Homotopy and Isotopy Finiteness of Tight Contact Structures Lutz Modification

Joint work with Vincent Colin and Ko Honda

ENS-Lyon — CNRS

May 29, 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

 ξ : a plane field on a 3-manifold; τ : a nonsingular vector field in ξ .

There are local coordinates (x, t, z) in which $\tau = \partial_t$ and $\xi = \ker \alpha$ where

 $\alpha = dz - y(x, t, z) \, dx \, .$

Then

 $\alpha \wedge \mathbf{d}\alpha = \partial_t \mathbf{y} \, \mathbf{d} \mathbf{x} \wedge \mathbf{d} \mathbf{t} \wedge \mathbf{d} \mathbf{z},$

so $\alpha \wedge d\alpha$ does not vanish iff (x, y, z) are local coordinates.

ヘロト ヘワト ヘビト ヘビト

- ξ : a plane field on a 3-manifold;
- τ : a nonsingular vector field in ξ .

There are local coordinates (x, t, z) in which $\tau = \partial_t$ and $\xi = \ker \alpha$ where

$$\alpha = dz - y(x, t, z) \, dx \, .$$

Then

$$\alpha \wedge \mathbf{d}\alpha = \partial_t \mathbf{y} \, \mathbf{d} \mathbf{x} \wedge \mathbf{d} \mathbf{t} \wedge \mathbf{d} \mathbf{z},$$

so $\alpha \wedge d\alpha$ does not vanish iff (x, y, z) are local coordinates.

ヘロト 人間 ト ヘヨト ヘヨト

- ξ : a plane field on a 3-manifold;
- τ : a nonsingular vector field in ξ .

There are local coordinates (x, t, z) in which $\tau = \partial_t$ and $\xi = \ker \alpha$ where

$$\alpha = dz - y(x, t, z) \, dx \, .$$

Then

$$\alpha \wedge \mathbf{d}\alpha = \partial_t \mathbf{y} \, \mathbf{d} \mathbf{x} \wedge \mathbf{d} \mathbf{t} \wedge \mathbf{d} \mathbf{z},$$

so $\alpha \wedge d\alpha$ does not vanish iff (x, y, z) are local coordinates.

イロト イ押ト イヨト イヨトー

- A contact form on an *oriented* 3-manifold is a 1-form α such that α ∧ dα is everywhere positive.
- A contact structure is a (cooriented) plane field ξ defined by a contact form.
- Equivalently (Darboux' Theorem):
 - A contact strucutre is a plane field ξ locally defined by $dz y \, dx = 0$, where (x, y, z) are coordinates compatible with the ambient orientation.
 - A contact manifold is a manifold equipped with a contact structure.

イロト 不得 とくほと くほう

- A contact form on an *oriented* 3-manifold is a 1-form α such that α ∧ dα is everywhere positive.
- A contact structure is a (cooriented) plane field ξ defined by a contact form.

Equivalently (Darboux' Theorem):

- A contact strucutre is a plane field ξ locally defined by $dz y \, dx = 0$, where (x, y, z) are coordinates compatible with the ambient orientation.
- A contact manifold is a manifold equipped with a contact structure.

イロト 不得 とくほと くほう

- A contact form on an *oriented* 3-manifold is a 1-form α such that α ∧ dα is everywhere positive.
- A contact structure is a (cooriented) plane field ξ defined by a contact form.
- Equivalently (Darboux' Theorem):
 - A contact strucutre is a plane field ξ locally defined by $dz y \, dx = 0$, where (x, y, z) are coordinates compatible with the ambient orientation.
 - A contact manifold is a manifold equipped with a contact structure.

ヘロト 人間 ト ヘヨト ヘヨト

- A contact form on an *oriented* 3-manifold is a 1-form α such that α ∧ dα is everywhere positive.
- A contact structure is a (cooriented) plane field ξ defined by a contact form.
- Equivalently (Darboux' Theorem):
 - A contact strucutre is a plane field ξ locally defined by $dz y \, dx = 0$, where (x, y, z) are coordinates compatible with the ambient orientation.
 - A contact manifold is a manifold equipped with a contact structure.

