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Finiteness Results

Theorem (homotopy finiteness, Colin-Honda-G)
On a closed 3-manifold, only finitely many homotopy classes of
plane fields contain tight contact structures.

Theorem (isotopy finiteness, Colin-Honda-G)
On a closed atoroidal 3-manifold, there are only finitely many
isotopy classes of tight contact structures.

Theorem (Colin, Honda-Kazez-Matić)
On a closed, toroidal, and irreducible 3-manifold, there are
infinitely many conjugation classes of tight contact structures.
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Torsion of Contact Structures

Definition
The torsion of a contact structure ξ is the largest integer n ≥ 0
for which (V , ξ) contains T2 × [0, 1] with the (induced) contact
structure defined by

cos(2nπt) dx1 − sin(2nπt) dx2 = 0, (x , t) ∈ T2 × [0, 1].

Examples
Overtwisted contact structures have infinite torsion while
tight contact structures on atoroidal 3-manifolds have zero
torsion.
The contact structure ξn defined on T3 by

cos(2nπt) dx1 − sin(2nπt) dx2 = 0, n ≥ 1,

has torsion n − 1.
We don’t know if there exist tight contact structures with
infinite torsion.
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Finiteness and Torsion

Theorem (Colin-Honda-G)
On a closed 3-manifold, there are only finitely many conjugation
classes of tight contact structures with fixed bounded torsion.

Remark
However, there can be infinitely many isotopy classes.
For instance, consider the diffeomorphism

φ : T3 → T3, (x1, x2, t) 7→ (x1, x2, t + x1).

For any fixed n ≥ 1, the contact structures (φk )∗ξn, k ∈ Z, are
conjugate to one another but pairwise non-isotopic.
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Characteristic Foliations

On any surface S ⊂ (V , ξ), the singular line field ξ ∩ TS
integrates to a singular foliation ξS called the characteristic
foliation of S.
This foliation is singular at points p where ξ is tangent to S, i.e.,
where TpS = ξp.

Example

Let W = D2 × S1 be a standard neighborhood of a closed
transversal curve C = {0} × S1.
The contact structure ξ defined by

dz + εr2dθ

is transverse to each torus Tr = rS1 × S1 and the characteristic
foliation ξTr is a linear foliation with slope dz/dθ = −εr2.
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Lutz Modification Revisited

(V , ξ): any contact 3-manifold;
T ⊂ V : an embedded torus transversal to ξ;
W = T × [0, 1] ⊂ V : a tubular neighborhood of T with
Legendrian fibers.

In W , ξ is defined by

cos θ(x , t) dx1 − sin θ(x , t) dx2 = 0,

where (x , t) ∈ R2/Z2 × [0, 1] and ∂tθ > 0.
For all n ≥ 0, the 1-form

cos(θ(x , t) + 2nπt) dx1 − sin(θ(x , t) + 2nπt) dx2

defines another contact structure in W which coincides with ξ
on ∂W .

This Lutz modification with coefficient n along T yields a contact
structure ξn on V which is homotopic to ξ among plane fields.
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Lutz Modification and Compressibility

θ : W = T × [0, 1] → S1: the angle between ξ and a fixed
“horizontal” direction.

Case of Linear Characteristic Foliations
If θ is homotopic to a constant then Lutz modification tends to
increase torsion.
In particular, if T is compressible, ξn is overtwisted for every
n ≥ 1.

Characteristic Foliations with Reeb Components
If θ is not homotopic to a constant then Lutz modification does
not change the conjugation class: ξn is the image of ξ by a
Dehn twist.
In particular, if T bounds a solid torus, ξn is isotopic to ξ.
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A Finite Generating Set

Theorem (Colin-Honda-G)
On a closed 3-manifold V , there are finitely many tight contact
structures ξ1, . . . , ξn and, for each i ∈ {1, . . . , n}, finitely many
tori T i

1, . . . , T i
ki

transverse to ξi such that every tight contact
structure ξ on V, up to isotopy, is obtained from one of the ξi ’s
by Lutz modification with coefficients ni

j (ξ) ∈ N along the T i
j ’s.
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Orientation of Characteristic Foliations

S ⊂ (V , ξ): a compact oriented surface;
ω: a positive area form on S;
λ: the 1-form induced on S by a defining contact form for ξ.

Orientation Convention
The leaves of ξS are oriented by the vector field η such that

η y ω = λ.

Equivalently, the leaves are oriented so that the positive side of
ξ is on their left-hand side.
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Convex Surfaces

S ⊂ (V , ξ): a compact oriented surface with (possibly empty)
Legendrian boundary.
S is ξ-convex if it admits a thickening

R× S ⊃ S × {0} = S

in which ξ is invariant by ∂t , t ∈ R.

Proposition
S is ξ-convex iff there is a multi-curve Γ ⊂ S such that :

Γ is transverse to ξS;
in each component of S \ Γ, the foliation ±ξS is spanned
by a vector field which expands area and points outward
along Γ.

