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From microscopic world to macroscopic world

Motivation of our study:
“Explain macroscopic phenomena from microscopic dynamics”

In particular, a derivation of diffusion phenomena is the main interest of
this talk



Micro and Macro

Micro Macro　
Physical quantity position or velocity of each molecular density, temperature, pressure etc

Degree of freedom enormous a few
Time evolution complicated interaction of elements PDE

• Each microscopic quantity has not (almost) any information for the
macroscopic state

• Statistics (average, fluctuation etc) of microscopic quantities
determines the macroscopic state

• These properties have good compatibility with stochastic analysis
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How to connect microscopic dynamics to macroscopic
diffusion?

A typical procedure is the following:

• Define a microscopic dynamical model

• Characterize all the equilibrium states (invariant measures) in terms
of a few macroscopic parameters (ergodicity)

• Rescale the model in space and time with scaling parameter N and
take scaling limit N → ∞

• Obtain a (system of) diffusion equation for a few macroscopic
parameters
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Deterministic or Stochastic?

If the microscopic dynamics is a deterministic classical dynamical system,
then ...

• The microscopic dynamics is time reversible, but the diffusion
equation is not!

• As N ∼ 1023 or more, it is impossible to solve or even simulate the
dynamics

• It is very difficult to justify that we can forget about “microscopic
quantities” in the limit

We often consider a stochastic process as a microscopic model and study
scaling limits for the process

• Hydrodynamic limit

• Equilibrium fluctuation



Hydrodynamic limit and Equilibrium fluctutaion

Hydrodynamic limit is...

• rigorous method to derive deterministic macroscopic PDEs
• law of large numbers (LLN)

Equilibrium fluctuation is...

• rigorous method to derive stochastic macroscopic PDEs
• central limit theorem (CLT)

Example. Symmetric Simple Exclusion Process (SSEP)

• Continuous time symmetric random walks with hard core interaction

HDL limit−−−−−−→ Properly scaled density of particles ρ and its fluctuation Y
evolve according to

∂tρ =
1

2
∆ρ, dYt =

1

2
∆Ytdt +

√
ρt(1− ρt)∇dBt



..1 Typical stochastic models
Symmetric Simple Exclusion Process (SSEP)
Totally Asymmetric Simple Exclusion Process (TASEP)

..2 Hamiltonian dynamics + stochastic noise

..3 Two-step approach
Stochastic energy exchange model
Energy conserving stochastic Ginzburg-Landau model
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State space of SSEP and TASEP

Zd : d-dimensional discrete lattice

χd := {0, 1}Zd
: state space, η = (ηx)x∈Zd : element of χd

• ηx = 1 : there is a particle at x

• ηx = 0 : there is no particle at x



Symmetric Simple Exclusion Processes (SSEP)

• Continuous time Markov process on χd

• jump to one of the neighboring sites with probability 1
2d

• jump rate (the inverse of the expectation value of random waiting
time) is a constant 1

• exclusion rule

{ηt}t≥0 : Markov process on χd with generator

(Lf )(η) =
1

2d

∑
|x−y |=1

1{(ηx ,ηy )=(1,0)}(f (η
x→y )− f (η))

Lf = d
dtPt f |t=0, Pt : Markov semigroup, Pt f (η) = Eη[f (η

t)]



The number of particles is a unique conserved quantity
⇒ The density of particles characterizes the equilibrium (macroscopic)
states ({νρ}ρ∈[0,1] : Bernoulli product measures)
⇒ Derive an evolution equation of the density of particles

For simplicity, we consider the discrete torus Td
N = {1, 2, . . . ,N}d instead

of Zd from now on.
Denote by πN

t the scaled empirical measure under diffusive scaling:

πN
t (du) =

1

Nd

∑
x∈Td

N

ηx(N
2t)δ x

N
(du) ∈ M(Td = [0, 1)d)

( M(Td = [0, 1)d) : set of measures on Td )



Hydrodynamic limit for SSEP

.
Theorem (De Masi, et al. 1984)
..

.

. ..

.

.

