Homotopy and Isotopy Finiteness of Tight Contact Structures Contact Triangulations

### Joint work with Vincent Colin and Ko Honda

ENS-Lyon — CNRS

May 31, 2007

### Theorem (homotopy finiteness, Colin-Honda-G)

On a closed 3-manifold, only finitely many homotopy classes of plane fields contain tight contact structures.

### Theorem (isotopy finiteness, Colin-Honda-G)

On a closed atoroidal 3-manifold, there are only finitely many isotopy classes of tight contact structures.

#### Theorem (Colin, Honda-Kazez-Matić)

On a closed, toroidal, and irreducible 3-manifold, there are infinitely many conjugation classes of tight contact structures.

### Theorem (homotopy finiteness, Colin-Honda-G)

On a closed 3-manifold, only finitely many homotopy classes of plane fields contain tight contact structures.

### Theorem (isotopy finiteness, Colin-Honda-G)

On a closed atoroidal 3-manifold, there are only finitely many isotopy classes of tight contact structures.

### Theorem (Colin, Honda-Kazez-Matić)

On a closed, toroidal, and irreducible 3-manifold, there are infinitely many conjugation classes of tight contact structures.

イロト 不得 とくほ とくほ とう

### Theorem (homotopy finiteness, Colin-Honda-G)

On a closed 3-manifold, only finitely many homotopy classes of plane fields contain tight contact structures.

### Theorem (isotopy finiteness, Colin-Honda-G)

On a closed atoroidal 3-manifold, there are only finitely many isotopy classes of tight contact structures.

### Theorem (Colin, Honda-Kazez-Matić)

On a closed, toroidal, and irreducible 3-manifold, there are infinitely many conjugation classes of tight contact structures.

## Definition

The torsion of a contact structure  $\xi$  is the largest integer  $n \ge 0$  for which  $(V, \xi)$  contains  $\mathbf{T}^2 \times [0, 1]$  with the (induced) contact structure defined by

 $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2 = 0, \quad (x, t) \in \mathbf{T}^2 \times [0, 1].$ 

#### Examples

- Overtwisted contact structures have infinite torsion while tight contact structures on atoroidal 3-manifolds have zero torsion.
- The contact structure  $\xi_n$  defined on **T**<sup>3</sup> by  $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2 = 0, \quad n \ge 1,$

has torsion n-1.

• We don't know if there exist tight contact structures with infinite torsion.

## Definition

The torsion of a contact structure  $\xi$  is the largest integer  $n \ge 0$  for which  $(V, \xi)$  contains  $\mathbf{T}^2 \times [0, 1]$  with the (induced) contact structure defined by

 $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2 = 0, \quad (x,t) \in \mathbf{T}^2 \times [0,1].$ 

### Examples

- Overtwisted contact structures have infinite torsion while tight contact structures on atoroidal 3-manifolds have zero torsion.
- The contact structure  $\xi_n$  defined on **T**<sup>3</sup> by

 $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2 = 0, \quad n \ge 1,$ 

has torsion n-1.

• We don't know if there exist tight contact structures with infinite torsion.

## Definition

The torsion of a contact structure  $\xi$  is the largest integer  $n \ge 0$  for which  $(V, \xi)$  contains  $\mathbf{T}^2 \times [0, 1]$  with the (induced) contact structure defined by

 $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2 = 0, \quad (x,t) \in \mathbf{T}^2 \times [0,1].$ 

### Examples

- Overtwisted contact structures have infinite torsion while tight contact structures on atoroidal 3-manifolds have zero torsion.
- The contact structure  $\xi_n$  defined on **T**<sup>3</sup> by

 $\cos(2n\pi t)\,dx_1-\sin(2n\pi t)\,dx_2=0,\quad n\ge 1,$ 

has torsion n-1.

• We don't know if there exist tight contact structures with infinite torsion.

## Definition

The torsion of a contact structure  $\xi$  is the largest integer  $n \ge 0$  for which  $(V, \xi)$  contains  $\mathbf{T}^2 \times [0, 1]$  with the (induced) contact structure defined by

 $\cos(2n\pi t) dx_1 - \sin(2n\pi t) dx_2 = 0, \quad (x,t) \in \mathbf{T}^2 \times [0,1].$ 

### Examples

- Overtwisted contact structures have infinite torsion while tight contact structures on atoroidal 3-manifolds have zero torsion.
- The contact structure  $\xi_n$  defined on **T**<sup>3</sup> by

 $\cos(2n\pi t)\,dx_1-\sin(2n\pi t)\,dx_2=0,\quad n\ge 1,$ 

has torsion n-1.

 We don't know if there exist tight contact structures with infinite torsion.

## Theorem (Colin-Honda-G)

On a closed 3-manifold, there are only finitely many conjugation classes of tight contact structures with fixed bounded torsion.