The dividing set Γ of a ξ-convex surface completely determines
ξ in the homogeneous thickening R× S.
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Genericity of Convex Surfaces

L: a Legendrian cuve on a compact surface S ⊂ (V , ξ).
The Thurston-Bennequin number tb(L, S) of L relative to S is
the winding number of ξ around S along L.
If S is ξ-convex with dividing set Γ then

tb(L, S) = −1
2Card(L ∩ Γ) ≤ 0.

Proposition
Let S be a compact surface with (possibly empty ) Legendrian
boundary. If S is closed or if tb(∂S) ≤ 0 then S can be
perturbed to a ξ-convex surface by an arbitrarily small isotopy.
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Tightness and Convex Surfaces

Lemma (Legendrian Realization Lemma)

Let S be a ξ-convex surface, Γ its dividing set and L ⊂ S a
graph such that each component of S \ L meets Γ. Then S can
be isotoped among ξ-convex surfaces to a surface S′ on which
L is a Legendrian graph.

Corollary

If ξ is tight and if S is a xi-convex surface different from S2 then
Γ has no contractible closed component.
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Legendrian Approximation

Lemma
Any smooth curve in a contact manifold (V , ξ) can be made
Legendrian by an arbitrarily C0-small isotopy. Moreover, this
isotopy can be chosen fixed on any sub-arc which is already
Legendrian.

Proof. Consider R3 with the contact form dy − z dx . A
parameterized arc (x(t), y(t), z(t)) is Legendrian iff

z(t) = ẏ(t)/ẋ(t)
and, in particular, (x(t), y(t)) has no vertical tangent line.
A typical example is (3t2, 2t3, t) whose projection to the
xy -plane has a cusp in 0.
Take any curve (x0(t), y0(t), z0(t)). We can approximate
(x0(t), y0(t)) by a curve (x(t), y(t)) (with cusps but no vertical
tangent line) whose slope ẏ/ẋ approximates z0.
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Joint work with Vincent Colin and Ko Honda Homotopy and Isotopy Finiteness of Tight Contact Structures



Legendrian Approximation

Lemma
Any smooth curve in a contact manifold (V , ξ) can be made
Legendrian by an arbitrarily C0-small isotopy. Moreover, this
isotopy can be chosen fixed on any sub-arc which is already
Legendrian.

Proof. Consider R3 with the contact form dy − z dx . A
parameterized arc (x(t), y(t), z(t)) is Legendrian iff

z(t) = ẏ(t)/ẋ(t)
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Triangulations

What is called here a triangulation of V is a simplicial
decomposition of V (as a topological space) satisfying the
following regularity conditions:

every 1- or 2-simplix is smooth;
every 3-simplex has, along its edges except at vertices, a
dihedral angle in (0, π).

Any smooth triangulation of V satisfies these conditions.

An isotopy of triangulations is a continuous 1-parameter family
of triangulations.
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Contact Triangulations

Definition
A contact triangulation of (V , ξ) is a triangulation ∆ of V such
that:

1-simplices are Legendrian;
2-simplices are ξ-convex and ξ-disciplined;
3-simplices are contained in Darboux charts.

The Thurston-Bennequin number of a contact triangulation ∆ is

TB(∆) = −
∑

F

tb(∂F )

where F ranges over 2-simplices.
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∑

F

tb(∂F )

where F ranges over 2-simplices.
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Minimal Contact Triangulations

A contact triangulation ∆ of (V , ξ) is minimal if it has the
smallest Thurston-Bennequin number among all contact
triangulations which are isotopic to ∆ rel. a neighborhood of
vertices.

A set of tight contact structures on V is complete if it represents
all isotopy classes of such structures.

Proposition
There exist a triangulation ∆ of V and a complete set X of tight
contact structures on V such that ∆ is a minimal contact
triangulation of (V , ξ) for every ξ ∈ X .
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Existence of Contact Triangulations

ξ: a tight contact structure on V ;
∆0: an arbitrary smooth triangulation of V .
Isotope ∆0 to a contact triangulation ∆ of (V , ξ) as follows:

approximate the 1-simplices by ξ-Legendrian arcs;
make the 2-simplices ξ-convex by a small perturbation
relative to their boundaries;
note that 3-simplices are contained in Darboux charts
because ξ is tight (Eliashberg’s Theorem).
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Dividing Sets of 2-simplices

∆: a minimal contact triangulation of (V , ξ);
F : a 2-simplex of ∆.
ΓF : the dividing set of F .

Lemma
If a component C of ΓF has its two endpoints on the same edge
E then one of these endpoints is outermost on ΓF ∩ E.

Proof. If no endpoint of C is outermost in ΓF ∩ E , deform ∆ (by
an isotopy supported in the open star of E) to a contact
triangulation with smaller Thurston-Bennequin number.
Isotope F to F ′ = F \ U where U is a small open neighborhood
in F of the half-disk cut by C and make ∂F ′ Legendrian using
the LR-Lemma.
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Typical Dividing Set
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Associated Normalized Foliation
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