Assume
πN
0 (du) → π0(du) = ρ0(u)du N → ∞ in prob

with some measurable function ρ0 : Td → [0, 1].
Then, ∀t > 0,

πN
t (du) → πt(du) = ρ(t, u)du N → ∞ in prob

where ρ(t, u) is the unique solution of the heat equation: ∂tρ(t, u) =
1

2d
∆ρ(t, u)

ρ(0, ·) = ρ0(·)



How to guess the limiting equation

Assume ρ(t, u) ∼ E[ηsx ] for u = x
N and t = s

N2

∂tρ(t, u) ∼ E[N2Lηsx ]

=
N2

2d

d∑
i=1

E[ηsx+ei
(1− ηsx) + ηsx−ei

(1− ηsx)

− ηsx(1− ηsx+ei
)− ηsx(1− ηsx−ei

)] =
N2

2d

d∑
i=1

E[ηsx+ei
− 2ηsx + ηsx−ei

]

∼
1

2d
∆Nρ(t, u)

N→∞−−−−→ 1

2d
∆ρ(t, u)

∆NH(u) =
∑d

i=1N
2{H(u + ei

N )− 2H(u) + H(u − ei
N )}



Numerical simulation

t=0

t=0.01

t=0.02

t=0.03

t=0.04

t=0.05

t=0.06

t=0.07

t=0.08

t=0.09

t=0.1

*exact solution of heat eq. *numerical simulation of SSEP
N = 100
averaged density of 5, 000, 000 paths



Totally Asymmetric Simple Exclusion Process (TASEP)

Z: 1-dimensional discrete lattice
χ := {0, 1}Z : state space η = (ηx)x∈Z: element of χ

×

• jump only to right

• jump rate is a constant 1

• exclusion rule

(Lf )(η) =
∑
x∈Z

1{(ηx ,ηx+1)=(1,0)}(f (η
x→x+1)− f (η))



Hydrodynamic limit for TASEP

Denote by πN
t the scaled empirical measure under hyperbolic scaling:

πN
t (du) =

1

N

∑
x∈Z

ηx(Nt)δ x
N
(du) ∈ M(R)

.
Theorem (Rezakhanlou, 1991)
..

.

. ..

.

.

Assume some conditions for πN
0 . Then, ∀t > 0,

πN
t (du) → πt(du) = ρ(t, u)du as N → ∞ in prob.

where ρ(t, u) is the unique solution of the Burger’s equation:

∂tρ(t, u) = −∂u{ρ(t, u)(1− ρ(t, u))}

∂tρ(t, u) ∼ E[NLηsx ] = NE[ηsx−1(1− ηsx)− ηsx(1− ηsx+1)]

= −E[∂N{ηsx(1− ηsx+1)}] → −∂u{ρ(t, u)(1− ρ(t, u)}
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Hamiltonian dynamics

Try to consider a Hamiltonian dynamics as a microscopic model

One-dimensional chain of oscillators:

• (pi , qi )i∈TN
∈ (R2)N : state space (p : momentum, q: displacement)

• H(p, q) =
∑

i
p2i
2 + V (qi+1 − qi ) + U(qi ) : Hamiltonian

• V : interaction potential, smooth, positive, 0 < C1 ≤ V ′′ ≤ C2 < ∞
• U : pinning potential, smooth, positive

{
q̇i = pi

ṗi = V ′(qi+1 − qi )− V ′(qi − qi−1)− U ′(qi )



One-dimensional chain of oscillators

We assume U = 0 and change the coordinates ri := qi − qi−1

(deformation)

• (pi , ri )i∈TN
∈ (R2)N : state space

• H(p, r) =
∑

i
p2i
2 + V (ri ) : Hamiltonian

{
ṙi = pi − pi−1

ṗi = V ′(ri+1)− V ′(ri )

Under the dynamics, the following quantities are conserved:

• total energy
∑

i Ei where Ei =
p2i
2 + V (ri )

• total momentum
∑

i pi

• total displacement
∑

i ri

They should be macroscopic parameters.



Scaling limit

We want to show, for some scaling parameter θ(N),

1

N

∑
i

Ei (θ(N)t)δ i
N
(du) → E(t, u)du

1

N

∑
i

pi (θ(N)t)δ i
N
(du) → p(t, u)du

1

N

∑
i

ri (θ(N)t)δ i
N
(du) → r(t, u)du

where E(t, u), p(t, u) and r(t, u) evolve according to some system of
diffusion equations



Scaling limit

But...

• Which order θN is the proper scaling ?

• Ergodicity ?

• How to show the law of large numbers (or CLT) without randomness
??

Actually, if V (r) = r2, then the model is integrable and θN ̸= N2, namely
the transport of energy is not diffusive.

