Stochastic approach to a space-time scaling limit for Hamiltonian systems

Makiko Sasada

Keio University

Tokyo, September 16, 2013

From microscopic world to macroscopic world

Motivation of our study:

"Explain macroscopic phenomena from microscopic dynamics"

In particular, a derivation of diffusion phenomena is the main interest of this talk

	Micro	Macro
Physical quantity	position or velocity of each molecular	density, temperature, pressure etc
Degree of freedom	enormous	a few
Time evolution	complicated interaction of elements	PDE

	Micro	Macro
Physical quantity	position or velocity of each molecular	density, temperature, pressure etc
Degree of freedom	enormous	a few
Time evolution	complicated interaction of elements	PDE

- Each microscopic quantity has not (almost) any information for the macroscopic state
- Statistics (average, fluctuation etc) of microscopic quantities determines the macroscopic state
- These properties have good compatibility with stochastic analysis

How to connect microscopic dynamics to macroscopic diffusion?

A typical procedure is the following:

• Define a microscopic dynamical model

A typical procedure is the following:

- Define a microscopic dynamical model
- Characterize all the equilibrium states (invariant measures) in terms of a few macroscopic parameters (ergodicity)
- Rescale the model in space and time with scaling parameter N and take scaling limit $N \to \infty$

A typical procedure is the following:

- Define a microscopic dynamical model
- Characterize all the equilibrium states (invariant measures) in terms of a few macroscopic parameters (ergodicity)
- Rescale the model in space and time with scaling parameter N and take scaling limit $N \to \infty$
- Obtain a (system of) diffusion equation for a few macroscopic parameters

A typical procedure is the following:

- Define a microscopic dynamical model
- Characterize all the equilibrium states (invariant measures) in terms of a few macroscopic parameters (ergodicity)
- Rescale the model in space and time with scaling parameter N and take scaling limit $N \to \infty$
- Obtain a (system of) diffusion equation for a few macroscopic parameters

If the microscopic dynamics is a deterministic classical dynamical system, then ...

- The microscopic dynamics is time reversible, but the diffusion equation is not!
- As $N \sim 10^{23}$ or more, it is impossible to solve or even simulate the dynamics
- It is very difficult to justify that we can forget about "microscopic quantities" in the limit

We often consider a stochastic process as a microscopic model and study scaling limits for the process

- Hydrodynamic limit
- Equilibrium fluctuation

Hydrodynamic limit and Equilibrium fluctutaion

Hydrodynamic limit is...

- rigorous method to derive deterministic macroscopic PDEs
- law of large numbers (LLN)

Equilibrium fluctuation is...

- rigorous method to derive stochastic macroscopic PDEs
- central limit theorem (CLT)

Example. Symmetric Simple Exclusion Process (SSEP)

• Continuous time symmetric random walks with hard core interaction

 $\xrightarrow{HDL \ limit} \ \ {\rm Properly \ scaled \ density \ of \ particles \ } \rho \ {\rm and \ its \ fluctuation \ } Y$ evolve according to

$$\partial_t \rho = \frac{1}{2} \Delta \rho, \quad dY_t = \frac{1}{2} \Delta Y_t dt + \sqrt{\rho_t (1 - \rho_t)} \nabla dB_t$$

Typical stochastic models

Symmetric Simple Exclusion Process (SSEP) Totally Asymmetric Simple Exclusion Process (TASEP)

Hamiltonian dynamics + stochastic noise

Two-step approach Stochastic energy exchange model Energy conserving stochastic Ginzburg-Landau model

1 Typical stochastic models

Symmetric Simple Exclusion Process (SSEP) Totally Asymmetric Simple Exclusion Process (TASEP)

2 Hamiltonian dynamics + stochastic noise

Two-step approach Stochastic energy exchange model Energy conserving stochastic Ginzburg-Landau model

State space of SSEP and TASEP

\mathbb{Z}^d : *d*-dimensional discrete lattice

 $\chi^d:=\{0,1\}^{\mathbb{Z}^d}$: state space, $\eta=(\eta_x)_{x\in\mathbb{Z}^d}$: element of χ^d

• $\eta_x = 1$: there is a particle at x

• $\eta_x = 0$: there is no particle at x

Symmetric Simple Exclusion Processes (SSEP)

