
surfaces of positive genus and most Seifert fibered
manifolds are toroidal.
S3, S2 × S1 and most closed 3-manifolds (in particular
closed hyperbolic 3-manifolds) are atoroidal.
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Finiteness Results

Theorem (homotopy finiteness, Colin-Honda-G)
On a closed 3-manifold, only finitely many homotopy classes of
plane fields contain tight contact structures.

Theorem (isotopy finiteness, Colin-Honda-G)
On a closed atoroidal 3-manifold, there are only finitely many
isotopy classes of tight contact structures.

Theorem (Colin, Honda-Kazez-Matić)
On a closed, toroidal, and irreducible 3-manifold, there are
infinitely many conjugation classes of tight contact structures.
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