• We add a stochastic noise to the dynamics

• Under the new dynamics, only the energy is conserved

• We aim to obtain a macroscopic diffusion equation of energy by
hydrodynamic limit or equilibrium fluctuation
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Stochastic model

Work with Stefano Olla (CEREMADE)

We consider a Markov process on (R2)N with an infinitesimal generator

Lf (p, r) = Af (p, r) + γSf (p, r)

where

γ > 0 : strength of the noise

A =
∑
i∈TN

(Xi − Yi ,i+1) : Hamiltonian part

S =
1

2

∑
i∈TN

{(Xi )
2 + (Yi ,i+1)

2} : Stochastic part

Yi ,j = pi∂rj − V ′(rj)∂pi , Xi = Yi ,i , N + 1 ≡ 1



Stochastic model

The process on (R2)N generated by N2L can also be described by the
following system of stochastic differential equations (SDEs)

dpi (t) = N2[V ′(ri+1)− V ′(ri )−
γpi
2

{V ′′(ri ) + V ′′(ri+1)}]dt

+
√
γN{V ′(ri+1)dB

1
i − V ′(ri )dB

2
i }

dri (t) = N2[pi − pi−1 − γV ′(ri )]dt+
√
γN{−pi−1dB

1
i−1 + pidB

2
i }

where {B1
i ,B

2
i }i∈TN

are 2N-independent standard Brownian motions.

In particular, if γ = 0, L defines the original Hamiltonian dynamics.



Conserved quantity and microcanonical surface

L conserves the total energy
∑

i Ei = H since

XiH = 0, Yi ,i+1H = 0

L does not conserve the total momentum
∑

i pi nor total length
∑

i ri

The movement is constrained on the microcanonical surface of constant
energy

ΣN,E =

{
(p, r) ∈ (R2)N ;

1

N

N∑
i=1

Ei =
1

N

N∑
i=1

p2i
2

+ V (ri ) = E

}
.

• Our conditions on V assure that these surfaces are connected

• The vector fields {Xi ,Yi ,i+1, i = 1, . . . ,N} are tangent to this surface

• Lie{Xi ,Yi ,i+1, i = 1, . . . ,N} generates the all tangent space

Consequently the microcanonical measures νN,E (·) = νNe (·|ΣN,E ) are
ergodic for our dynamics.



Equilibrium fluctuation

Define the time dependent distribution

Y N
t =

1√
N

∑
i

δi/N
{
Ei (N2t)− e

}
.
Theorem (Olla,S, 2011, PTRF)
..

.

. ..

.

.

If the process starts from the equilibrium measure νNe , then Y N
t converges

in law to the solution of the linear SPDE

∂tY = D(e) △Y dt +
√

2D(e)χ(e) ∇B(u, t)

where B is the standard normalized space-time white noise.

χ(e) is the variance of E0 under the equilibrium measure νe and D(e) is
given by a complicated variational formula.

.
Remark
..

.

. ..

.

.

If V (r) = r2

2 , then D(e) = γ
4 + 1

6γ .



Equilibrium fluctuation

Define the time dependent distribution

Y N
t =

1√
N

∑
i

δi/N
{
Ei (N2t)− e

}
.
Theorem (Olla,S, 2011, PTRF)
..

.

. ..

.

.

If the process starts from the equilibrium measure νNe , then Y N
t converges

in law to the solution of the linear SPDE

∂tY = D(e) △Y dt +
√

2D(e)χ(e) ∇B(u, t)

where B is the standard normalized space-time white noise.

χ(e) is the variance of E0 under the equilibrium measure νe and D(e) is
given by a complicated variational formula.
.
Remark
..

.

. ..

.

.

If V (r) = r2

2 , then D(e) = γ
4 + 1

6γ .



Hydrodynamic limit

The last theorem almost implies the hydrodynamic limit holds for the
energy distribution and the limiting equation is

∂te(t, u) = ∂u(D(e(t, u))∂ue(t, u)),

but we need some more technical estimates (which seem hard to prove
rigorously).



Key estimates for the proof

• Sharp estimates of the spectral gap for −S = −SN in the size of N as
a linear operator on L2(νN,E )

• E [(f − E [f ])2] ≤ λ−1
N,EE [f (−SN)f ], λN,E ≥ const.N−2

• Sector condition
• E [fAg ]2 ≤ CE [f (−S)f ]E [g(−S)g ]

• Characterization of “closed form” in the infinite dimensional space
• Closed form on ΣN,E is exact form! We use this fact, to show that, in

the infinite dimensional space,
“closed forms” = “exact forms” + finite dimensional space



Related works (I)

There are many works for “d-dimensional chain of oscillators + noise”, but
other models of the type “Hamiltonian system + noise” are rarely studied.