Second Model

The 1-form on \mathbf{R}^3 defined in cylindrical coordinates by

 $\alpha = f(r) \, dz + g(r) \, d\theta$

is a contact form iff the parameterized curve

$$r\mapsto ig(f(r),g(r)ig)\in {f R}^2\setminus\{0\}$$

revolves about 0 counterclockwise. Indeed,

 $\alpha \wedge d\alpha = (f(r)g'(r) - f'(r)g(r)) dr \wedge d\theta \wedge dz.$

Example

The contact form $dz + r^2 d\theta$ is equivalent to dz - y dx:

 $dz + r^2 d\theta = dz + \frac{1}{2}(x \, dy - y \, dx) = d(z + \frac{1}{2}xy) - y \, dx$

Second Model

The 1-form on \mathbf{R}^3 defined in cylindrical coordinates by

$$\alpha = f(r) \, dz + g(r) \, d\theta$$

is a contact form iff the parameterized curve

$$r\mapsto ig(f(r),g(r)ig)\in {f R}^2\setminus\{0\}$$

revolves about 0 counterclockwise. Indeed,

$$\alpha \wedge d\alpha = (f(r)g'(r) - f'(r)g(r)) dr \wedge d\theta \wedge dz.$$

Example

The contact form $dz + r^2 d\theta$ is equivalent to dz - y dx:

 $dz + r^2 d\theta = dz + \frac{1}{2}(x \, dy - y \, dx) = d(z + \frac{1}{2}xy) - y \, dx$

Second Model

The 1-form on \mathbf{R}^3 defined in cylindrical coordinates by

$$\alpha = f(r) \, dz + g(r) \, d\theta$$

is a contact form iff the parameterized curve

$$r\mapsto ig(f(r),g(r)ig)\in {f R}^2\setminus\{0\}$$

revolves about 0 counterclockwise. Indeed,

$$\alpha \wedge d\alpha = (f(r)g'(r) - f'(r)g(r)) dr \wedge d\theta \wedge dz.$$

Example

The contact form $dz + r^2 d\theta$ is equivalent to dz - y dx:

$$dz + r^2 d\theta = dz + \frac{1}{2}(x \, dy - y \, dx) = d(z + \frac{1}{2}xy) - y \, dx$$
.

Third Model

The 1-form on \mathbf{R}^3 defined in Cartesian coordinates by

$$\alpha = \cos \varphi(t) \, dx_1 - \sin \varphi(t) \, dx_2$$

is a contact form iff $\varphi' > 0$:

$$\alpha \wedge d\alpha = \varphi'(t) \, dx_1 \wedge dx_2 \wedge dt$$
.

Moreover, α is equivalent to dz - y dx via the change of variables:

$$x = t, \quad y = (\sin \varphi(t) x_1 + \cos \varphi(t) x_2) \varphi'(t),$$

$$z = -(\cos \varphi(t) x_1 - \sin \varphi(t) x_2).$$

Example

The contact form $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2$, for every $n \ge 1$, descends to $\mathbf{T}^3 = \mathbf{R}^3/\mathbf{Z}^3$.

Third Model

The 1-form on \mathbf{R}^3 defined in Cartesian coordinates by

$$\alpha = \cos \varphi(t) \, dx_1 - \sin \varphi(t) \, dx_2$$

is a contact form iff $\varphi' > 0$:

$$\alpha \wedge d\alpha = \varphi'(t) \, dx_1 \wedge dx_2 \wedge dt$$
.

Moreover, α is equivalent to dz - y dx via the change of variables:

$$x = t, \quad y = (\sin \varphi(t) x_1 + \cos \varphi(t) x_2) \varphi'(t),$$

$$z = -(\cos \varphi(t) x_1 - \sin \varphi(t) x_2).$$

Example

The contact form $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2$, for every $n \ge 1$, descends to $\mathbf{T}^3 = \mathbf{R}^3/\mathbf{Z}^3$.

Third Model

The 1-form on \mathbf{R}^3 defined in Cartesian coordinates by

$$\alpha = \cos \varphi(t) \, dx_1 - \sin \varphi(t) \, dx_2$$

is a contact form iff $\varphi' > 0$:

$$\alpha \wedge d\alpha = \varphi'(t) \, dx_1 \wedge dx_2 \wedge dt$$
.

