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Braid groups

Braid groups were introduced by E. Artin in 1920’s.

a a a a1 2 3 n

The isotopy classes of geometric braids as above form a group by
composition. This is the braid group with n strands denoted by Bn.
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Braid relations

1   2            i    i                 n1

σi

+

Bn is generated by σi, 1 ≤ i ≤ n− 1 with relations

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi, |i− j| > 1
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Quantum symmetry in representations of braid groups
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Configuration spaces

Fn(X) : configuration space of ordered distinct n points in X.

Fn(X) = {(x1, · · · , xn) ∈ Xn ; xi 6= xj if i 6= j},

Cn(X) = Fn(X)/Sn

Suppose X = C.

π1(Fn(C)) = Pn, π1(Cn(C)) = Bn

We set Xn = Fn(C)
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Logarithmic forms

We set
ωij = d log(zi − zj), 1 ≤ i 6= j ≤ n.

Consider a total differential equation of the form dφ = ωφ for a
logarithmic form

ω =
∑
i<j

Aijωij

with Aij ∈Mm(C).
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Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

[Aik, Aij +Ajk] = 0, (i, j, k distinct),

[Aij , Ak`] = 0, (i, j, k, ` distinct)

The following are generalized for the complement of the union of
complex hyperplanes.

As the holonomy of the flat connection ω we obtain linear
representation of the pure braid group Pn.

The horizontal section of ω is expressed as an infinite sum of
iterated integrals of logarithmic forms (hyperlogarithms).

Any unipotent representations of Pn are give by
hyperlogarithms (Aomoto).

Infinitesimal pure braid relations describe the nilpotent
completion of the pure braid group Pn over Q (Malcev
algebra).
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Riemann-Hilbert correspondence

Theorem

For any linear representation ρ : Pn → GLm(C) sufficiently close
to identity, there exists a flat connection

ω =
∑
i<j

Aijd log(zi − zj)

with Aij ∈Mm(C) such that the monodromy of the connection ω
is given by ρ.
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Poincaré’s paper
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Aomoto’s paper
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K. T. Chen’s iterated integals of differential forms

ω1, · · · , ωk : differential forms on M
ΩM : loop space M

∆k = {(t1, · · · , tk) ∈ Rk ; 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}

ϕ : ∆k × ΩM →M × · · · ×M︸ ︷︷ ︸
k

defined by ϕ(t1, · · · , tk; γ) = (γ(t1), · · · , γ(tk))

The iterated integral of ω1, · · · , ωk is defined as∫
ω1 · · ·ωk =

∫
∆k

ϕ∗(ω1 × · · · × ωk)
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Iterated integrals as differential forms on loop space

The expression ∫
∆k

ϕ∗(ω1 × · · · × ωk)

is the integration along fiber with respect to the projection
p : ∆k × ΩM → ΩM .

differential form on the loop space ΩM
with degree p1 + · · ·+ pk − k.
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Differentiation on loop spaces

As a differential form on the loop space d
∫
ω1 · · ·ωk is

k∑
j=1

(−1)νj−1+1

∫
ω1 · · ·ωj−1dωj ωj+1 · · ·ωk

+

k−1∑
j=1

(−1)νj+1

∫
ω1 · · ·ωj−1(ωj ∧ ωj+1)ωj+2 · · ·ωk

where νj = degω1 + · · ·+ degωj − j.
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Bar complex for Orlik-Solomon algebra

A = {H1, · · · , Hm} : arrangement of affine hyperplanes in the
complex vector space Cn defined by linear forms fj , 1 ≤ j ≤ m.
Consider the complement

M(A) = Cn \
⋃
H∈A

H

A be the Orlik-Solomon algebra generated by the logarithmic
forms ωj = d log fj , 1 ≤ j ≤ m. .

The reduced bar complex of the Orlik-Solomon algebra is the
tensor algebra defined by

B
∗
(A) =

⊕
k≥0

(
k⊗
A

)
(A : degree shifted by 1.) There is a natural filtration defined by

F−k(B∗(A)) =
⊕
`≤k

(
⊗̀

A)
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Bar complex and fundamental group

Theorem

For the reduced bar complex for the Orlik-Solomon algebra there is
an isomorphism

F−kH0(B
∗
(A)) ∼= Hom(Zπ1(M,x0)/Jk+1,C)

In the case M = Fn(C) the above space is isomorphic to the
space order k invariants for the pure braid group Pn (a prototype
for Kontsevich integrals).
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Holonomy Lie algebra

Define the holonomy Lie algebra as a quotient of free Lie algebra by

h(M) = L(X1, · · · , Xm)/a

where a is an ideal generate by

[Xjp , Xj1 + · · ·+Xjk ], 1 ≤ p < k

for maximal family of hyperplanes {Hj1 , · · · , Hjk} such that

codimC(Hj1 ∩ · · · ∩Hjk) = 2
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Universal holonomy map

We put

ω =

m∑
j=1

ωjXj .

Then there is a universal holonomy map

Θ0 : π1(M,x0) −→ C〈〈X1, · · · , Xm〉〉/a

defined by

Θ0(γ) = 1 +

∞∑
k=1

∫
γ
ω · · ·ω︸ ︷︷ ︸

k

This induces an isomorphism

Cπ̂1(M,x0) ∼= C〈〈X1, · · · , Xm〉〉/a

By taking the primitive part we have an isomorphism between
nilpotent completion of the fundamental group and the holonomy
Lie algebra over Q.