Topics:

• ergodicity (sufficient condition for the noise is known, without noise
case is open problem)

• energy transport is diffusive or superdiffusive (it depends on the noise,
but how it depends is not known)

• HDL under hyperbolic-scaling



Related works (II)

Results of hydrodynamic limit or equilibrium fluctuation under the diffusive
scaling limit are very few:
Bernardin, Lyon, 2007 A model with energy and length conserving noise

and V (r) = r2

2 , the limiting system of equations is{
∂tr(t, u) = △r(t, u)

∂te(t, u) = △e(t, u)

Simon, Lyon, 2013 A model with another energy and length conserving

noise and V (r) = r2

2 , the limiting system of equations is
∂tr(t, u) = △r(t, u)

∂te(t, u) = △
(
e(t, u) +

r(t, u)2

2

)



..1 Typical stochastic models
Symmetric Simple Exclusion Process (SSEP)
Totally Asymmetric Simple Exclusion Process (TASEP)

..2 Hamiltonian dynamics + stochastic noise

..3 Two-step approach
Stochastic energy exchange model
Energy conserving stochastic Ginzburg-Landau model



From deterministic microscopic dynamics

Is it impossible to start from purely deterministic microscopic dynamics??
→ No!

Two-step approach (Gaspard-Gilbert, 2008, 2009)

Microscopic deterministic Newtonian (Hamiltonian) dynamics
limit in some sense∗−−−−−−−−−−−−→
Mesoscopic stochastic process of energy
HD limit−−−−−→
Macroscopic diffusion equation (deterministic)

(* weak interaction limit, rare interaction limit )



From deterministic microscopic dynamics

Is it impossible to start from purely deterministic microscopic dynamics??
→ No!

Two-step approach (Gaspard-Gilbert, 2008, 2009)

Microscopic deterministic Newtonian (Hamiltonian) dynamics
limit in some sense∗−−−−−−−−−−−−→
Mesoscopic stochastic process of energy
HD limit−−−−−→
Macroscopic diffusion equation (deterministic)

(* weak interaction limit, rare interaction limit )



Typical setting

N-particle system :

Microscopic level (mechanical model)

qi ∈ Rd：i-th particle’s position, pi ∈ Rd : i-th particle’s velocity
(qi ,pi )

N
i=1 ∈ R2dN : State space

Time evolution : deterministic, nearest-neighbor interaction
Equilibrium measure : (pi )

N
i=1 ∼ N-product of N (0, β−1Id)

Mesoscopic level (stochastic energy process)
ei ∈ R+ : i-th particle’s energy

ei =
1

2

d∑
q=1

(p
(q)
i )2 where pi = (p

(1)
i , p

(2)
i , . . . , p

(d)
i ) : kinetic energy

(ei )
N
i=1 ∈ RN

+ : State space
Time evolution : stochastic, nearest-neighbor interaction
Equilibrium measure : (ei )

N
i=1 ∼ N-product of Γ(d2 , β

−1)
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Example 1 : Localized hard balls in 2 or 3 dimensions

Gaspard-Gilbert (2008,2009)

rf

R
rm

wall collision

binary collision

• Confined condition: rf + rm > R
2

• Binary Collision condition: ϵ := rm −
√

(rf + rm)2 − (R2 )
2 > 0

• Energy transfer only occurs by binary collisions

• Take the rare interaction limit (i.e. ϵ → 0)



Rare interaction limit

In the limit ϵ → 0 where r := rf + rm is fixed,

• equilibrium characterized by energy of the ball is achieved in each cell

e1 e2 eN

• (ei )
N
i=1 represents each state of the mesoscopic system

• Master equation for the probability PN(e1, e2, e3, . . . , eN ; t) is derived
(equivalently the infinitesimal generator is derived)

Lf (e) =
N−1∑
i=1

ΛGG (ei , ei+1)

∫
PGG (ei , ei+1, dα)[f (Ti ,i+1,αe)− f (e)]



Mesoscopic dynamics

• Two neighboring balls having energy ei and ei+1 collide with rate

ΛGG3(ei , ei+1) =

√
2π

6

(2ei + ei+1) ∨ (ei + 2ei+1)√
ei ∨ ei+1

• When a collision occurs, new energy configuration becomes
(α(ei + ei+1), (1− α)(ei + ei+1)) with probability

PGG3(ei , ei+1, dα) =
3

2

1 ∧
√

α∧(1−α)
β∧(1−β)

1
2 + β ∨ (1− β)

dα, β =
ei

ei + ei+1

ei+1ei

α(ei+ei+1) (1-α)(ei+ei+1)

coll
isio

n



Example 2 : Energy transfer in a fast-slow Hamiltonian
system

Dolgopyat-Liverani (2011)

Microscopic dynamics : N weakly coupled geodesic flows on d-dimensional
manifolds of negative curvature with coupling strength ϵ > 0 (d ≥ 3)
weak interaction limit (ϵ→0)−−−−−−−−−−−−−−−−−→
Mesoscopic dynamics : SDEs of energies

dei =
∑

j∈Zd ;|i−j |=1

β(ei (t), ej(t))dt + σ(ei (t), ej(t))dBi ,j

where β(a, b) and σ(a, b) are given implicitly.
This is the only rigorous result for the first step !