#### Remark

However, there can be infinitely many isotopy classes. For instance, consider the diffeomorphism

$$\phi \colon \mathbf{T}^3 \to \mathbf{T}^3, \quad (x_1, x_2, t) \mapsto (x_1, x_2, t + x_1).$$

For any fixed  $n \ge 1$ , the contact structures  $(\phi^k)_* \xi_n$ ,  $k \in \mathbb{Z}$ , are conjugate to one another but pairwise non-isotopic.

## Theorem (Colin-Honda-G)

On a closed 3-manifold, there are only finitely many conjugation classes of tight contact structures with fixed bounded torsion.

#### Remark

However, there can be infinitely many isotopy classes. For instance, consider the diffeomorphism

$$\phi \colon \mathbf{T}^3 \to \mathbf{T}^3, \quad (x_1, x_2, t) \mapsto (x_1, x_2, t + x_1).$$

For any fixed  $n \ge 1$ , the contact structures  $(\phi^k)_* \xi_n$ ,  $k \in \mathbb{Z}$ , are conjugate to one another but pairwise non-isotopic.

## **Characteristic Foliations**

On any surface  $S \subset (V, \xi)$ , the singular line field  $\xi \cap TS$ integrates to a singular foliation  $\xi S$  called the characteristic foliation of *S*. This foliation is singular at points *p* where  $\xi$  is tangent to *S*, *i.e.*, where  $T_pS = \xi_p$ .

#### Example

Let  $W = \mathbf{D}^2 \times \mathbf{S}^1$  be a standard neighborhood of a closed transversal curve  $C = \{0\} \times \mathbf{S}^1$ .

The contact structure  $\xi$  defined by

$$dz + \varepsilon r^2 d\theta$$

is transverse to each torus  $T_r = r \mathbf{S}^1 \times \mathbf{S}^1$  and the characteristic foliation  $\xi T_r$  is a linear foliation with slope  $dz/d\theta = -\varepsilon r^2$ .

## **Characteristic Foliations**

On any surface  $S \subset (V, \xi)$ , the singular line field  $\xi \cap TS$  integrates to a singular foliation  $\xi S$  called the characteristic foliation of *S*.

This foliation is singular at points *p* where  $\xi$  is tangent to *S*, *i.e.*, where  $T_pS = \xi_p$ .

#### Example

Let  $W = \mathbf{D}^2 \times \mathbf{S}^1$  be a standard neighborhood of a closed transversal curve  $C = \{0\} \times \mathbf{S}^1$ .

The contact structure  $\xi$  defined by

$$dz + \varepsilon r^2 d\theta$$

is transverse to each torus  $T_r = r \mathbf{S}^1 \times \mathbf{S}^1$  and the characteristic foliation  $\xi T_r$  is a linear foliation with slope  $dz/d\theta = -\varepsilon r^2$ .

 $(V, \xi)$ : any contact 3-manifold;  $T \subset V$ : an embedded torus transversal to  $\xi$ ;  $W = T \times [0, 1] \subset V$ : a tubular neighborhood of T with Legendrian fibers.

In *W*,  $\xi$  is defined by

 $\cos\theta(x,t)\,dx_1-\sin\theta(x,t)\,dx_2=0,$ 

where  $(x, t) \in \mathbf{R}^2/\mathbf{Z}^2 \times [0, 1]$  and  $\partial_t \theta > 0$ . For all  $n \ge 0$ , the 1-form

 $\cos(\theta(x,t) + 2n\pi t) dx_1 - \sin(\theta(x,t) + 2n\pi t) dx_2$ 

defines another contact structure in *W* which coincides with  $\xi$  on  $\partial W$ .

This Lutz modification with coefficient *n* along *T* yields a contact structure  $\xi_n$  on *V* which is homotopic to  $\xi$  among plane, fields.

 $(V, \xi)$ : any contact 3-manifold;  $T \subset V$ : an embedded torus transversal to  $\xi$ ;  $W = T \times [0, 1] \subset V$ : a tubular neighborhood of T with Legendrian fibers.

In W,  $\xi$  is defined by

 $\cos\theta(x,t)\,dx_1-\sin\theta(x,t)\,dx_2=0,$ 

where  $(x, t) \in \mathbf{R}^2/\mathbf{Z}^2 \times [0, 1]$  and  $\partial_t \theta > 0$ .

For all  $n \ge 0$ , the 1-form

 $\cos(\theta(x,t) + 2n\pi t) dx_1 - \sin(\theta(x,t) + 2n\pi t) dx_2$ 

defines another contact structure in W which coincides with  $\xi$  on  $\partial W$ .

This Lutz modification with coefficient *n* along *T* yields a contact structure  $\xi_n$  on *V* which is homotopic to  $\xi$  among plane, fields.