Moreover, α is equivalent to dz - y dx via the change of variables:

$$x = t, \quad y = (\sin \varphi(t) x_1 + \cos \varphi(t) x_2) \varphi'(t),$$

$$z = -(\cos \varphi(t) x_1 - \sin \varphi(t) x_2).$$

Example

The contact form $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2$, for every $n \ge 1$, descends to $\mathbf{T}^3 = \mathbf{R}^3/\mathbf{Z}^3$.

- Two contact structures are conjugate if there is a diffeomorphism φ whose differential takes one to the other;
- They are isotopic if there exists such a φ which is isotopic to the identity.

Then they are homotopic among contact structures: take the path $\xi_t = (\phi_t)_* \xi_0$.

Theorem (Gray)

Two contact structures on a closed manifold are isotopic iff they are homotopic among contact structures.

Corollary

On a closed manifold, there are at most countably many isotopy classes of contact structures.

イロト イポト イヨト イヨ

- Two contact structures are conjugate if there is a diffeomorphism φ whose differential takes one to the other;
- They are isotopic if there exists such a φ which is isotopic to the identity.

Then they are homotopic among contact structures: take the path $\xi_t = (\phi_t)_* \xi_0$.

Theorem (Gray)

Two contact structures on a closed manifold are isotopic iff they are homotopic among contact structures.

Corollary

On a closed manifold, there are at most countably many isotopy classes of contact structures.

ヘロト ヘ回ト ヘヨト ヘヨト

- Two contact structures are conjugate if there is a diffeomorphism φ whose differential takes one to the other;
- They are isotopic if there exists such a φ which is isotopic to the identity.

Then they are homotopic among contact structures: take the path $\xi_t = (\phi_t)_* \xi_0$.

Theorem (Gray)

Two contact structures on a closed manifold are isotopic iff they are homotopic among contact structures.

Corollary

On a closed manifold, there are at most countably many isotopy classes of contact structures.

イロト イポト イヨト イヨト

- Two contact structures are conjugate if there is a diffeomorphism φ whose differential takes one to the other;
- They are isotopic if there exists such a φ which is isotopic to the identity.

Then they are homotopic among contact structures: take the path $\xi_t = (\phi_t)_* \xi_0$.

Theorem (Gray)

Two contact structures on a closed manifold are isotopic iff they are homotopic among contact structures.

Corollary

On a closed manifold, there are at most countably many isotopy classes of contact structures.

< □ > < 同 > < 回 > < 回

Tight/Overtwisted Contact Structures

Definition (Eliashberg)

 A contact structure ξ on V is overtwisted if there is an embedded disk D ⊂ V which is tangent to ξ at all boundary points:

 $T_p D = \xi_p$ for every $p \in \partial D$.

D itself is called an overtwisted disk.

• A contact structure ξ is tight if it is not overtwisted.

Example

The contact structure on **R**³ defined by

 $\cos r \, dz + r \sin r \, d\theta = 0$

is overtwisted: the horizontal disk of radius π centered at 0 is overtwisted.

Tight/Overtwisted Contact Structures

Definition (Eliashberg)

 A contact structure ξ on V is overtwisted if there is an embedded disk D ⊂ V which is tangent to ξ at all boundary points:

$$T_p D = \xi_p$$
 for every $p \in \partial D$.

D itself is called an overtwisted disk.

• A contact structure ξ is tight if it is not overtwisted.

Example

The contact structure on **R**³ defined by

 $\cos r \, dz + r \sin r \, d\theta = 0$

is overtwisted: the horizontal disk of radius π centered at 0 is overtwisted.

Tight/Overtwisted Contact Structures

Definition (Eliashberg)

 A contact structure ξ on V is overtwisted if there is an embedded disk D ⊂ V which is tangent to ξ at all boundary points:

$$T_p D = \xi_p$$
 for every $p \in \partial D$.

D itself is called an overtwisted disk.

• A contact structure ξ is tight if it is not overtwisted.

