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Geometry and Dynamics

Geometry and Dynamics

(a biased point of view?)
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Geometry and Dynamics

Meaning of “Geometry and Dynamics”?

Geometry: M a manifold endowed with a geometric structure σ

Dynamics: G the group of automorphisms of σ

Hypotheses: rigid geometry and strong dynamics!

Goal: Put them in competition and see what happens → Classify
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Geometry and Dynamics

Gromov’s vague conjecture

“Rigid Geometric Structures on compact manifolds with Large
automorphism group are Classifiable!”

Any example of them plays a central role in its category, e.g. as is the
sphere in conformal geometry...

There is a (mathematical) definition of “geometric structure” and “rigid”
but none for “large” and “classifiable”
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Geometry and Dynamics

Definition of Rigidity, by examples

Rigid: (solid)
Riemannian metric
Pseudo-Riemannian metric
Affine connection

Non-rigid: (fluid)
Symplectic structure
Contact structure
Complex structure
A plane field
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Geometry and Dynamics

Steps (in working with the conjecture)

0. Pick a geometric structure (or a class of them).

1. State a precise conjecture: important and non-trivial step

2. Prove it.
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Geometry and Dynamics

Projective structures

• Connection ∇ : it allows derivation of vector fields on M

• Geometrically: a second order differential equation on M → a vector
field G∇ on M whose orbits are the geodesics of ∇

There is equivalence ∇ ⇐⇒ G∇
∇ is determined by G∇

• Projective structure (or projective connection?): a class of connections
having the same non-parametrized geodesics
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Geometry and Dynamics

Morphisms

A diffeomorphism (M,∇)→ (M ′,∇′) is projective if it sends
unparameterized geodesics of ∇ to unparameterized geodesics of ∇′
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Geometry and Dynamics

Metric projective structures

g Riemannian metric
∇g its Levi-Cevita connection
σg the projective structure associated to ∇g

Levi-Civita connection exists in the pseudo-Riemannian case (although
there is no direct variational definition of geodesics)..

Two metrics g and ḡ on M are projectively equivalent if Idm is projective
between ∇g and ∇ḡ
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Geometry and Dynamics

Automorphisms groups

• Aut(M, g): isometries of g : Iso(M, g)

• Aut(M,∇g ): diffeomorphisms preserving (parameterized) geodesics of
g , classically called Aff (M, g)

• Aut(M, σg ): diffeomorphisms preserving unparameterized geodesics of g ,
classically Proj(M, g)

Clearly: Iso(M, g) ⊂ Aff (M, g) ⊂ Proj(M, g)
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Geometry and Dynamics

Experimental result

Our first main result is to give a precise statement of Gromov’s conjecture
for metric projective structures:

Conjecture (Projective Lichnerowicz conjecture)

Let (M, g) be a compact pseudo-Riemannian manifold.
Then Proj(M, g)/Aff (M, g) is finite unless (M, g) is isometrically covered
by the standard Riemannian sphere (up to constant)?

(The new fact here is the consider the full groups instead of their identity
components... )
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Geometry and Dynamics

Mathematical Results

Theorem (The conjecture is true in the Riemannian and in the
analytic-Lorentz cases)

Let (M, g) be a compact pseudo-Riemannian manifold.

• If g is Riemannian, then Proj(M, g)/Aff (M, g) is finite, unless M is a
(finite) quotient of the standard sphere.

•• If g is Lorentzian and analytic, then Proj(M, g)/Aff (M, g) is finite.
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Geometry and Dynamics

All objects in a simple case
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Euclidean space case

Geodesics

Rn Euclidean space

(Parameterized) geodesic: a curve with constant speed and whose support
is a straight line segment

γ :]a, b[→ Rn, d2γ
dt2 = 0

Non-parameterized geodesic: γ has its image in a straight segment ⇐⇒
there exists function p(t) such d2γ

dt2 = p(t)dγdt
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Euclidean space case

Transformations

U,V open sets in Rn, f : U → V diffeomorphism,

f isometric if it preserves distances,
Then, ∃ A ∈ O(n, (R)), b ∈ Rn, such that f = restriction to U of the map
x → Ax + b

f affine if it sends (a parameterized) geodesic to a (parametrized)
geodesic.
Then, ∃ A ∈ GL n(R)), b ∈ Rn, such that f = restriction to U of the map
x → Ax + b
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Euclidean space case

f projective if it sends (a umparameterized) geodesic to a
(umparametrized) geodesic.
(f preserves geometric line segments)
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Euclidean space case