- Continuous time Markov process on χ^d
- jump to one of the neighboring sites with probability $\frac{1}{2d}$
- jump rate (the inverse of the expectation value of random waiting time) is a constant 1
- exclusion rule

 $\{\eta^t\}_{t\geq 0}$: Markov process on χ^d with generator

$$(Lf)(\eta) = \frac{1}{2d} \sum_{|x-y|=1} 1_{\{(\eta_x,\eta_y)=(1,0)\}} (f(\eta^{x \to y}) - f(\eta))$$

 $Lf = \frac{d}{dt}P_tf|_{t=0}$, P_t : Markov semigroup, $P_tf(\eta) = E_{\eta}[f(\eta^t)]$

The number of particles is a unique conserved quantity \Rightarrow The density of particles characterizes the equilibrium (macroscopic) states ($\{\nu_{\rho}\}_{\rho \in [0,1]}$: Bernoulli product measures) \Rightarrow Derive an evolution equation of the density of particles

For simplicity, we consider the discrete torus $\mathbb{T}_N^d = \{1, 2, \dots, N\}^d$ instead of \mathbb{Z}^d from now on.

Denote by π_t^N the scaled empirical measure under diffusive scaling:

$$\pi_t^{N}(du) = \frac{1}{N^d} \sum_{x \in \mathbb{T}_N^d} \eta_x(N^2 t) \delta_{\frac{x}{N}}(du) \in \mathcal{M}(\mathbb{T}^d = [0, 1)^d)$$

($\mathcal{M}(\mathbb{T}^d = [0,1)^d)$: set of measures on \mathbb{T}^d)

Theorem (De Masi, et al. 1984)

Assume

$$\pi_0^{\sf N}({ extsf{d}} u) o \pi_0({ extsf{d}} u) =
ho_0(u){ extsf{d}} u \quad {\sf N} o \infty \quad { extsf{in prob}}$$

with some measurable function $\rho_0 : \mathbb{T}^d \to [0, 1]$. Then, $\forall t > 0$,

$$\pi_t^{\sf N}({ extsf{d}} u) o \pi_t({ extsf{d}} u) =
ho(t,u){ extsf{d}} u \quad {\sf N} o \infty \quad { extsf{in prob}}$$

where $\rho(t, u)$ is the unique solution of the heat equation:

$$\begin{cases} \partial_t \rho(t, u) = \frac{1}{2d} \Delta \rho(t, u) \\ \rho(0, \cdot) = \rho_0(\cdot) \end{cases}$$

How to guess the limiting equation

Assume
$$\rho(t, u) \sim \mathbb{E}[\eta_x^s]$$
 for $u = \frac{x}{N}$ and $t = \frac{s}{N^2}$

$$\begin{aligned} \partial_t \rho(t, u) &\sim \mathbb{E}[N^2 L \eta_x^s] \\ &= \frac{N^2}{2d} \sum_{i=1}^d \mathbb{E}[\eta_{x+e_i}^s (1 - \eta_x^s) + \eta_{x-e_i}^s (1 - \eta_x^s) \\ &- \eta_x^s (1 - \eta_{x+e_i}^s) - \eta_x^s (1 - \eta_{x-e_i}^s)] = \frac{N^2}{2d} \sum_{i=1}^d \mathbb{E}[\eta_{x+e_i}^s - 2\eta_x^s + \eta_{x-e_i}^s] \\ &\sim \frac{1}{2d} \Delta^N \rho(t, u) \xrightarrow{N \to \infty} \frac{1}{2d} \Delta \rho(t, u) \\ \Delta^N H(u) &= \sum_{i=1}^d N^2 \{H(u + \frac{e_i}{N}) - 2H(u) + H(u - \frac{e_i}{N})\} \end{aligned}$$

Numerical simulation

*exact solution of heat eq.