Example

The contact structure on **R**³ defined by

 $\cos r\,dz + r\sin r\,d\theta = 0$

is overtwisted: the horizontal disk of radius π centered at 0 is overtwisted.

Let V be a closed oriented 3-manifold.

(Lutz-Martinet) Every plane field on V is homotopic to an overtwisted contact structure.

(Bennequin) The standard contact structures on R³ and S³ are tight.

(Gromov) Every fillable contact structure on V is tight.

(Eliashberg) If two overtwisted contact structures on V are homotopic among plane fields then they are isotopic.

(Eliashberg) R³ and S³ have a unique tight contact structure up to isotopy.

ヘロン 人間 とくほ とくほう

Let V be a closed oriented 3-manifold.

(Lutz-Martinet) Every plane field on V is homotopic to an overtwisted contact structure.

(Bennequin) The standard contact structures on \mathbf{R}^3 and \mathbf{S}^3 are tight.

(Gromov) Every fillable contact structure on V is tight.

(Eliashberg) If two overtwisted contact structures on V are homotopic among plane fields then they are isotopic.

(Eliashberg) R³ and S³ have a unique tight contact structure up to isotopy.

ヘロン 人間 とくほう くほう

Let V be a closed oriented 3-manifold.

(Lutz-Martinet) Every plane field on V is homotopic to an overtwisted contact structure.

(Bennequin) The standard contact structures on \mathbf{R}^3 and \mathbf{S}^3 are tight.

(Gromov) Every fillable contact structure on V is tight.

(Eliashberg) If two overtwisted contact structures on V are homotopic among plane fields then they are isotopic.

(Eliashberg) **R**³ and **S**³ have a unique tight contact structure up to isotopy.

ヘロン 人間 とくほう くほう

Let V be a closed oriented 3-manifold.

(Lutz-Martinet) Every plane field on V is homotopic to an overtwisted contact structure.

(Bennequin) The standard contact structures on \mathbf{R}^3 and \mathbf{S}^3 are tight.

(Gromov) Every fillable contact structure on V is tight.

(Eliashberg) If two overtwisted contact structures on V are homotopic among plane fields then they are isotopic.

(Eliashberg) R³ and S³ have a unique tight contact structure up to isotopy.

ヘロン 人間 とくほ とくほう

Let V be a closed oriented 3-manifold.

(Lutz-Martinet) Every plane field on V is homotopic to an overtwisted contact structure.

(Bennequin) The standard contact structures on \mathbf{R}^3 and \mathbf{S}^3 are tight.

(Gromov) Every fillable contact structure on V is tight.

(Eliashberg) If two overtwisted contact structures on V are homotopic among plane fields then they are isotopic.

(Eliashberg) \mathbf{R}^3 and \mathbf{S}^3 have a unique tight contact structure up to isotopy.

ヘロン 人間 とくほ とくほど

Theorem (Lutz-Martinet)

Any plane field on a closed oriented manifold V is homotopic to a contact structure.

Lemma (Thurston's Jiggling Lemma)

Given a plane field ξ_0 on V, there exists an arbitrarily fine smooth triangulation such that:

- ξ_0 is transverse to the 1- and 2-simplices;
- the direction of ξ_0 is nearly constant on each 3-simplex.

イロン 不得と 不良と 不良と

Theorem (Lutz-Martinet)

Any plane field on a closed oriented manifold V is homotopic to a contact structure.

Lemma (Thurston's Jiggling Lemma)

Given a plane field ξ_0 on V, there exists an arbitrarily fine smooth triangulation such that:

- ξ_0 is transverse to the 1- and 2-simplices;
- the direction of ξ_0 is nearly constant on each 3-simplex.

イロト イポト イヨト イヨト

Deformation near the Skeleton

Near any 1- or 2-simplex Σ , there are coordinates (x, t, z) in which

- ξ_0 is defined by $dz = y_0(x, t, z) dx$;
- $\Sigma \subset \{t = 0\}.$

Now replace y_0 by a function y_1 satisfying

 $y_1(x,0,z) = y_0(x,0,z)$ and $\partial_t y_1 > 0$.

This yields a plane field ξ_1 which is contact on a neighborhood U of the 2-skeleton and is an arbitrarily C^0 -small deformation of ξ_0 .