Fundamental Theorem of projective real geometry

A projective transformation (between open sets of the Euclidean space) is
a homography:
There exist α0, . . . , αn linear forms β0, . . . , βn scalars

f (x) = (
α1(x) + β1

α0(x) + β0
, . . . ,

αn(x) + βn
α0(x) + β0

)

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 18 / 86



Euclidean space case

Seen on the sphere

The standard sphere Sn is projectively flat: any point has a
neighbourhood projectively diffeomorphic to an open set in Rn

Precisely: any (open) hemisphere is (globally) projectively diffeomorphic to
Rn: a perspective map...
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Euclidean space case

perspective
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Euclidean space case

PGL n+1

- Any local projective transformation of Sn extends globally to Sn ( Sn is
an equivariant projective compactification of Rn)

Proj(Sn) = PGL n+1(R)
(= GL n+1(R)/R∗ = SL n+1(R) up to index 2)

A = GL n+1(R) acts as A.x = Ax
‖Ax‖

It preserves linear 2-planes of Rn+1 and hence great circles of Sn
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Euclidean space case

Alternatively, in the projective space

PGL n+1 acts naturally on Pn(R) = Rn+1 − {0}/R∗

If Pn(R) = Sn/± Id is endowed with the quotient metric, then affine
charts (in Rn) are projective (and not affine)
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Euclidean space case

Beltrami Theorem

The hyperbolic space too is projectively flat:
because of the Klein model (a complete metric on the unit ball of

curvature −1 whose geodesics are line segments)

Beltrami: A locally projectively flat Riemannian manifold has constant
sectional curvature
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Euclidean space case

Some remarks

Regularity: we assumed transformations f diffeomorphic, but the theorem
is true for f merely bijective (without measurability hypothesis...)

Complex case: f sends an affine complex line to an affine complex line
(precisely open sets in them)

Same conclusion: complex homography
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Euclidean space case

Regularity

Regularity is not automatic in the complex case?!

There is a bijection f : C2 → C2 sending any complex algebraic curve
defined by a polynomial of degree d , to a similar one
(in particular preserving affine complex lines),
but f non continuous...
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Euclidean space case

Some historical facts
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Euclidean space case

What is new?

• In the Riemannian case, the theorem is proved by V. Matveev, but for
the identity components:

Proj0(M, g) = Aff 0(M, g), unless M is covered by the sphere,
In other words

- Hypothesis: (M, g) admits a projective non-affine one parameter group
of transformations

-Conclusion M is a quotient of the sphere
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Euclidean space case

Here:

- Hypothesis: (M, g) has a projective transformation none of which
powers is affine

Conclusion M is a quotient of the sphere

•• The Lorentz case (in the analytic case) is new: only partial (technical)
results are known.
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Euclidean space case

The projective group: a classical Problem

A Russian speciality

Current names: Bolsinov (UK), Topalov (?), Matveev (Germany)

Older: Solodovnokov, Sinjukov, Aminova,

Italian:
Beltrami, Dini, Fubini, Levi-Civita....
Others,
Weyl, Eisenhart, Painlevé, Darboux, Lagrange, Cartan, Lie,...
Hall (relativity)
Bryant,
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Weyl, Eisenhart, Painlevé, Darboux, Lagrange, Cartan, Lie,...
Hall (relativity)
Bryant,

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 29 / 86



Euclidean space case

The projective group: a classical Problem

A Russian speciality

Current names: Bolsinov (UK), Topalov (?), Matveev (Germany)
Older: Solodovnokov, Sinjukov, Aminova,

Italian:
Beltrami, Dini, Fubini, Levi-Civita....
Others,
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Euclidean space case

Kähler version

A Japanese speciality: Hasegawa, Fujimura, Ishihara, Yano, Hiramatu,
Yoshimatsu...

Here, one defines h-planar curves and h-projective transformations
accordingly,

A curve γ : [a, b]→ M is h-planar if its complexified tangent direction field
is parallel:
T (t) = Cγ′(t) is parallel along γ
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Euclidean space case

Theorem

Let (M, g) be a compact Kähler manifold.
Then Projhol(M, g) is a finite extension of Aff hol(M, g), unless (M, g) is
(isometrically and holomorphically) covered by Pn(C) endowed with its
Fubini-Study metric (up to a constant).