*numerical simulation of SSEP N = 100averaged density of 5,000,000 paths

Totally Asymmetric Simple Exclusion Process (TASEP)

$$\begin{split} \mathbb{Z}: \ 1\text{-dimensional discrete lattice} \\ \chi:=\{0,1\}^{\mathbb{Z}}: \text{ state space} \qquad \eta=(\eta_x)_{x\in\mathbb{Z}}: \text{ element of } \chi \end{split}$$

- jump only to right
- jump rate is a constant 1
- exclusion rule

$$(Lf)(\eta) = \sum_{x \in \mathbb{Z}} \mathbb{1}_{\{(\eta_x, \eta_{x+1}) = (1,0)\}} (f(\eta^{x \to x+1}) - f(\eta))$$

Hydrodynamic limit for TASEP

Denote by π_t^N the scaled empirical measure under hyperbolic scaling:

$$\pi_t^{N}(du) = rac{1}{N} \sum_{x \in \mathbb{Z}} \eta_x(Nt) \delta_{rac{x}{N}}(du) \in \mathcal{M}(\mathbb{R})$$

Theorem (Rezakhanlou, 1991)

Assume some conditions for π_0^N . Then, $\forall t > 0$,

$$\pi_t^N(du) o \pi_t(du) =
ho(t,u) du$$
 as $N o \infty$ in prob.

where $\rho(t, u)$ is the unique solution of the Burger's equation:

$$\partial_t \rho(t, u) = -\partial_u \{ \rho(t, u)(1 - \rho(t, u)) \}$$

$$\partial_t \rho(t, u) \sim \mathbb{E}[\mathsf{N}L\eta^s_x] = \mathsf{N}\mathbb{E}[\eta^s_{x-1}(1-\eta^s_x) - \eta^s_x(1-\eta^s_{x+1})] \\ = -\mathbb{E}[\partial^{\mathsf{N}}\{\eta^s_x(1-\eta^s_{x+1})\}] \rightarrow -\partial_u\{\rho(t, u)(1-\rho(t, u))\}$$

Typical stochastic models

Symmetric Simple Exclusion Process (SSEP) Totally Asymmetric Simple Exclusion Process (TASEP)

Hamiltonian dynamics + stochastic noise

Two-step approach Stochastic energy exchange model Energy conserving stochastic Ginzburg-Landau model Try to consider a Hamiltonian dynamics as a microscopic model

One-dimensional chain of oscillators:

• $(p_i, q_i)_{i \in \mathbb{T}_N} \in (\mathbb{R}^2)^N$: state space (p : momentum, q: displacement)

•
$$H(p,q) = \sum_{i} \frac{p_{i}^{2}}{2} + V(q_{i+1} - q_{i}) + U(q_{i})$$
 : Hamiltonian

- V : interaction potential, smooth, positive, $0 < C_1 \leq V'' \leq C_2 < \infty$
- U : pinning potential, smooth, positive

$$\left\{ egin{array}{l} \dot{q}_i = p_i \ \dot{p}_i = V'(q_{i+1}-q_i) - V'(q_i-q_{i-1}) - U'(q_i) \end{array}
ight.$$

One-dimensional chain of oscillators

We assume U = 0 and change the coordinates $r_i := q_i - q_{i-1}$ (deformation)

•
$$(p_i, r_i)_{i \in \mathbb{T}_N} \in (\mathbb{R}^2)^N$$
 : state space
• $H(p, r) = \sum_i \frac{p_i^2}{2} + V(r_i)$: Hamiltonian

$$\begin{cases} \dot{r}_{i} = p_{i} - p_{i-1} \\ \dot{p}_{i} = V'(r_{i+1}) - V'(r_{i}) \end{cases}$$

Under the dynamics, the following quantities are conserved:

- total energy $\sum_i \mathcal{E}_i$ where $\mathcal{E}_i = \frac{p_i^2}{2} + V(r_i)$
- total momentum $\sum_i p_i$
- total displacement $\sum_i r_i$

They should be macroscopic parameters.

We want to show, for some scaling parameter $\theta(N)$,

$$\frac{1}{N}\sum_{i} \mathcal{E}_{i}(\theta(N)t)\delta_{\frac{i}{N}}(du) \to \mathcal{E}(t,u)du$$
$$\frac{1}{N}\sum_{i} p_{i}(\theta(N)t)\delta_{\frac{i}{N}}(du) \to p(t,u)du$$
$$\frac{1}{N}\sum_{i} r_{i}(\theta(N)t)\delta_{\frac{i}{N}}(du) \to r(t,u)du$$

where $\mathcal{E}(t, u)$, p(t, u) and r(t, u) evolve according to some system of diffusion equations

But...

- Which order θ_N is the proper scaling ?
- Ergodicity ?
- How to show the law of large numbers (or CLT) without randomness ??