 $(V, \xi)$ : any contact 3-manifold;  $T \subset V$ : an embedded torus transversal to  $\xi$ ;  $W = T \times [0, 1] \subset V$ : a tubular neighborhood of T with Legendrian fibers.

In *W*,  $\xi$  is defined by

 $\cos\theta(x,t)\,dx_1-\sin\theta(x,t)\,dx_2=0,$ 

where  $(x, t) \in \mathbf{R}^2/\mathbf{Z}^2 \times [0, 1]$  and  $\partial_t \theta > 0$ . For all  $n \ge 0$ , the 1-form

 $\cos(\theta(x,t) + 2n\pi t) dx_1 - \sin(\theta(x,t) + 2n\pi t) dx_2$ 

defines another contact structure in W which coincides with  $\xi$  on  $\partial W$ .

This Lutz modification with coefficient *n* along *T* yields a contact structure  $\xi_n$  on *V* which is homotopic to  $\xi$  among plane, fields.

 $(V, \xi)$ : any contact 3-manifold;  $T \subset V$ : an embedded torus transversal to  $\xi$ ;  $W = T \times [0, 1] \subset V$ : a tubular neighborhood of T with Legendrian fibers.

In *W*,  $\xi$  is defined by

$$\cos\theta(x,t)\,dx_1-\sin\theta(x,t)\,dx_2=0,$$

where  $(x, t) \in \mathbf{R}^2/\mathbf{Z}^2 \times [0, 1]$  and  $\partial_t \theta > 0$ . For all  $n \ge 0$ , the 1-form

$$\cos(\theta(x,t) + 2n\pi t) dx_1 - \sin(\theta(x,t) + 2n\pi t) dx_2$$

defines another contact structure in W which coincides with  $\xi$  on  $\partial W$ .

This Lutz modification with coefficient *n* along *T* yields a contact structure  $\xi_n$  on *V* which is homotopic to  $\xi$  among plane fields.

 $\theta: W = T \times [0, 1] \rightarrow S^1$ : the angle between  $\xi$  and a fixed "horizontal" direction.

### Case of Linear Characteristic Foliations

If  $\theta$  is homotopic to a constant then Lutz modification tends to increase torsion.

In particular, if T is compressible,  $\xi_n$  is overtwisted for every  $n \ge 1$ .

#### Characteristic Foliations with Reeb Components

If  $\theta$  is not homotopic to a constant then Lutz modification does not change the conjugation class:  $\xi_n$  is the image of  $\xi$  by a Dehn twist. In particular, if T bounds a solid torus,  $\xi_n$  is isotopic to  $\xi$ .

ヘロト ヘアト ヘビト ヘビ

 $\theta: W = T \times [0, 1] \rightarrow S^1$ : the angle between  $\xi$  and a fixed "horizontal" direction.

#### Case of Linear Characteristic Foliations

If  $\theta$  is homotopic to a constant then Lutz modification tends to increase torsion. In particular, if *T* is compressible,  $\xi_n$  is overtwisted for every  $n \ge 1$ .

#### Characteristic Foliations with Reeb Components

If  $\theta$  is not homotopic to a constant then Lutz modification does not change the conjugation class:  $\xi_n$  is the image of  $\xi$  by a Dehn twist. In particular, if T bounds a solid torus,  $\xi_n$  is isotopic to  $\xi$ .

 $\theta: W = T \times [0, 1] \rightarrow S^1$ : the angle between  $\xi$  and a fixed "horizontal" direction.

### Case of Linear Characteristic Foliations

If  $\theta$  is homotopic to a constant then Lutz modification tends to increase torsion. In particular, if T is compressible,  $\xi_n$  is overtwisted for every n > 1.

### Characteristic Foliations with Reeb Components

If  $\theta$  is not homotopic to a constant then Lutz modification does not change the conjugation class:  $\xi_n$  is the image of  $\xi$  by a Dehn twist.

In particular, if T bounds a solid torus,  $\xi_n$  is isotopic to  $\xi$ .

・ロト ・同ト ・ヨト ・ヨト

 $\theta: W = T \times [0, 1] \rightarrow S^1$ : the angle between  $\xi$  and a fixed "horizontal" direction.

### Case of Linear Characteristic Foliations

If  $\theta$  is homotopic to a constant then Lutz modification tends to increase torsion. In particular, if T is compressible,  $\xi_n$  is overtwisted for every n > 1.

### Characteristic Foliations with Reeb Components

If  $\theta$  is not homotopic to a constant then Lutz modification does not change the conjugation class:  $\xi_n$  is the image of  $\xi$  by a Dehn twist.

In particular, if T bounds a solid torus,  $\xi_n$  is isotopic to  $\xi$ .