The identity component case “Projhol0 = Aff hol0 unless (M, g) is
covered by the projective space”, was proved by Matveev and Rosemann..
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Euclidean space case Projective and Projective

Further remarks, Projective vs Projective

- In complex geometry: M is projective if it embeds holomorphically in
PN(C),
say M ⊂ PN(C)

- GM = {A ∈ PGL N+1(C)/ A(M) = M} could be called the projective
group of M !?
It may be large, e.g non-compact and acts transitively

- On the other hand, Induce the Fubini-Study metric on M: (M, gFS |M)

Projhol(M, gFS|M) =?
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Euclidean space case Projective and Projective

Theorem

Projhol(M, gFS|M) is a finite extension of Isohol(M, gFS|M) unless M is a
Veronese submanifold.

Corollary: for non Veronese submanifolds GM does not act projectively!

Proof: by our theorem if Projhol(M, gFS|M) is not a finite extension of

Isohol(M, gFS|M), then
(M, gFS |M) is isometric to (Pn(C), cgFS)), for some constant c,
n = dim M (up to a cover, but forget it)
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Euclidean space case Projective and Projective

Nash ∩ Kodaira

Question: Find holomorphic and isometric immersions
(Pn(C), cgFS))→ (PN(C), gFS)

Answer: up to composition with an ambient isometry (in SUN+1), this is a
Veronese map:

vk : [X0, . . . ,Xn]→ [. . .X I . . .]

where X I ranges over all monomials of degree k in X0, . . . ,Xn.

- In particular c = k (quantic fact!)
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Euclidean space case Projective and Projective

Calabi Egregium Theorem

Theorem

(Extrinsic = Intrinsic)
Let F (N, b) denote the simply connected Hermitian space of dimension N
and constant holomorphic sectional curvature b.
Let M be a Kähler manifold (not necessarily complete) and
f : M → F (N, b) a holomorphic isometric immersion.
Then, f is rigid in the sense that any other immersion f ′ is deduced from f
by composing with an element of Iso(F(N, b))

Example: the induced metric on an elliptic curve can never be flat (but
almost)!
Same fact but by other methods for Calabi-Yau manifolds... (but Fano
could be at some scalings?)
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Euclidean space case Projective and Projective

Idea

(Calabi’s thesis)
Diastasis (diastatic function) D(p, q)....
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Geometry creates Dynamics

Geometry creates Dynamics
(back to motivations...)
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Geometry creates Dynamics

- M a smooth manifold:
• Action of Diff(M) on Met(M) its space of metrics...

(M, g) Riemannian (or pseudo-) →
•• Geodesic flow

• • • Symmetry groups, e.g. Iso(M, g), Aff (M, g), Proj(M, g),
But they are generically trivial.
Goal: Look for and characterize the special non-generic cases!

(like SL (n,Z) in groups!)
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Geometry creates Dynamics Symmetry groups

Hierarchy of Groups

(M, g) pseudo-Riemannian
– Iso(M, g) the group of all isometries, i.e. diffeomorphisms such that
f ∗g = g

– Aff (M, g) ... preserving parametrized geodesics of (M, g).
– Proj(M, g) ... preserving unparameterized geodesics of (M, g).

- Sim(M, g) the group of similarities (or homotheties) i.e. maps f such
that f ∗g = ag for some constant.

- Conf(M, g) the group of conformal transformations such that f ∗g = ag ,
where a is a function on M.
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Geometry creates Dynamics Symmetry groups

Inclusions
Iso ⊂ Sim ⊂ Conf,

Iso ⊂ Sim ⊂ Aff ⊂ Proj.

Special spaces are those for which inclusion is non-trivial

Focus today on the question: when is Aff ( Proj?