Actually, if $V(r) = r^2$, then the model is integrable and $\theta_N \neq N^2$, namely the transport of energy is not diffusive.

But...

- Which order θ_N is the proper scaling ?
- Ergodicity ?
- How to show the law of large numbers (or CLT) without randomness ??

Actually, if $V(r) = r^2$, then the model is integrable and $\theta_N \neq N^2$, namely the transport of energy is not diffusive.

- We add a stochastic noise to the dynamics
- Under the new dynamics, only the energy is conserved
- We aim to obtain a macroscopic diffusion equation of energy by hydrodynamic limit or equilibrium fluctuation

Work with Stefano Olla (CEREMADE)

We consider a Markov process on $(\mathbb{R}^2)^N$ with an infinitesimal generator

$$Lf(p,r) = Af(p,r) + \gamma Sf(p,r)$$

where

 $\gamma > 0$: strength of the noise $A = \sum_{i \in \mathbb{T}_N} (X_i - Y_{i,i+1})$: Hamiltonian part $S = \frac{1}{2} \sum_{i \in \mathbb{T}_N} \{ (X_i)^2 + (Y_{i,i+1})^2 \}$: Stochastic part $Y_{i,j} = p_i \partial_{r_j} - V'(r_j) \partial_{p_i}, \qquad X_i = Y_{i,i}, \quad N+1 \equiv 1$ The process on $(\mathbb{R}^2)^N$ generated by N^2L can also be described by the following system of stochastic differential equations (SDEs)

$$\begin{cases} dp_i(t) = N^2 [V'(r_{i+1}) - V'(r_i) - \frac{\gamma p_i}{2} \{V''(r_i) + V''(r_{i+1})\}] dt \\ + \sqrt{\gamma} N \{V'(r_{i+1}) dB_i^1 - V'(r_i) dB_i^2\} \\ dr_i(t) = N^2 [p_i - p_{i-1} - \gamma V'(r_i)] dt + \sqrt{\gamma} N \{-p_{i-1} dB_{i-1}^1 + p_i dB_i^2\} \end{cases}$$

where $\{B_i^1, B_i^2\}_{i \in \mathbb{T}_N}$ are 2*N*-independent standard Brownian motions.

In particular, if $\gamma = 0$, L defines the original Hamiltonian dynamics.

Conserved quantity and microcanonical surface

L conserves the total energy $\sum_i \mathcal{E}_i = H$ since

$$X_i H = 0, \quad Y_{i,i+1} H = 0$$

L does not conserve the total momentum $\sum_i p_i$ nor total length $\sum_i r_i$ The movement is constrained on the *microcanonical* surface of constant energy

$$\Sigma_{N,E} = \left\{ (p,r) \in (\mathbb{R}^2)^N; \frac{1}{N} \sum_{i=1}^N \mathcal{E}_i = \frac{1}{N} \sum_{i=1}^N \frac{p_i^2}{2} + V(r_i) = E
ight\}.$$

• Our conditions on V assure that these surfaces are connected

- The vector fields $\{X_i, Y_{i,i+1}, i = 1, ..., N\}$ are tangent to this surface
- Lie $\{X_i, Y_{i,i+1}, i = 1, ..., N\}$ generates the all tangent space

Consequently the *microcanonical* measures $\nu_{N,E}(\cdot) = \nu_e^N(\cdot|\Sigma_{N,E})$ are ergodic for our dynamics.

Equilibrium fluctuation

Define the time dependent distribution

$$Y_t^N = rac{1}{\sqrt{N}} \sum_i \delta_{i/N} \left\{ \mathcal{E}_i(N^2 t) - e
ight\}$$

Theorem (Olla,S, 2011, PTRF)

If the process starts from the equilibrium measure ν_e^N , then Y_t^N converges in law to the solution of the linear SPDE

$$\partial_t Y = D(e) \bigtriangleup Y dt + \sqrt{2D(e)\chi(e)} \nabla B(u,t)$$

where B is the standard normalized space-time white noise.

 $\chi(e)$ is the variance of \mathcal{E}_0 under the equilibrium measure ν_e and D(e) is given by a complicated variational formula.