## Theorem (Colin-Honda-G)

On a closed 3-manifold V, there are finitely many tight contact structures  $\xi_1, \ldots, \xi_n$  and, for each  $i \in \{1, \ldots, n\}$ , finitely many tori  $T_1^i, \ldots, T_{k_i}^i$  transverse to  $\xi_i$  such that every tight contact structure  $\xi$  on V, up to isotopy, is obtained from one of the  $\xi_i$ 's by Lutz modification with coefficients  $n_i^i(\xi) \in \mathbf{N}$  along the  $T_i^i$ 's.

<ロト < 同ト < 回ト < 回ト = 三

# **Orientation of Characteristic Foliations**

 $\mathcal{S} \subset (\mathcal{V}, \xi)$ : a compact oriented surface;

 $\omega$ : a positive area form on *S*;

 $\lambda$ : the 1-form induced on *S* by a defining contact form for  $\xi$ .

#### Orientation Convention

The leaves of  $\xi S$  are oriented by the vector field  $\eta$  such that

 $\eta \,\lrcorner\, \omega = \lambda.$ 

Equivalently, the leaves are oriented so that the positive side of  $\xi$  is on their left-hand side.

ヘロト 人間 ト ヘヨト ヘヨト

## **Orientation of Characteristic Foliations**

 $\mathcal{S} \subset (\mathcal{V}, \xi)$ : a compact oriented surface;

 $\omega$ : a positive area form on *S*;

 $\lambda$ : the 1-form induced on *S* by a defining contact form for  $\xi$ .

#### **Orientation Convention**

The leaves of  $\xi S$  are oriented by the vector field  $\eta$  such that

$$\eta\,\lrcorner\,\omega=\lambda.$$

Equivalently, the leaves are oriented so that the positive side of  $\xi$  is on their left-hand side.

・ 同 ト ・ ヨ ト ・ ヨ ト

# **Orientation of Characteristic Foliations**

 $\mathcal{S} \subset (\mathcal{V}, \xi)$ : a compact oriented surface;

 $\omega$ : a positive area form on *S*;

 $\lambda$ : the 1-form induced on *S* by a defining contact form for  $\xi$ .

#### **Orientation Convention**

The leaves of  $\xi S$  are oriented by the vector field  $\eta$  such that

$$\eta \,\lrcorner\, \omega = \lambda.$$

Equivalently, the leaves are oriented so that the positive side of  $\xi$  is on their left-hand side.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $S \subset (V, \xi)$ : a compact oriented surface with (possibly empty) Legendrian boundary.

S is  $\xi$ -convex if it admits a thickening

 $\textbf{R}\times S\supset S\times \{0\}=S$ 

in which  $\xi$  is invariant by  $\partial_t$ ,  $t \in \mathbf{R}$ .

### Proposition

*S* is  $\xi$ -convex iff there is a multi-curve  $\Gamma \subset S$  such that:

- $\Gamma$  is transverse to  $\xi S$ ;
- in each component of S \ Γ, the foliation ±ξS is spanned by a vector field which expands area and points outward along Γ.

The dividing set  $\Gamma$  of a  $\xi$ -convex surface completely determines  $\xi$  in the homogeneous thickening **R**  $\times$  *S*.

(日)

 $S \subset (V, \xi)$ : a compact oriented surface with (possibly empty) Legendrian boundary.

S is  $\xi$ -convex if it admits a thickening

 $\textbf{R}\times S\supset S\times \{0\}=S$ 

in which  $\xi$  is invariant by  $\partial_t$ ,  $t \in \mathbf{R}$ .

## Proposition

*S* is  $\xi$ -convex iff there is a multi-curve  $\Gamma \subset S$  such that:

•  $\Gamma$  is transverse to  $\xi S$ ;

 in each component of S \ Γ, the foliation ±ξS is spanned by a vector field which expands area and points outward along Γ.

The dividing set  $\Gamma$  of a  $\xi$ -convex surface completely determines  $\xi$  in the homogeneous thickening **R**  $\times$  *S*.

人間 アメロアメロア

 $S \subset (V, \xi)$ : a compact oriented surface with (possibly empty) Legendrian boundary.

S is  $\xi$ -convex if it admits a thickening

 $\mathbf{R}\times S\supset S\times\{\mathbf{0}\}=S$ 

in which  $\xi$  is invariant by  $\partial_t$ ,  $t \in \mathbf{R}$ .

## Proposition

*S* is  $\xi$ -convex iff there is a multi-curve  $\Gamma \subset S$  such that:

- $\Gamma$  is transverse to  $\xi S$ ;
- in each component of S \ Γ, the foliation ±ξS is spanned by a vector field which expands area and points outward along Γ.

The dividing set  $\Gamma$  of a  $\xi$ -convex surface completely determines  $\xi$  in the homogeneous thickening **R**  $\times$  *S*.

