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A Finite Generating Set

Theorem (Colin-Honda-G)
On a closed 3-manifold V , there are finitely many tight contact
structures ξ1, . . . , ξn and, for each i ∈ {1, . . . , n}, finitely many
tori T i

1, . . . , T i
ki

transverse to ξi such that every tight contact
structure ξ on V, up to isotopy, is obtained from one of the ξi ’s
by Lutz modification with coefficients ni

j (ξ) ∈ N along the T i
j ’s.
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Contact Triangulations

Definition
A contact triangulation of (V , ξ) is a triangulation ∆ of V such
that:

1-simplices are Legendrian;
2-simplices are ξ-convex and ξ-disciplined;
3-simplices are contained in Darboux charts.

The Thurston-Bennequin number of a contact triangulation ∆ is

TB(∆) = −
∑

F

tb(∂F )

where F ranges over 2-simplices.
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Minimal Contact Triangulations

A contact triangulation ∆ of (V , ξ) is minimal if it has the
smallest Thurston-Bennequin number among all contact
triangulations which are isotopic to ∆ rel. a neighborhood of
vertices.

A set of tight contact structures on V is complete if it represents
all isotopy classes of such structures.

Proposition
There exist a triangulation ∆ of V and a complete set X of tight
contact structures on V such that ∆ is a minimal contact
triangulation of (V , ξ) for every ξ ∈ X .
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Dividing Sets of 2-Simplices

∆: a minimal contact triangulation of (V , ξ);
F : a 2-simplex of ∆.
Γ: the dividing set of F .

Lemma
If a component C of Γ has its two endpoints on the same edge
E then one of these endpoints is outermost on Γ ∩ E.

Proof. If no endpoint of C is outermost in Γ ∩ E , deform ∆ (by
an isotopy supported in the open star of E) to a contact
triangulation with smaller Thurston-Bennequin number.
Isotope F to F ′ = F \ U where U is a small open neighborhood
in F of the half-disk cut by C and make ∂F ′ Legendrian using
the LR-Lemma.
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Typical Dividing Set
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Associated Normalized Foliation
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Flat Legendrian Arcs

G: a 3-simplex of a minimal contact triangulation.
A piecewise smooth Legendrian arc L ⊂ ∂G is flat if it avoids
the vertices and if ξ is a supporting hyperplane of ∂G at all
points of L.
Such an arc is a union of edge segments and singularity arcs of
2-simplices.

Lemma (Holonomy Lemma)
Let L ⊂ ∂G be a flat Legendrian arc. Assume there is an edge
E such that L ∩ E = ∂L = {a, b} and let va, vb denote the
inward looking tangent vectors to L at a and b, respectively.
Then (va, b − a, vb) is a positive basis and the Legendrian
curve L̂ = L ∪ [a, b] has Thurston-Bennequin number −1.
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The Holonomy Phenomenon
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Fibered Domains

M: a compact domain with boundary and edges but no corners;
τ : a foliation of M by compact intervals.
(M, τ) is a fibered domain if ∂M is the union of two smooth
compact surfaces ∂hM, ∂v M such that:

∂hM is transverse to τ while ∂v M is tangent to τ ;
∂hM and ∂v M have the same boundary.

Proposition

There exist finitely many fibered domains (Mi , τi) in V , each
given with a contact structures ζi on V \ IntMi , such that every
tight contact structure on V , up to isotopy and for some i, is
equal to ζi out of Mi and tangent to τi in Mi .
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Branched Surfaces

S0, S1, S2 ⊂ R3 = R2 × R: the respective graphs of the
functions on R2 defined by

f0(x , y) = 0,

f1(x , y) = −f2(y , x),
f2(x , y) =

{
0 if x ≥ 0,
e1/x if x < 0;

X = (S0 ∪ S1 ∪ S2) ∩ {x ≥ −1} ⊂ R3.
A homeomorphism between two open subsets U, U ′ ⊂ X is
smooth if its restriction to each Si ∩ U is.
A branched surface (with boundary) is a topological space X
locally modeled on X with smooth transition maps.
RegX ⊂ X is the open set of points where X is a genuine
surface with boundary.

Example

If (M, τ) is a fibered domain then X = M/τ is a branched
surface.
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Construction of Branched Surfaces

For each 3-simplex G, consider all flat Legendrian arcs L ⊂ ∂G
for which there is an edge E such that L ∩ E = ∂L = {a, b} and
set L̂ = L ∪ [a, b].
Any such L̂ bounds a disk in G. Identify two such disks if their
boundaries L̂ and L̂′ are isotopic on ∂G in the complement of
vertices.
Now glue the disks so-obtained in adjacent 3-simplices iff they
intersect the common facet along isotopic arcs (again in the
complement of vertices).
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Adjusted Contact Structures

(M, τ): a fibered domain in V ;
X = M/τ : the quotient branched surface;
ζ: a contact structure on V \ IntM.

A contact structure is adjusted to (M, τ, ζ) if it is equal to ζ out
of M and tangent to τ in M.

Every adjusted contact structure ξ is determined, up to
homotopy among such structures, by the function

aξ : ∂hM → (0,∞)

which maps each point p to the total rotation angle of ξ along
the leaf of τ starting at p.
(This angle is measured using an auxiliary metric and the
holonomy of τ .)
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Linear Algebra

(M, τ, ζ): as before;
ξ0: a fixed adjusted contact structure.

Proposition
Homotopy classes of adjusted contact structures ξ are in
one-to-one correspondence with functions

wξ : π0(RegX ) → Z
satisfying the condition

wξ(R) > − 1
2π infeR aξ0 and the adjacency relations

wξ(R1) + wξ(R2) = wξ(R3) for every pair of regular sheets
R1, R2 of X which merge to give R3.

Every solution of this system is obtained from a minimal
solution by adding a positive solution.
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Conclusion

The minimal solutions of the system give finitely many adjusted
contact structures.

Any positive solution of the system corresponds to a surface in
M transverse to τ : over each component of RegX , put the
number of sheets given by the solution and glue them along the
singular locus.

Since any such surface is transverse to any adjusted contact
structure, it is a union of tori and Klein bottles.

A suitable Lutz modification along this surface yields an
adjusted contact structure with the right weights.
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