Equilibrium fluctuation

Define the time dependent distribution

$$Y_t^N = rac{1}{\sqrt{N}} \sum_i \delta_{i/N} \left\{ \mathcal{E}_i(N^2 t) - e
ight\}$$

Theorem (Olla,S, 2011, PTRF)

If the process starts from the equilibrium measure ν_e^N , then Y_t^N converges in law to the solution of the linear SPDE

$$\partial_t Y = D(e) \bigtriangleup Y dt + \sqrt{2D(e)\chi(e)} \nabla B(u,t)$$

where B is the standard normalized space-time white noise.

 $\chi(e)$ is the variance of \mathcal{E}_0 under the equilibrium measure ν_e and D(e) is given by a complicated variational formula.

Remark

If
$$V(r) = \frac{r^2}{2}$$
, then $D(e) = \frac{\gamma}{4} + \frac{1}{6\gamma}$.

The last theorem almost implies the hydrodynamic limit holds for the energy distribution and the limiting equation is

$$\partial_t e(t, u) = \partial_u (D(e(t, u)) \partial_u e(t, u)),$$

but we need some more technical estimates (which seem hard to prove rigorously).

- Sharp estimates of the spectral gap for $-S = -S_N$ in the size of N as a linear operator on $L^2(\nu_{N,E})$
 - $E[(f E[f])^2] \le \lambda_{N,E}^{-1} E[f(-S_N)f], \quad \lambda_{N,E} \ge const.N^{-2}$
- Sector condition
 - $E[fAg]^2 \leq CE[f(-S)f]E[g(-S)g]$
- Characterization of "closed form" in the infinite dimensional space
 - Closed form on $\Sigma_{N,E}$ is exact form! We use this fact, to show that, in the infinite dimensional space,

"closed forms" = "exact forms" + finite dimensional space

There are many works for "*d*-dimensional chain of oscillators + noise", but other models of the type "Hamiltonian system + noise" are rarely studied. Topics:

- ergodicity (sufficient condition for the noise is known, without noise case is open problem)
- energy transport is diffusive or superdiffusive (it depends on the noise, but how it depends is not known)
- HDL under hyperbolic-scaling

Related works (II)

Results of hydrodynamic limit or equilibrium fluctuation under the diffusive scaling limit are very few:

Bernardin, Lyon, 2007 A model with energy and length conserving noise and $V(r) = \frac{r^2}{2}$, the limiting system of equations is

$$\begin{cases} \partial_t r(t, u) = \triangle r(t, u) \\ \partial_t e(t, u) = \triangle e(t, u) \end{cases}$$

Simon, Lyon, 2013 A model with another energy and length conserving noise and $V(r) = \frac{r^2}{2}$, the limiting system of equations is

$$\begin{cases} \partial_t r(t, u) = \triangle r(t, u) \\ \partial_t e(t, u) = \triangle \left(e(t, u) + \frac{r(t, u)^2}{2} \right) \end{cases}$$

Typical stochastic models

Symmetric Simple Exclusion Process (SSEP) Totally Asymmetric Simple Exclusion Process (TASEP)

2 Hamiltonian dynamics + stochastic noise

Two-step approach Stochastic energy exchange model Energy conserving stochastic Ginzburg-Landau model Is it impossible to start from purely deterministic microscopic dynamics?? \rightarrow No! Is it impossible to start from purely deterministic microscopic dynamics?? \rightarrow No!

Two-step approach (Gaspard-Gilbert, 2008, 2009)

Microscopic deterministic Newtonian (Hamiltonian) dynamics

Mesoscopic stochastic process of energy <u>HD limit</u>

Macroscopic diffusion equation (deterministic)

(* weak interaction limit, rare interaction limit)

N-particle system :

Microscopic level (mechanical model)

 $\mathbf{q}_i \in \mathbb{R}^d$: *i*-th particle's position, $\mathbf{p}_i \in \mathbb{R}^d$: *i*-th particle's velocity $(\mathbf{q}_i, \mathbf{p}_i)_{i=1}^N \in \mathbb{R}^{2dN}$: State space Time evolution : deterministic, nearest-neighbor interaction Equilibrium measure : $(\mathbf{p}_i)_{i=1}^N \sim N$ -product of $\mathcal{N}(0, \beta^{-1}I_d)$ N-particle system :

Microscopic level (mechanical model)