 $S \subset (V, \xi)$ : a compact oriented surface with (possibly empty) Legendrian boundary.

S is  $\xi$ -convex if it admits a thickening

 $\textbf{R}\times S\supset S\times \{0\}=S$ 

in which  $\xi$  is invariant by  $\partial_t$ ,  $t \in \mathbf{R}$ .

## Proposition

*S* is  $\xi$ -convex iff there is a multi-curve  $\Gamma \subset S$  such that:

- $\Gamma$  is transverse to  $\xi S$ ;
- in each component of S \ Γ, the foliation ±ξS is spanned by a vector field which expands area and points outward along Γ.

The dividing set  $\Gamma$  of a  $\xi$ -convex surface completely determines  $\xi$  in the homogeneous thickening **R** × *S*.

*L*: a Legendrian cuve on a compact surface  $S \subset (V, \xi)$ . The Thurston-Bennequin number tb(L, S) of *L* relative to *S* is the winding number of  $\xi$  around *S* along *L*.

If *S* is  $\xi$ -convex with dividing set  $\Gamma$  then

$$\operatorname{tb}(L, S) = -\frac{1}{2}\operatorname{Card}(L \cap \Gamma) \leq 0.$$

#### Proposition

Let *S* be a compact surface with (possibly empty) Legendrian boundary. If *S* is closed or if  $tb(\partial S) \leq 0$  then *S* can be perturbed to a  $\xi$ -convex surface by an arbitrarily small isotopy.

*L*: a Legendrian cuve on a compact surface  $S \subset (V, \xi)$ . The Thurston-Bennequin number tb(L, S) of *L* relative to *S* is the winding number of  $\xi$  around *S* along *L*. If *S* is  $\xi$ -convex with dividing set  $\Gamma$  then

$$\operatorname{tb}(L, S) = -\frac{1}{2}\operatorname{Card}(L \cap \Gamma) \leq 0.$$

#### Proposition

Let *S* be a compact surface with (possibly empty) Legendrian boundary. If *S* is closed or if  $\operatorname{tb}(\partial S) \leq 0$  then *S* can be perturbed to a  $\xi$ -convex surface by an arbitrarily small isotopy.

・ロット (雪) ( ) ( ) ( ) ( )

*L*: a Legendrian cuve on a compact surface  $S \subset (V, \xi)$ . The Thurston-Bennequin number  $\operatorname{tb}(L, S)$  of *L* relative to *S* is the winding number of  $\xi$  around *S* along *L*. If *S* is  $\xi$ -convex with dividing set  $\Gamma$  then

$$\operatorname{tb}(L, S) = -\frac{1}{2}\operatorname{Card}(L \cap \Gamma) \leq 0.$$

#### Proposition

Let *S* be a compact surface with (possibly empty) Legendrian boundary. If *S* is closed or if  $tb(\partial S) \leq 0$  then *S* can be perturbed to a  $\xi$ -convex surface by an arbitrarily small isotopy.

#### Lemma (Legendrian Realization Lemma)

Let S be a  $\xi$ -convex surface,  $\Gamma$  its dividing set and  $L \subset S$  a graph such that each component of  $S \setminus L$  meets  $\Gamma$ . Then S can be isotoped among  $\xi$ -convex surfaces to a surface S' on which L is a Legendrian graph.

#### Corollary

If  $\xi$  is tight and if S is a xi-convex surface different from  $S^2$  then  $\Gamma$  has no contractible closed component.

Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures

#### Lemma (Legendrian Realization Lemma)

Let S be a  $\xi$ -convex surface,  $\Gamma$  its dividing set and  $L \subset S$  a graph such that each component of  $S \setminus L$  meets  $\Gamma$ . Then S can be isotoped among  $\xi$ -convex surfaces to a surface S' on which L is a Legendrian graph.

#### Corollary

If  $\xi$  is tight and if S is a xi-convex surface different from  $S^2$  then  $\Gamma$  has no contractible closed component.

Any smooth curve in a contact manifold  $(V, \xi)$  can be made Legendrian by an arbitrarily  $C^0$ -small isotopy. Moreover, this isotopy can be chosen fixed on any sub-arc which is already Legendrian.

**Proof.** Consider **R**<sup>3</sup> with the contact form  $dy - z \, dx$ . A parameterized arc (x(t), y(t), z(t)) is Legendrian iff  $z(t) = \dot{y}(t)/\dot{x}(t)$ 

and, in particular, (x(t), y(t)) has no vertical tangent line. A typical example is  $(3t^2, 2t^3, t)$  whose projection to the *xy*-plane has a cusp in 0.