In each 3-simplex Δ , choose a ball $B = \mathbf{D}^3$ such that

- $\partial B = \mathbf{S}^2$ is contained in *U* and transverse to ξ_1 except at its poles;
- ξ_1 is transverse to the vector field ∂_z in $B = \mathbf{D}^3$.

Deformation near the Skeleton

Near any 1- or 2-simplex Σ , there are coordinates (x, t, z) in which

- ξ_0 is defined by $dz = y_0(x, t, z) dx$;
- $\Sigma \subset \{t = 0\}.$

Now replace y_0 by a function y_1 satisfying

$$y_1(x,0,z) = y_0(x,0,z)$$
 and $\partial_t y_1 > 0$.

This yields a plane field ξ_1 which is contact on a neighborhood U of the 2-skeleton and is an arbitrarily C^0 -small deformation of ξ_0 .

In each 3-simplex Δ , choose a ball $B = \mathbf{D}^3$ such that

• $\partial B = \mathbf{S}^2$ is contained in *U* and transverse to ξ_1 except at its poles;

• ξ_1 is transverse to the vector field ∂_z in $B = \mathbf{D}^3$.

Deformation near the Skeleton

Near any 1- or 2-simplex Σ , there are coordinates (x, t, z) in which

- ξ_0 is defined by $dz = y_0(x, t, z) dx$;
- $\Sigma \subset \{t = 0\}.$

Now replace y_0 by a function y_1 satisfying

$$y_1(x,0,z) = y_0(x,0,z)$$
 and $\partial_t y_1 > 0$.

This yields a plane field ξ_1 which is contact on a neighborhood U of the 2-skeleton and is an arbitrarily C^0 -small deformation of ξ_0 .

In each 3-simplex Δ , choose a ball $B = \mathbf{D}^3$ such that

- ∂B = S² is contained in U and transverse to ξ₁ except at its poles;
- ξ_1 is transverse to the vector field ∂_z in $B = \mathbf{D}^3$.

Connect the north pole of *B* to its south pole by a path $A \subset U$ transverse to ξ_1 .

Take a small tube $N = \mathbf{D}^2 \times A$ around A and consider the solid torus

$$W=B\cup N=\mathbf{D}^2\times\mathbf{S}^1.$$

Then:

- ξ_1 is a contact structure near ∂W ;
- ξ_1 is transverse to the vector field $\partial_z, z \in S^1$.

So ξ_1 can be defined in *W* by

$$dz + u(r, \theta, z) d\theta + v(r, \theta, z) dr = 0$$

where *v* vanishes near ∂W — provided we suitably identified *W* to $D^2 \times S^1$.

・ロト ・ 理 ト ・ ヨ ト ・

Connect the north pole of *B* to its south pole by a path $A \subset U$ transverse to ξ_1 .

Take a small tube $N = \mathbf{D}^2 \times A$ around A and consider the solid torus

$$W = B \cup N = \mathbf{D}^2 \times \mathbf{S}^1.$$

Then:

• ξ_1 is a contact structure near ∂W ;

• ξ_1 is transverse to the vector field $\partial_z, z \in \mathbf{S}^1$. So ξ_1 can be defined in *W* by

$$dz + u(r, \theta, z) d\theta + v(r, \theta, z) dr = 0$$

where *v* vanishes near ∂W — provided we suitably identified *W* to $\mathbf{D}^2 \times \mathbf{S}^1$.

・ロト ・ 理 ト ・ ヨ ト ・

Connect the north pole of *B* to its south pole by a path $A \subset U$ transverse to ξ_1 .

Take a small tube $N = \mathbf{D}^2 \times A$ around A and consider the solid torus

$$W = B \cup N = \mathbf{D}^2 \times \mathbf{S}^1.$$

Then:

- ξ_1 is a contact structure near ∂W ;
- ξ_1 is transverse to the vector field ∂_z , $z \in \mathbf{S}^1$.

So ξ_1 can be defined in *W* by

$$dz + u(r, \theta, z) d\theta + v(r, \theta, z) dr = 0$$

where *v* vanishes near ∂W — provided we suitably identified *W* to $\mathbf{D}^2 \times \mathbf{S}^1$.