Our interest

Tasks

• Introduce general models describing the mesoscopic energy evolutions
obtained by examples

• Prove hydrodynamic limit to derive diffusion equation of heat
conduction from these models

Answer for the task 1

• Stochastic energy exchange model introduced by Grigo-Khanin-Szász
(2011)

• Energy conserving stochastic Ginzburg-Landau model introduced by
Stefano-Liverani (2012)



Stochastic energy exchange model

• x = (xi )
N
i=1 ∈ RN

+ : state space

• xi : energy of particle at site i

• Λ(·, ·)(> 0) : rate of energy exchange (or collision), continuous

• P(·, ·, dα) : probability measure on [0, 1] (collision kernel), continuous

{x(t)}t≥0 : Markov process on RN
+ with generator L acting on bounded

functions f : RN
+ → R is

Lf (x) =
N−1∑
i=1

Λ(xi , xi+1)

∫
P(xi , xi+1, dα)[f (Ti ,i+1,αx)− f (x)]

(Ti ,i+1,αx)k =


α(xi + xi+1) if k = i

(1− α)(xi + xi+1) if k = i + 1

xk if k ̸= i , i + 1



Hydrodynamic limit

Formally, the expected statement of HD limit is

1

N

N∑
i=1

xi (N
2t)δ i

N
(du) → e(t, u)du (N → ∞), u ∈ [0, 1]

where e(t, u) is the solution of ∂te = ∇(D(e)∇e) and the diffusion
coefficient D(e) is characterized by terms of Λ and P.

• For general (Λ, P) or (β, σ), the system is of non-gradient type

• First step of the proof of HD limit for non-gradient system is to give a
sharp estimate of the spectral gap of the generator L



Spectral gap

• Total energy is conserved

• Se,N := {x ∈ RN
+ ;

1

N

N∑
i=1

xi = e} : invariant

• Spectral of −L|Se,N
is our interest

• Any constant function is an eigenfunction associated with the
eigenvalue 0

• For each microcanonical surface Se,N , there exists at least one
invariant probability measure πe,N



Spectral gap for reversible process

Assume that πe,N is reversible measure of x(t) on Se,N

Dirichlet form associated with πe,N :

De,N(f ) :=

∫
πe,N(dx)(−Lf )(x)f (x) = Eπe,N

[f (−Lf )]

Spectral gap of −L|Se,N
is characterized by

λ(e,N) := inf
f

{De,N(f )

Eπe,N [f 2]

∣∣∣Eπe,N
[f ] = 0, f ∈ L2(πe,N)

}
.



Assumptions

We assume that following typical properties for the models originated from
Hamiltonian dynamics

• Reversible with respect to the product gamma distribution with some
parameter γ > 0

• There exists a nice scaling relation : Λ(ca, cb) = cmΛ(a, b) and
P(ca, cb, . . . ) = P(a, b, )̇ for all c > 0 with some m ≥ 0



γ and m in examples

Gaspard-Gilbert model:

• d = 3 case : γ = 3
2 , m = 1

2

• d = 2 case : γ = 2
2 = 1, m = 1

2

.
Remark
..

.

. ..

.

.

m ̸= 0 implies that Λ(a, b) is not uniformly positive in a, b > 0. It makes
the sharp estimate of the spectral gap quite hard.



Spectral gap estimate

.
Theorem (S,2013,submitted)
..

.

. ..

.

.

Under the assumption, ∃C = C (m, γ) > 0 s.t. ∀N ≥ 2 and ∀e > 0,

λ(e,N) ≥ Cλ(1, 2)
em

N2



HD limit

.
Corollary
..

.

. ..

.

.

For GG models in 2 or 3 dimensions, there exists a positive constant C
such that,

λ(e,N) ≥ C

√
e

N2
.

• If we can characterize infinite and finite dimensional “closed form”,
then almost done

• Formally, under the assumption of the main theorem, the macroscopic
equation should be

Stochastic energy exchange model

∂te = const.∆(em+1)

universal !!



Summary

• HDL or EF were mainly considered for interacting particle systems
(interacting random walks)

• Derivation of energy diffusion via HDL or EF for stochastic models
originated from Hamiltonian dynamics is hot topic !

• New rigorous techniques are generated quite recently !

• We need to understand geometric properties of finite and infinite
canonical surfaces