Take any curve  $(x_0(t), y_0(t), z_0(t))$ . We can approximate  $(x_0(t), y_0(t))$  by a curve (x(t), y(t)) (with cusps but no vertical tangent line) whose slope  $\dot{y}/\dot{x}$  approximates  $z_0$ .

ヘロト ヘアト ヘビト ヘビ

Any smooth curve in a contact manifold  $(V, \xi)$  can be made Legendrian by an arbitrarily  $C^0$ -small isotopy. Moreover, this isotopy can be chosen fixed on any sub-arc which is already Legendrian.

**Proof.** Consider **R**<sup>3</sup> with the contact form  $dy - z \, dx$ . A parameterized arc (x(t), y(t), z(t)) is Legendrian iff  $z(t) = \dot{y}(t)/\dot{x}(t)$ 

and, in particular, (x(t), y(t)) has no vertical tangent line. A typical example is  $(3t^2, 2t^3, t)$  whose projection to the *xy*-plane has a cusp in 0.

 $(x_0(t), y_0(t))$  by a curve (x(t), y(t)) (with cusps but no vertical tangent line) whose slope  $\dot{y}/\dot{x}$  approximates  $z_0$ .

(E) ► < E >

Any smooth curve in a contact manifold  $(V, \xi)$  can be made Legendrian by an arbitrarily  $C^0$ -small isotopy. Moreover, this isotopy can be chosen fixed on any sub-arc which is already Legendrian.

**Proof.** Consider **R**<sup>3</sup> with the contact form  $dy - z \, dx$ . A parameterized arc (x(t), y(t), z(t)) is Legendrian iff  $z(t) = \dot{y}(t)/\dot{x}(t)$ 

and, in particular, (x(t), y(t)) has no vertical tangent line. A typical example is  $(3t^2, 2t^3, t)$  whose projection to the *xy*-plane has a cusp in 0.

Take any curve  $(x_0(t), y_0(t), z_0(t))$ . We can approximate  $(x_0(t), y_0(t))$  by a curve (x(t), y(t)) (with cusps but no vertical tangent line) whose slope  $\dot{y}/\dot{x}$  approximates  $z_0$ .

프 🖌 🛪 프 🕨

Any smooth curve in a contact manifold  $(V, \xi)$  can be made Legendrian by an arbitrarily  $C^0$ -small isotopy. Moreover, this isotopy can be chosen fixed on any sub-arc which is already Legendrian.

**Proof.** Consider  $\mathbf{R}^3$  with the contact form  $dy - z \, dx$ . A parameterized arc (x(t), y(t), z(t)) is Legendrian iff

 $z(t) = \dot{y}(t)/\dot{x}(t)$ 

and, in particular, (x(t), y(t)) has no vertical tangent line. A typical example is  $(3t^2, 2t^3, t)$  whose projection to the *xy*-plane has a cusp in 0.

Take any curve  $(x_0(t), y_0(t), z_0(t))$ . We can approximate  $(x_0(t), y_0(t))$  by a curve (x(t), y(t)) (with cusps but no vertical tangent line) whose slope  $\dot{y}/\dot{x}$  approximates  $z_0$ .

프 🖌 🛪 프 🕨

- every 1- or 2-simplix is smooth;
- every 3-simplex has, along its edges except at vertices, a dihedral angle in (0, π).

Any smooth triangulation of *V* satisfies these conditions.

An isotopy of triangulations is a continuous 1-parameter family of triangulations.

- every 1- or 2-simplix is smooth;
- every 3-simplex has, along its edges except at vertices, a dihedral angle in (0, π).

Any smooth triangulation of V satisfies these conditions.

An isotopy of triangulations is a continuous 1-parameter family of triangulations.

ヘロト 人間 ト ヘヨト ヘヨト

- every 1- or 2-simplix is smooth;
- every 3-simplex has, along its edges except at vertices, a dihedral angle in (0, π).

Any smooth triangulation of V satisfies these conditions.

An isotopy of triangulations is a continuous 1-parameter family of triangulations.

- every 1- or 2-simplix is smooth;
- every 3-simplex has, along its edges except at vertices, a dihedral angle in (0, π).

Any smooth triangulation of V satisfies these conditions.

An isotopy of triangulations is a continuous 1-parameter family of triangulations.

A contact triangulation of  $(V, \xi)$  is a triangulation  $\Delta$  of V such that:

- 1-simplices are Legendrian;
- 2-simplices are  $\xi$ -convex and  $\xi$ -disciplined;
- 3-simplices are contained in Darboux charts.

The Thurston-Bennequin number of a contact triangulation  $\Delta$  is

$$\mathrm{TB}(\Delta) = -\sum_{F} \mathrm{tb}(\partial F)$$

where F ranges over 2-simplices.