ヘロン 人間 とくほ とくほ とう

Connect the north pole of *B* to its south pole by a path $A \subset U$ transverse to ξ_1 .

Take a small tube $N = \mathbf{D}^2 \times A$ around A and consider the solid torus

$$W = B \cup N = \mathbf{D}^2 \times \mathbf{S}^1.$$

Then:

- ξ_1 is a contact structure near ∂W ;
- ξ_1 is transverse to the vector field ∂_z , $z \in \mathbf{S}^1$.

So ξ_1 can be defined in W by

$$dz + u(r, \theta, z) d\theta + v(r, \theta, z) dr = 0$$

where *v* vanishes near ∂W — provided we suitably identified *W* to $\mathbf{D}^2 \times \mathbf{S}^1$.

ヘロン 人間 とくほ とくほ とう

Consider on ${\bf R}^2\times {\bf S}^1$ the overtwisted contact structure ξ defined by

 $\cos r\,dz + r\sin r\,d\theta = 0.$

The function

$$r \in (3\pi/2, 5\pi/2) \longmapsto r \tan r \in (-\infty, +\infty)$$

is a diffeomorhism.

Therefore, for any point $(\theta, z) \in S^1 \times S^1 = \partial W$, there is a unique $r(\theta, z) \in (3\pi/2, 5\pi/2)$ such that

$$r(\theta, z) \tan r(\theta, z) = u(1, \theta, z).$$

The restriction of ξ to the solid torus

$$\{(r,\theta,z) \mid r \leq r(\theta,z)\}$$

gives a contact structure on W which coincides with ξ_1 on $\mathcal{D}W_2$

Consider on ${\bf R}^2\times {\bf S}^1$ the overtwisted contact structure ξ defined by

$$\cos r\,dz + r\sin r\,d\theta = 0.$$

The function

$$r \in (3\pi/2, 5\pi/2) \longmapsto r \tan r \in (-\infty, +\infty)$$

is a diffeomorhism.

Therefore, for any point $(\theta, z) \in S^1 \times S^1 = \partial W$, there is a unique $r(\theta, z) \in (3\pi/2, 5\pi/2)$ such that

$$r(\theta, z) \tan r(\theta, z) = u(1, \theta, z).$$

The restriction of ξ to the solid torus

$$\{(r,\theta,z) \mid r \leq r(\theta,z)\}$$

gives a contact structure on W which coincides with ξ_1 on $\mathcal{D}W_2$

Consider on $\mathbf{R}^2 \times \mathbf{S}^1$ the overtwisted contact structure ξ defined by

$$\cos r\,dz + r\sin r\,d\theta = 0.$$

The function

$$r \in (3\pi/2, 5\pi/2) \longmapsto r \tan r \in (-\infty, +\infty)$$

is a diffeomorhism.

Therefore, for any point $(\theta, z) \in \mathbf{S}^1 \times \mathbf{S}^1 = \partial W$, there is a unique $r(\theta, z) \in (3\pi/2, 5\pi/2)$ such that

$$r(\theta, z) \tan r(\theta, z) = u(1, \theta, z).$$

The restriction of ξ to the solid torus

$$\{(r,\theta,z) \mid r \leq r(\theta,z)\}$$

gives a contact structure on W which coincides with ξ_1 on $\mathcal{R}W_1$

Consider on $\mathbf{R}^2\times\mathbf{S}^1$ the overtwisted contact structure $\boldsymbol{\xi}$ defined by

$$\cos r\,dz + r\sin r\,d\theta = 0.$$

The function

$$r \in (3\pi/2, 5\pi/2) \longmapsto r \tan r \in (-\infty, +\infty)$$

is a diffeomorhism.