Remark: they are all Lie groups with identity components
Iso0, . . . ,Aff 0,Proj0.
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Geometry creates Dynamics Symmetry groups

Example 1: Conformal beauty of the sphere (a central
substratum)

• Observation: The sphere is beautiful, meaning: the inclusion chain is
non-trivial!
Iso(Sn) = O(n + 1), Conf(Sn) = O(1, n + 1)

• Rigidity: the sphere is uniquely beautifull, Lichnerowicz conjecture
(solved by Ferrand and Obatta): Sn is the unique compact Riemannian
manifold for which the conformal group is not equal to the isometry group
of any metric in its conformal class?
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Geometry creates Dynamics Symmetry groups

Example 2: Projective beauty of the sphere

Proj(Sn) = PGL n+1(R)
(= GL n+1(R)/R∗ = SL n+1(R) up to index 2)
A = GL n+1(R), A.x = Ax

‖Ax‖
Alternatively,
PGL n+1 acts on Pn(R) = Rn+1 − {0}/R∗
Aff (Sn) = Iso(Sn)

Some finite quotients of the sphere may have Proj non-compact,

• Our question here: projective rigidity of the sphere?
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Geometry creates Dynamics Symmetry groups

Example 3: Affine beauty of the torus

Tn = Rn/Λ, Λ lattice in Rn, e.g. Λ = Zn

Iso = Tn, up to a finite index
Aff = GL n(Z) (=SL n(Z) up to index 2),

But Proj(Tn) = Aff (Tn)

• Affine rigidity of the torus is not easy to state...
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Geometry creates Dynamics Symmetry groups

Projective flatness

f : (M, g)→ (M ′, g ′) projective diffeomorphism

A metric (M, g) is (locally) projectively flat if it is projectively
diffeomorphic to the Euclidean space.

Betrami: in this case (M, g) has constant sectional curvature

One also defines projectively flat (non-metric) connections
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Geometry creates Dynamics Symmetry groups

This leads to a (G ,X )-structure with G = PGL n+1(R), X = Pn(R)

Terminology: “projective structure” is sometimes used to mean a “flat
projective structure”...
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Geometry creates Dynamics Space of metrics

Space of metrics, equivalence relations, without group
actions

Restrict discussion to the Riemannian case → generalize to pseudo-...

Met(M) be the space of all Riemannian metrics on M.

(projective) Equivalence relation: g ∼ g ′ iff they have the same
unparameterized geodesics

MetProj(g)= equivalence class of g
MetProj(g) ⊃ Rg
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Geometry creates Dynamics Space of metrics

Let g → ∇g (its Levi-Civita connection) → σg (associated projective
structure), then the classes are levels of g → σg

When Diff(M) acts on Met(M), the stabilizer of g is Iso(M, g), and the
stabilizer of the (projective) class of g is Proj(M, g).

The action of Proj(M, g) on MetProj(g), is a priori, neither trivial, nor
transitive... (it may happen that Proj(M, g) is trivial but not is
MetProj(g)).

Remark: affine, conformal... equivalence classes can be defined similarly.
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Geometry creates Dynamics Space of metrics

Rank

Fundamental Fact: MetProj(g) has a finite dimension, bounded by that
of the standard metric on the sphere of same dimension.

dimMetProj(g) = Degree of (projective) mobility of (M, g)
≥ 1 (since MetProj(g) ⊃ Rg)

Rank = degree of mobility −1
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Geometry creates Dynamics Space of metrics

Hint in the affine case:

Write ḡx(u, v) = gx(Tx(u), v),
x → Tx ∈ End (TxM) an endomorphism of TM (symmetric with respect
to g)

Write ḡ = gT and T = g−1ḡ

If ḡ affinelly equivalent to g ,
then ḡ is parallel with respect to ∇g , hence T is parallel (w.r.t. ∇g )
Hence dimMetAff (g) ≤ n(n + 1)/2, n = dim M

(Details for the projective case latter on)
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Geometry creates Dynamics Philosophy

Philosophy

Let f ∈ Diff(M) act naturally on Met(M)

- The f - action has a fixed point ⇐⇒ f is an isometry for some
Riemannian metric on M.

Question What is the dynamical counterpart of the fact that the
f -action preserves some (finite dimensional) manifold V in Met(M).
(special case dim V = 2)

Reminiscent of mapping class group action on the Teichmuller space...

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 50 / 86



Geometry creates Dynamics Philosophy

Philosophy

Let f ∈ Diff(M) act naturally on Met(M)

- The f - action has a fixed point ⇐⇒ f is an isometry for some
Riemannian metric on M.

Question What is the dynamical counterpart of the fact that the
f -action preserves some (finite dimensional) manifold V in Met(M).
(special case dim V = 2)

Reminiscent of mapping class group action on the Teichmuller space...