A contact triangulation of  $(V, \xi)$  is a triangulation  $\Delta$  of V such that:

- 1-simplices are Legendrian;
- 2-simplices are  $\xi$ -convex and  $\xi$ -disciplined;
- 3-simplices are contained in Darboux charts.

The Thurston-Bennequin number of a contact triangulation  $\Delta$  is

$$\mathrm{TB}(\Delta) = -\sum_{F} \mathrm{tb}(\partial F)$$

where F ranges over 2-simplices.

A contact triangulation of  $(V, \xi)$  is a triangulation  $\Delta$  of V such that:

- 1-simplices are Legendrian;
- 2-simplices are  $\xi$ -convex and  $\xi$ -disciplined;
- 3-simplices are contained in Darboux charts.

The Thurston-Bennequin number of a contact triangulation  $\Delta$  is

$$\mathrm{TB}(\Delta) = -\sum_{F} \mathrm{tb}(\partial F)$$

where F ranges over 2-simplices.

・ 同 ト ・ ヨ ト ・ ヨ ト

A contact triangulation of  $(V, \xi)$  is a triangulation  $\Delta$  of V such that:

- 1-simplices are Legendrian;
- 2-simplices are  $\xi$ -convex and  $\xi$ -disciplined;
- 3-simplices are contained in Darboux charts.

The Thurston-Bennequin number of a contact triangulation  $\Delta$  is

$$\operatorname{TB}(\Delta) = -\sum_{\mathcal{F}} \operatorname{tb}(\partial \mathcal{F})$$

where F ranges over 2-simplices.

A contact triangulation  $\Delta$  of  $(V, \xi)$  is minimal if it has the smallest Thurston-Bennequin number among all contact triangulations which are isotopic to  $\Delta$  rel. a neighborhood of vertices.

A set of tight contact structures on V is complete if it represents all isotopy classes of such structures.

#### Proposition

There exist a triangulation  $\Delta$  of V and a complete set  $\mathcal{X}$  of tight contact structures on V such that  $\Delta$  is a minimal contact triangulation of  $(V, \xi)$  for every  $\xi \in \mathcal{X}$ .

イロト 不得 とくほと くほう

A contact triangulation  $\Delta$  of  $(V, \xi)$  is minimal if it has the smallest Thurston-Bennequin number among all contact triangulations which are isotopic to  $\Delta$  rel. a neighborhood of vertices.

A set of tight contact structures on V is complete if it represents all isotopy classes of such structures.

#### Proposition

There exist a triangulation  $\Delta$  of V and a complete set  $\mathcal{X}$  of tight contact structures on V such that  $\Delta$  is a minimal contact triangulation of  $(V, \xi)$  for every  $\xi \in \mathcal{X}$ .

A contact triangulation  $\Delta$  of  $(V, \xi)$  is minimal if it has the smallest Thurston-Bennequin number among all contact triangulations which are isotopic to  $\Delta$  rel. a neighborhood of vertices.

A set of tight contact structures on V is complete if it represents all isotopy classes of such structures.

#### Proposition

There exist a triangulation  $\Delta$  of V and a complete set  $\mathcal{X}$  of tight contact structures on V such that  $\Delta$  is a minimal contact triangulation of  $(V, \xi)$  for every  $\xi \in \mathcal{X}$ .

||▲ 同 ト ▲ 臣 ト ▲ 臣

# $\xi$ : a tight contact structure on V;

## $\Delta_0$ : an arbitrary smooth triangulation of *V*.

Isotope  $\Delta_0$  to a contact triangulation  $\Delta$  of  $(V, \xi)$  as follows:

- approximate the 1-simplices by  $\xi$ -Legendrian arcs;
- make the 2-simplices ξ-convex by a small perturbation relative to their boundaries;
- note that 3-simplices are contained in Darboux charts because  $\xi$  is tight (Eliashberg's Theorem).

- $\xi$ : a tight contact structure on *V*;
- $\Delta_0$ : an arbitrary smooth triangulation of *V*.
- Isotope  $\Delta_0$  to a contact triangulation  $\Delta$  of ( $V, \xi$ ) as follows:
  - approximate the 1-simplices by  $\xi$ -Legendrian arcs;
  - make the 2-simplices ξ-convex by a small perturbation relative to their boundaries;
  - note that 3-simplices are contained in Darboux charts because  $\xi$  is tight (Eliashberg's Theorem).

ヘロト 人間 ト ヘヨト ヘヨト

- $\xi$ : a tight contact structure on *V*;
- $\Delta_0$ : an arbitrary smooth triangulation of *V*.
- Isotope  $\Delta_0$  to a contact triangulation  $\Delta$  of (*V*,  $\xi$ ) as follows:
  - approximate the 1-simplices by  $\xi$ -Legendrian arcs;
  - make the 2-simplices ξ-convex by a small perturbation relative to their boundaries;
  - note that 3-simplices are contained in Darboux charts because  $\xi$  is tight (Eliashberg's Theorem).