Therefore, for any point $(\theta, z) \in \mathbf{S}^1 \times \mathbf{S}^1 = \partial W$, there is a unique $r(\theta, z) \in (3\pi/2, 5\pi/2)$ such that

$$r(\theta, z) \tan r(\theta, z) = u(1, \theta, z).$$

The restriction of ξ to the solid torus

$$\{(r,\theta,z) \mid r \leq r(\theta,z)\}$$

gives a contact structure on W which coincides with ξ_1 on ∂W_2

Lutz Modification

Any closed transversal curve $C \subset (V, \xi)$ has a standard neighborhood

$$W = \mathbf{D}^2 \times \mathbf{S}^1 \supset C = \{\mathbf{0}\} \times \mathbf{S}^1$$

in which ξ is defined by

$$\alpha_0 = 0$$
 where $\alpha_0 = dz + \varepsilon r^2 d\theta$.

Let $r \mapsto (f(r), g(r)) \in \mathbf{R}^2 \setminus \{0\}$ be an arc revolving about 0 and joining (1, 0) to $(1, \varepsilon^2)$ after one complet turn. Then the contat structure defined on *W* by the form

$$\alpha = f(r) \, dz + g(r) \, d\theta$$

is homotopic to ξ rel. ∂W via the plane fields defined by

$$(1-s)\alpha_0 + s\alpha + s(1-s)r(\varepsilon - r) dr = 0.$$

イロト 不得 とくほと くほう

Lutz Modification

Any closed transversal curve $C \subset (V, \xi)$ has a standard neighborhood

$$W = \mathbf{D}^2 \times \mathbf{S}^1 \supset C = \{\mathbf{0}\} \times \mathbf{S}^1$$

in which ξ is defined by

$$\alpha_0 = 0$$
 where $\alpha_0 = dz + \varepsilon r^2 d\theta$.

Let $r \mapsto (f(r), g(r)) \in \mathbf{R}^2 \setminus \{0\}$ be an arc revolving about 0 and joining (1, 0) to $(1, \varepsilon^2)$ after one complet turn.

Then the contat structure defined on W by the form

$$\alpha = f(r) \, dz + g(r) \, d\theta$$

is homotopic to ξ rel. ∂W via the plane fields defined by

$$(1-s)\alpha_0 + s\alpha + s(1-s)r(\varepsilon - r) dr = 0.$$

イロト イポト イヨト イヨト

Lutz Modification

Any closed transversal curve $C \subset (V, \xi)$ has a standard neighborhood

$$W = \mathbf{D}^2 \times \mathbf{S}^1 \supset C = \{\mathbf{0}\} \times \mathbf{S}^1$$

in which ξ is defined by

$$\alpha_0 = 0$$
 where $\alpha_0 = dz + \varepsilon r^2 d\theta$.

Let $r \mapsto (f(r), g(r)) \in \mathbf{R}^2 \setminus \{0\}$ be an arc revolving about 0 and joining (1, 0) to $(1, \varepsilon^2)$ after one complet turn. Then the contat structure defined on W by the form

$$\alpha = f(r) \, dz + g(r) \, d\theta$$

is homotopic to ξ rel. ∂W via the plane fields defined by

$$(1-s)\alpha_0 + s\alpha + s(1-s)r(\varepsilon - r) dr = 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A 3-manifold V is irreducible if every embedded 2-sphere in V bounds a 3-ball.

Examples

- **R**³ and **S**³ are irreducible, as well as all manifolds covered by **R**³ or **S**³.
- S² × S¹ and the connected sum of two closed 3-manifolds different from S³ are not irreducible.

・ 戸 ・ ・ 三 ・ ・

A 3-manifold V is irreducible if every embedded 2-sphere in V bounds a 3-ball.

Examples

- R³ and S³ are irreducible, as well as all manifolds covered by R³ or S³.
- S² × S¹ and the connected sum of two closed 3-manifolds different from S³ are not irreducible.

Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures

・ 同 ト ・ ヨ ト ・ ヨ ト

A 3-manifold V is irreducible if every embedded 2-sphere in V bounds a 3-ball.

Examples

- R³ and S³ are irreducible, as well as all manifolds covered by R³ or S³.
- **S**² × **S**¹ and the connected sum of two closed 3-manifolds different from **S**³ are not irreducible.

An embedded surface $S \subset V$ is compressible if there exists an embedded disk $D \subset V$ such that $D \cap S = \partial D$.