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 50 / 86



Geometry creates Dynamics Philosophy

Metric on the space of metrics

g ∈Met(M),
TgMet(M) = space of vector fields χ(M)
Endow χ(M) with the L2

g -metric
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Geometry creates Dynamics Philosophy

Special case dimMetProj(M , g) = 2

We need to consider only this case because in the higher rank case we
have:

Theorem (Kiosak - Matveev, Mounoud)

Let (M, g) a compact pseudo-Riemannian that is not covered by the
standard (Riemannian) sphere.
If the degree of projective mobility of (M, g) is ≥ 3, then any projectively
equivalent metric to g is affinely equivalent to it.
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Geometry creates Dynamics Philosophy

Challenge!

Corollary: all what remains to consider is the challenging case when
dimMetProj(M, g) = 2

Proj(M, g) acts on the surface MetProj(M, g)

Paradoxical thoughts:

→ The rank 1 case is easier to handle since Proj acts on a smaller space
MetProj?

← The higher rank case is easier since when MetProj is big then Proj will
be big.
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Geometry creates Dynamics Philosophy

- In rank one case, one proves Proj is small, say generated by one
diffeomorphism f

- Such f is dissipative, say a north-south dynamics with an attractor and
repulser being submanifolds of some codimension.

- Associated are many geodesic and umbilical (but singular) foliations...

- But, how to detect that you are on a (rigorously) round sphere!?
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Geometry creates Dynamics Philosophy

Some similar apparently easy geometric problems:

• Blaschke conjecture: every compact Riemannian manifold whose
injectivity radius equals its diameter is a compact rank one symmetric
space?

• Warning: co-existence of “dissipative” and chaotic dynamics: there exist
Riemannian metrics on compact 3-manifolds whose geodesic flow is
completely integrable but chaotic !

(Ref: Bolsinov, Taimanov: Integrable geodesic flows with positive
topological entropy)
(Both work on the projective equivalence and projective transformation
problems)
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Some projective differential geometry

Some projective differential
geometry

(emphasising on its non-linear character as is the classical Schwarzian
derivative..., and avoiding Cartan connections theory...)
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Some projective differential geometry Examples of projective equivalence

Examples
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Some projective differential geometry Examples of projective equivalence

Dini

On surfaces, near a generic point, g are ḡ are projectively equivalent ⇐⇒
in some co-ordinate system:

g = (X (x)− Y (y))(dx2 + dy 2)

and

ḡ = (
1

Y (y)
− 1

X (x)
)(

dx2

X (x)
+

dy 2

Y (y)
)

X (x) > Y (y)
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Some projective differential geometry Examples of projective equivalence

Remarks

X and Y are (essentially) eigen-values of the tensor T defined by:
ḡ(., .) = g(T ., .).

Observe the Commutation: X (x , y) = X (x), Y (x , y) = Y (y)

In a domain with a Dini normal form: strong simplicity:
X (x1, y1) > Y (x2, y2): inf X > sup Y

Compactness forces confluence of eigenvalues and leads to rigidity...
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Some projective differential geometry Examples of projective equivalence

A projective transformation of the torus

On T2

g = (f (x)− 1

f (y)
)(
√

f (x)dx2 +
1√
f (y)

dy 2)

φ(x , y) = (y , x)

is projective, but not affine (except f very special)
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Some projective differential geometry Examples of projective equivalence

Ellipsoid: a recent example, by means of integrable
systems theory

(Topalov, Matveev, Tabachnikov)
Ellipsoid:

Σi=n
i=1

(xi )
2

ai
= 1

g = the metric induced from Rn

ḡ =
1

Σ( xiai )
2

(Σ
dx2

i

ai
)
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Some projective differential geometry Linearization

Affine equivalence

g → ∇g is non linear...
g and ḡ affinely equivalent
⇐⇒
∇g = ∇ḡ (Levi-Civita connections)
Equation: ∇g −∇ḡ = 0 is non-linear on g

ḡ(u, v) = g(Tu, v), write T = g−1ḡ
T : TM → TM endomorphism, a (1, 1)-tensor

Linearization: ∇g −∇ḡ = 0 ⇐⇒ T parallel ⇐⇒ ∇gT = 0
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Some projective differential geometry Linearization