- $\xi$ : a tight contact structure on *V*;
- $\Delta_0$ : an arbitrary smooth triangulation of *V*.
- Isotope  $\Delta_0$  to a contact triangulation  $\Delta$  of (*V*,  $\xi$ ) as follows:
  - approximate the 1-simplices by  $\xi$ -Legendrian arcs;
  - make the 2-simplices ξ-convex by a small perturbation relative to their boundaries;
  - note that 3-simplices are contained in Darboux charts because ξ is tight (Eliashberg's Theorem).

・ 同 ト ・ ヨ ト ・ ヨ ト

## $\Delta$ : a minimal contact triangulation of $(V, \xi)$ ; *F*: a 2-simplex of $\Delta$ . $\Gamma_F$ : the dividing set of *F*.

#### \_emma

If a component *C* of  $\Gamma_F$  has its two endpoints on the same edge *E* then one of these endpoints is outermost on  $\Gamma_F \cap E$ .

**Proof.** If no endpoint of *C* is outermost in  $\Gamma_F \cap E$ , deform  $\Delta$  (by an isotopy supported in the open star of *E*) to a contact triangulation with smaller Thurston-Bennequin number. Isotope *F* to  $F' = F \setminus U$  where *U* is a small open neighborhood in *F* of the half-disk cut by *C* and make  $\partial F'$  Legendrian using the LR-Lemma.

- $\Delta$ : a minimal contact triangulation of (*V*,  $\xi$ );
- *F*: a 2-simplex of  $\Delta$ .
- $\Gamma_F$ : the dividing set of *F*.

If a component C of  $\Gamma_F$  has its two endpoints on the same edge E then one of these endpoints is outermost on  $\Gamma_F \cap E$ .

**Proof.** If no endpoint of *C* is outermost in  $\Gamma_F \cap E$ , deform  $\Delta$  (by an isotopy supported in the open star of *E*) to a contact triangulation with smaller Thurston-Bennequin number. Isotope *F* to  $F' = F \setminus U$  where *U* is a small open neighborhood in *F* of the half-disk cut by *C* and make  $\partial F'$  Legendrian using the LR-Lemma.

イロト 不得 とくほと くほう

- $\Delta$ : a minimal contact triangulation of (*V*,  $\xi$ );
- *F*: a 2-simplex of  $\Delta$ .
- $\Gamma_F$ : the dividing set of F.

If a component C of  $\Gamma_F$  has its two endpoints on the same edge E then one of these endpoints is outermost on  $\Gamma_F \cap E$ .

**Proof.** If no endpoint of *C* is outermost in  $\Gamma_F \cap E$ , deform  $\Delta$  (by an isotopy supported in the open star of *E*) to a contact triangulation with smaller Thurston-Bennequin number. Isotope *F* to  $F' = F \setminus U$  where *U* is a small open neighborhood in *F* of the half-disk cut by *C* and make  $\partial F'$  Legendrian using the LR-Lemma.

- $\Delta$ : a minimal contact triangulation of (*V*,  $\xi$ );
- *F*: a 2-simplex of  $\Delta$ .
- $\Gamma_F$ : the dividing set of *F*.

If a component C of  $\Gamma_F$  has its two endpoints on the same edge E then one of these endpoints is outermost on  $\Gamma_F \cap E$ .

**Proof.** If no endpoint of *C* is outermost in  $\Gamma_F \cap E$ , deform  $\Delta$  (by an isotopy supported in the open star of *E*) to a contact triangulation with smaller Thurston-Bennequin number. Isotope *F* to  $F' = F \setminus U$  where *U* is a small open neighborhood in *F* of the half-disk cut by *C* and make  $\partial F'$  Legendrian using the LR-Lemma.

- $\Delta$ : a minimal contact triangulation of (*V*,  $\xi$ );
- *F*: a 2-simplex of  $\Delta$ .
- $\Gamma_F$ : the dividing set of F.

If a component C of  $\Gamma_F$  has its two endpoints on the same edge E then one of these endpoints is outermost on  $\Gamma_F \cap E$ .

**Proof.** If no endpoint of *C* is outermost in  $\Gamma_F \cap E$ , deform  $\Delta$  (by an isotopy supported in the open star of *E*) to a contact triangulation with smaller Thurston-Bennequin number. Isotope *F* to  $F' = F \setminus U$  where *U* is a small open neighborhood in *F* of the half-disk cut by *C* and make  $\partial F'$  Legendrian using the LR-Lemma.

# **Typical Dividing Set**



Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures

# **Associated Normalized Foliation**



Joint work with Vincent Colin and Ko Honda

Homotopy and Isotopy Finiteness of Tight Contact Structures