 $\mathbf{q}_i \in \mathbb{R}^d$: *i*-th particle's position, $\mathbf{p}_i \in \mathbb{R}^d$: *i*-th particle's velocity $(\mathbf{q}_i, \mathbf{p}_i)_{i=1}^N \in \mathbb{R}^{2dN}$: State space Time evolution : deterministic, nearest-neighbor interaction Equilibrium measure : $(\mathbf{p}_i)_{i=1}^N \sim N$ -product of $\mathcal{N}(0, \beta^{-1}I_d)$

 $\begin{array}{l} \underline{\mathsf{Mesoscopic level}} & (\texttt{stochastic energy process}) \\ \hline e_i \in \mathbb{R}_+ : i\text{-th particle's energy} \\ e_i = \frac{1}{2} \sum_{q=1}^d (p_i^{(q)})^2 \text{ where } \mathbf{p}_i = (p_i^{(1)}, p_i^{(2)}, \dots, p_i^{(d)}) : \texttt{kinetic energy} \\ (e_i)_{i=1}^N \in \mathbb{R}_+^N : \texttt{State space} \\ \hline \texttt{Time evolution} : \texttt{stochastic, nearest-neighbor interaction} \\ \hline \texttt{Equilibrium measure} : (e_i)_{i=1}^N \sim N\text{-product of } \Gamma(\frac{d}{2}, \beta^{-1}) \end{array}$

Example 1 : Localized hard balls in 2 or 3 dimensions

Gaspard-Gilbert (2008,2009)

- Confined condition: $r_f + r_m > \frac{R}{2}$
- Binary Collision condition: $\epsilon := r_m \sqrt{(r_f + r_m)^2 (\frac{R}{2})^2} > 0$
- Energy transfer only occurs by binary collisions
- Take the rare interaction limit (i.e. $\epsilon
 ightarrow 0$)

Rare interaction limit

In the limit $\epsilon \to 0$ where $r := r_f + r_m$ is fixed,

• equilibrium characterized by energy of the ball is achieved in each cell

- $(e_i)_{i=1}^N$ represents each state of the mesoscopic system
- Master equation for the probability P_N(e₁, e₂, e₃, ..., e_N; t) is derived (equivalently the infinitesimal generator is derived)

$$\mathcal{L}f(e) = \sum_{i=1}^{N-1} \Lambda_{GG}(e_i, e_{i+1}) \int P_{GG}(e_i, e_{i+1}, d\alpha) [f(\mathcal{T}_{i,i+1,\alpha}e) - f(e)]$$

Mesoscopic dynamics

• Two neighboring balls having energy e_i and e_{i+1} collide with rate

$$\Lambda_{GG3}(e_i,e_{i+1}) = rac{\sqrt{2\pi}}{6} rac{(2e_i+e_{i+1}) \lor (e_i+2e_{i+1})}{\sqrt{e_i \lor e_{i+1}}}$$

• When a collision occurs, new energy configuration becomes $(\alpha(e_i + e_{i+1}), (1 - \alpha)(e_i + e_{i+1}))$ with probability

Dolgopyat-Liverani (2011)

Microscopic dynamics : N weakly coupled geodesic flows on d-dimensional manifolds of negative curvature with coupling strength $\epsilon > 0$ ($d \ge 3$) weak interaction limit ($\epsilon \rightarrow 0$)

Mesoscopic dynamics : SDEs of energies

$$de_i = \sum_{j \in \mathbb{Z}^d; |i-j|=1} eta(e_i(t), e_j(t)) dt + \sigma(e_i(t), e_j(t)) dB_{i,j}$$

where $\beta(a, b)$ and $\sigma(a, b)$ are given implicitly. This is the only rigorous result for the first step !

<u>Tasks</u>

- Introduce general models describing the mesoscopic energy evolutions obtained by examples
- Prove hydrodynamic limit to derive diffusion equation of heat conduction from these models

Answer for the task 1

- Stochastic energy exchange model introduced by Grigo-Khanin-Szász (2011)
- Energy conserving stochastic Ginzburg-Landau model introduced by Stefano-Liverani (2012)