Projective equivalence

∇ → (Γk
ij) and ∇̄ → (Γ̄k

ij) are projectively equivalent if the have the same
umparametrized geodesics

The Geodesic equations ẍk = Γk
ij(x)ẋ i ẋ j and ẍk = Γ̄k

ij(x)ẋ i ẋ j have same
geometric solutions

A = ∇− ∇̄ tensor, A : TM × TM → TM

Projective equivalence: A traceless, i.e. A(u, u) is parallel to u = 0
⇐⇒ A has the form: A(u, v) = l(u)v + l(v)u for some form l
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Some projective differential geometry Linearization

Non-linear equation on g

∇u ḡ(ξ, η) = ḡ(ξ, η)dθ(u) +
1

2
ḡ(ξ, u)dθ(η) +

1

2
ḡ(η, u)dθ(ξ)

θ = ln(
detḡ

detg
)

1
1+n
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Some projective differential geometry Linearization

“Linearization!”

T = g−1ḡ

Define L such that T = L−1

detL
i.e. ḡ(u, v) = 1

detLg(L−1u, v) (write ḡ = 1
detLgL−1), so,

L = (
detḡ

detg
)

1
n+1 ḡ−1g

T → L is a (partially defined) transform on the sections of End(TM)
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Some projective differential geometry Linearization

Proposition

g and ḡ are projectively equivalent ⇐⇒ L satisfies the linear equation:

g((∇uL)v ,w) =
1

2
g(v , u)dtrace(L)(w) +

1

2
g(w, u)dtrace(L)(v)

Say that such L is a P-tensor, and denote their space P(M, g).

So, ḡ ∈MetProj(M, g)→ L ∈ P(M, g) is a bijection onto its image ( =
the invertible L).
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Some projective differential geometry Linearization

Remarks

1. For g and ḡ projectively equivalent
ḡ ∈MetProj(M, g) =∈MetProj(M, ḡ), but P(M, g) 6= P(M, ḡ)

2. The Diff(M)-action on the sections of End (TM) obtained by
composing with the T → L transform is still linear!

3. We have in particular a linear representation
ρ : Proj(M, g)→ GL (P(M, g))
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Some projective differential geometry Linearization

Nijenhaus tensor

Elements of P are not parallel, nevertheless have some special properties:
For L section of End (TM),

NL(u, v) = [Lu, Lv ]− L[Lu, v ]− L[u, Lv ]− L2[u, v ]

A P-tensor has NL = 0
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Some projective differential geometry Linearization

Integrability

An almost complex structure has a vanishing Nijenhaus NL = 0 ⇐⇒ it is
integrable, i.e. it defines a complex structure.

In general, if L diagonalizable,

- Eigen- distributions are integrable
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Some projective differential geometry Linearization

(define λ : M → C as eigenfunction it is continuous and λ(x) is a spectral
value of L(x), ∀x)

- An eigenfunction is constant along the leaves of the other distributions

- In particular eigenfunctions with higher multiplicity (> 1) are constant

- L is symmetric (auto-adjoint w.r.t. g), thus eigen-distributions are
orthogonal.

- L is parallel ⇐⇒ all eigenfunctions are constant.
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Some projective differential geometry Linearization

Foliations

If constant eigenvalue exist, then we get a festival of geodesic and
umbilical... foliations, but singular.

In the pseudo-Riemannian non-Riemannian case, foliations may
degenerate: the restriction of the metric on leaves is a degenerate.

Example: The weak stable foliation of the geodesic flow on negatively
curved metric on a surface, is a lightlike geodesic foliation for some natural
Lorentz metric on the unit tangent bundle.
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Actions

Elements of proof, Actions
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Actions

Stress tensor

(M, g) pseudo-Riemannian
f ∈ Diff(M)

Usual stress (or strength):
Tf = g−1f ∗g , (i.e f ∗g(., .) = g(Tf ., .))