Theorem (Dehn-Papakyriakopoulos)

An oriented surface $S \subset V$ is incompressible iff the homomorphism $\pi_1 S \to \pi_1 V$ induced by the inclusion map is injective.

Example

If S is a compressible torus in an irreducible 3-manifold V then either S bounds a solid torus or S is contained in a 3-ball inside V.

・ロト ・ 同ト ・ ヨト ・ ヨト

An embedded surface $S \subset V$ is compressible if there exists an embedded disk $D \subset V$ such that $D \cap S = \partial D$.

Theorem (Dehn-Papakyriakopoulos)

An oriented surface $S \subset V$ is incompressible iff the homomorphism $\pi_1 S \to \pi_1 V$ induced by the inclusion map is injective.

Example

If S is a compressible torus in an irreducible 3-manifold V then either S bounds a solid torus or S is contained in a 3-ball inside V.

イロト イポト イヨト イヨト

An embedded surface $S \subset V$ is compressible if there exists an embedded disk $D \subset V$ such that $D \cap S = \partial D$.

Theorem (Dehn-Papakyriakopoulos)

An oriented surface $S \subset V$ is incompressible iff the homomorphism $\pi_1 S \to \pi_1 V$ induced by the inclusion map is injective.

Example

If S is a compressible torus in an irreducible 3-manifold V then either S bounds a solid torus or S is contained in a 3-ball inside V.

< □ > < 同 > < 回 > < 回

A 3-manifold V is toroidal or atoroidal depending on whether it contains an incompressible torus or not.

Examples

- **T**³, torus bundles over the circle, circle bundles over surfaces of positive genus and most Seifert fibered manifolds are toroidal.
- S³, S² × S¹ and most closed 3-manifolds (in particular closed hyperbolic 3-manifolds) are atoroidal.

ヘロト 人間 ト ヘヨト ヘヨト

A 3-manifold V is toroidal or atoroidal depending on whether it contains an incompressible torus or not.

Examples

- T³, torus bundles over the circle, circle bundles over surfaces of positive genus and most Seifert fibered manifolds are toroidal.
- **S**³, **S**² × **S**¹ and most closed 3-manifolds (in particular closed hyperbolic 3-manifolds) are atoroidal.

イロト イポト イヨト イヨト

A 3-manifold V is toroidal or atoroidal depending on whether it contains an incompressible torus or not.

Examples

- T³, torus bundles over the circle, circle bundles over surfaces of positive genus and most Seifert fibered manifolds are toroidal.
- S³, S² × S¹ and most closed 3-manifolds (in particular closed hyperbolic 3-manifolds) are atoroidal.

イロト イ理ト イヨト イヨト

Theorem (homotopy finiteness, Colin-Honda-G)

On a closed 3-manifold, only finitely many homotopy classes of plane fields contain tight contact structures.

Theorem (isotopy finiteness, Colin-Honda-G)

On a closed atoroidal 3-manifold, there are only finitely many isotopy classes of tight contact structures.

Theorem (Colin, Honda-Kazez-Matić)

On a closed, toroidal, and irreducible 3-manifold, there are infinitely many conjugation classes of tight contact structures.

イロト イポト イヨト イヨト

Theorem (homotopy finiteness, Colin-Honda-G)

On a closed 3-manifold, only finitely many homotopy classes of plane fields contain tight contact structures.

Theorem (isotopy finiteness, Colin-Honda-G)

On a closed atoroidal 3-manifold, there are only finitely many isotopy classes of tight contact structures.

Theorem (Colin, Honda-Kazez-Matić)

On a closed, toroidal, and irreducible 3-manifold, there are infinitely many conjugation classes of tight contact structures.

イロト 不得 とくほ とくほ とう

Theorem (homotopy finiteness, Colin-Honda-G)

On a closed 3-manifold, only finitely many homotopy classes of plane fields contain tight contact structures.

Theorem (isotopy finiteness, Colin-Honda-G)

On a closed atoroidal 3-manifold, there are only finitely many isotopy classes of tight contact structures.

Theorem (Colin, Honda-Kazez-Matić)

On a closed, toroidal, and irreducible 3-manifold, there are infinitely many conjugation classes of tight contact structures.

イロト イポト イヨト イヨト