Stochastic energy exchange model

- $x = (x_i)_{i=1}^N \in \mathbb{R}^N_+$: state space
- x_i : energy of particle at site i
- $\Lambda(\cdot,\cdot)(>0)$: rate of energy exchange (or collision), continuous
- $P(\cdot, \cdot, d\alpha)$: probability measure on [0, 1] (collision kernel), continuous $\{x(t)\}_{t\geq 0}$: Markov process on \mathbb{R}^N_+ with generator \mathcal{L} acting on bounded functions $f: \mathbb{R}^N_+ \to \mathbb{R}$ is

$$\mathcal{L}f(x) = \sum_{i=1}^{N-1} \Lambda(x_i, x_{i+1}) \int P(x_i, x_{i+1}, d\alpha) [f(\mathcal{T}_{i,i+1,\alpha} x) - f(x)]$$

$$(\mathbf{T}_{i,i+1,\alpha}x)_k = \begin{cases} \alpha(x_i + x_{i+1}) & \text{if } k = i\\ (1 - \alpha)(x_i + x_{i+1}) & \text{if } k = i+1\\ x_k & \text{if } k \neq i, i+1 \end{cases}$$

Formally, the expected statement of HD limit is

$$\frac{1}{N}\sum_{i=1}^{N}x_{i}(N^{2}t)\delta_{\frac{i}{N}}(du) \rightarrow e(t,u)du \quad (N \rightarrow \infty), u \in [0,1]$$

where e(t, u) is the solution of $\partial_t e = \nabla(D(e)\nabla e)$ and the diffusion coefficient D(e) is characterized by terms of Λ and P.

- For general (A, P) or (β, σ) , the system is of non-gradient type
- First step of the proof of HD limit for non-gradient system is to give a sharp estimate of the spectral gap of the generator \mathcal{L}

• Total energy is conserved

•
$$\mathcal{S}_{e,N} := \{x \in \mathbb{R}^N_+ \; ; \; rac{1}{N} \sum_{i=1}^N x_i = e\} : ext{ invariant}$$

• Spectral of
$$-\mathcal{L}|_{\mathcal{S}_{e,N}}$$
 is our interest

- $\bullet\,$ Any constant function is an eigenfunction associated with the eigenvalue 0
- For each microcanonical surface $S_{e,N}$, there exists at least one invariant probability measure $\pi_{e,N}$

Assume that $\pi_{e,N}$ is reversible measure of x(t) on $S_{e,N}$ Dirichlet form associated with $\pi_{e,N}$:

$$\mathcal{D}_{e,N}(f) := \int \pi_{e,N}(dx)(-\mathcal{L}f)(x)f(x) = E_{\pi_{e,N}}[f(-\mathcal{L}f)]$$

Spectral gap of $-\mathcal{L}|_{\mathcal{S}_{e,N}}$ is characterized by

$$\lambda(e, N) := \inf_{f} \Big\{ \frac{\mathcal{D}_{e,N}(f)}{E_{\pi_{e,N}[f^2]}} \Big| E_{\pi_{e,N}}[f] = 0, \ f \in L^2(\pi_{e,N}) \Big\}.$$

We assume that following typical properties for the models originated from Hamiltonian dynamics

- Reversible with respect to the product gamma distribution with some parameter $\gamma > \mathbf{0}$
- There exists a nice scaling relation : $\Lambda(ca, cb) = c^m \Lambda(a, b)$ and $P(ca, cb, ...) = P(a, b, \dot{)}$ for all c > 0 with some $m \ge 0$

Gaspard-Gilbert model:

Remark

 $m \neq 0$ implies that $\Lambda(a, b)$ is not uniformly positive in a, b > 0. It makes the sharp estimate of the spectral gap quite hard.

Theorem (S,2013,submitted)

Under the assumption, $\exists C = C(m, \gamma) > 0$ s.t. $\forall N \ge 2$ and $\forall e > 0$,

$$\lambda(e, N) \geq C\lambda(1, 2) \frac{e^m}{N^2}$$

HD limit

Corollary

For GG models in 2 or 3 dimensions, there exists a positive constant C such that,

$$\lambda(e, N) \geq C \frac{\sqrt{e}}{N^2}.$$

- If we can characterize infinite and finite dimensional "closed form", then almost done
- Formally, under the assumption of the main theorem, the macroscopic equation should be

Stochastic energy exchange model

$$\partial_t e = const.\Delta(e^{m+1})$$

universal !!

- HDL or EF were mainly considered for interacting particle systems (interacting random walks)
- Derivation of energy diffusion via HDL or EF for stochastic models originated from Hamiltonian dynamics is hot topic !
- New rigorous techniques are generated quite recently !
- We need to understand geometric properties of finite and infinite canonical surfaces