Use the transform T → L, define an adapted stress Kf as:

f ∗g =
1

detKf
gK−1

f
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Actions

Action

Proj(M, g) acts on MetProj(M, g)

(f , g) ∈ Proj(M, g)×MetProj(M, g)→ f∗g

Transported action on P(M, g) via the map
L→ gL = 1

detLgL−1

(f , L) ∈ Proj(M, g)× P(M, g)→ f∗L.Kf ∈ P(M, g)

The action is linear!
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Actions

Representation

ρ : Proj(M, g)→ GL (P(M, g)) = GL 2(R)

ρ(f ) = 1 ⇐⇒ Kf = I ⇐⇒ f isometry

ρ(f )homothety ⇐⇒ Kf = aI , f is a similarity, impossible if M compact
(unless a = ±1)

Say
ρ : Proj(M, g)→ SL 2(R)

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 75 / 86



Actions

Representation

ρ : Proj(M, g)→ GL (P(M, g)) = GL 2(R)

ρ(f ) = 1 ⇐⇒ Kf = I ⇐⇒ f isometry

ρ(f )homothety ⇐⇒ Kf = aI , f is a similarity, impossible if M compact
(unless a = ±1)

Say
ρ : Proj(M, g)→ SL 2(R)

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 75 / 86



Actions

Homography

Fix f , K = Kf

{I ,K} a basis of P(M, g)
ρ(f )K = f ∗L.K = aI + bK

f ∗K =
aI + bK

K

Let

A = Af =

(
a b
1 0

)
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Actions

It acts homographically on C:

A � z =
az + b

z

Sections(End (TM)) is an algebra, and A� acts on it

Previous equation f ∗K = A � K

Consequently

f n∗K = An � K

(one knows the action of f on its stress tensor...)

Zeghib (UMPA, ENS-Lyon) Projective groups September 16, 2013 77 / 86



Actions

Spectrum of K

x → Sp(x) spectrum of K (x)
Sp(x) subset C× . . .C...

Sp(f nx) = An � Sp(x)

If λ : M → R is eigenfunction: λ(x) ∈ Sp(x),
Up to taking a power,

λ(f n) = An � λ(x)

λ semi-conjugates the two dynamical systems (M, f )→ (C,A)
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Actions

Classification of elements of SL 2

elliptic
parabolic
hyperbolic

Let λ real eigenfunction
λ(M) ⊂ R is a compact A�-invariant interval
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Actions

Cases ρ(f ) elliptic or parabolic

- Elliptic and preserving an interval implies Thus A2 = 1

- Parabolic with an invariant interval implies λ(M) is a fixed point.

- Hyperbolic case: if λ non-constant, then λ(M) = [λ−, λ+]
λ− and λ+ fixed points of A�

South-North dynamics between them,
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Actions

Hyperbolic case

(M, g) is Riemannian,

- K is diagonalizable

- As suggested by Dini normal form (in dimension 2), Matveev and
Topolov prove that that a somewhere inequality between eigenfunctions
extends to the whole M:

λ1(x0) < λ2(x0) =⇒ supλ1 ≤ inf λ2
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Actions

- It follows that there exists exactly one non-constant eigenfunction λ with
range [λ−, λ+]

- λ− and λ+ could be (constant) eigenfunctions,

- λ is simple since by the general theory (of Nijenhaus tensors) a
non-simple eigenfunction is constant.
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Actions

Weyl tensor

- All this allows understanding topological (i.e. without measure)
Lyapunov exponents...

- → vanishing of the projective Weyl tensor

- (M, g) is projectively flat.... �
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Actions

Lorentz case

- K is not, a priori, diagonalizable: an auto-adjoint endomorphism w.r.t. a
non-definite non-degenerate form is not necessarily diagonalizable....

- Global ordering of eigenfunctions is no longer valid.

- The stress tensor has no dynamical meaning, e.g. K = 1 means f is
isometric, but may have non-trivial Lyapunov exponents...!
... �
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Conclusion

Conclusion: Cultural Content

1. There is a Gromov’s vague conjecture on classifibiability of geometric
substrata with a large symmetry group

2. Fundamental Theorem of projective geometry

3. Beltrami Theorem: projectively flat Riemannian metrics have constant
sectional curvature

4. There are non measurable projective bijections of Cn
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Conclusion

5. Experimental Fact (= conjecture): besides the standard Riemannian
sphere, and up to finite objects, any projective transformation of a
compact pseudo-Riemannian manifold is affine.

6. There is Theorema Egregium of Calabi for holomorphic-isometric
immersions: extrinsic quantities turn out to be intrinsic.

7. There are geodesic flows of compact Riemannian manifolds which are
completely integrable and chaotic!

8. Tokyo is a very beautiful geometric structure!
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