19 / 51



Universal holonomy map

We put

ω =

m∑
j=1

ωjXj .

Then there is a universal holonomy map

Θ0 : π1(M,x0) −→ C〈〈X1, · · · , Xm〉〉/a

defined by

Θ0(γ) = 1 +

∞∑
k=1

∫
γ
ω · · ·ω︸ ︷︷ ︸

k

This induces an isomorphism

Cπ̂1(M,x0) ∼= C〈〈X1, · · · , Xm〉〉/a

By taking the primitive part we have an isomorphism between
nilpotent completion of the fundamental group and the holonomy
Lie algebra over Q.

19 / 51



Riemann-Hilbert problem for unipotent monodromy

The following statement was first obtained by Aomoto.

Theorem

Let
ρ : π1(M,x0) −→ GL(V )

be a unipotent representation of the fundamental group of the
complement of hyperplane arrangement. Then there exists an
integrable connection

ω =
∑̀
j=1

Ajωj , Aj ∈ End(Vj)

such that each Aj is nilpotent and the monodromy representation
of ω coincides with ρ.
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Proof

For a unipotent representation ρ : π1(M,x0) −→ GL(V ) there
exists k such that ρ induces a homomorphism

ρ̃ : Cπ1(M,x0)/Jk+1 −→ End(V ).

The universal holonomy homomorphism of the connection∑`
j=1 ωjXj induces an isomorphism

θ : Cπ1(M,x0)/Jk+1 ∼= C〈〈X1, · · · , X`〉〉/(a + Ĵk+1)

where Ĵ denotes the completed augmentation ideal. Define a
homomorphism

α : C〈〈X1, · · · , X`〉〉/(a + Ĵk+1) −→ End(V )

by α = ρ̃ ◦ θ−1 and put Aj = α(Xj), 1 ≤ j ≤ `.
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KZ connections

g : complex semi-simple Lie algebra.
{Iµ} : orthonormal basis of g w.r.t. Killing form.
Ω =

∑
µ Iµ ⊗ Iµ

ri : g→ End(Vi), 1 ≤ i ≤ n representations.

Ωij : the action of Ω on the i-th and j-th components of
V1 ⊗ · · · ⊗ Vn.

ω =
1

κ

∑
i<j

Ωijd log(zi − zj), κ ∈ C \ {0}

ω defines a flat connection for a trivial vector bundle over the
configuration space Xn = Fn(C) with fiber V1 ⊗ · · · ⊗ Vn since we
have

ω ∧ ω = 0
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Monodromy representations of braid groups

As the holonomy we have representations

θκ : Pn → GL(V1 ⊗ · · · ⊗ Vn).

In particular, if V1 = · · · = Vn = V , we have representations of
braid groups

θκ : Bn → GL(V ⊗n).

We shall express the horizontal sections of the KZ connection :
dϕ = ωϕ in terms of homology with coefficients in local system
homology on the fiber of the projection map

π : Xm+n −→ Xn.

Xn,m : fiber of π, Yn,m = Xn,m/Sm
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Relative configuration spaces

Fix P = {(1, 0), · · · , (n, 0)} ⊂ D, where D is a 2 dimensional disc.
Σ = D \ P

Fn,m(D) = Fm(Σ), Cn,m(D) = Fm(Σ)/Sm

P P P
1 2 n

Q
Q

Q
1

2

m

24 / 51



Homology of relative configuration spaces

H1(Cn,m(D);Z) ∼= Z⊕n ⊕ Z

P P P
1 2 n

Q
Q

Q
1

2

m
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Abelian coverings

Consider the homomorphism

α : H1(Cn,m(D);Z) −→ Z⊕ Z

defined by α(x1, · · · , xn, y) = (x1 + · · ·+ xn, y).

Composing with the abelianization map
π1(Cn,m(D), x0)→ H1(Cn,m(D);Z), we obtain the homomorphism

β : π1(Cn,m(D), x0) −→ Z⊕ Z.

π : C̃n,m(D)→ Cn,m(D) : the covering corresponding to Kerβ.
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Homological representations

H∗(C̃n,m(D);Z) considered to be a Z[Z⊕ Z]-module by deck
transformations.

Express Z[Z⊕ Z] as the ring of Laurent polynomials
R = Z[q±1, t±1].

Hn,m = Hm(C̃n,m(D);Z)

Hn,m is a free R-module of rank

dn,m =

(
m+ n− 2

m

)
.

ρn,m : Bn −→ AutRHn,m : homological representations (m > 1)
extensively studied by Bigelow and Krammer ; they are faithful
representations.
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Representations of sl2(C)

g = sl2(C) has a basis

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

λ ∈ C
Mλ : Verma module of sl2(C) with highest weight vector v such
that

Hv = λv, Ev = 0

Mλ is spanned by

v, Fv, F 2v, · · ·
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Space of null vectors

Λ = (λ1, · · · , λn) ∈ Cn, |Λ| = λ1 + · · ·+ λn
Consider the tensor product Mλ1 ⊗ · · · ⊗Mλn .

m : non-negative integer

W [|Λ| − 2m] = {x ∈Mλ1 ⊗ · · · ⊗Mλn ; Hx = (|Λ| − 2m)x}

The space of null vectors is defined by

N [|Λ| − 2m] = {x ∈W [|Λ| − 2m] ; Ex = 0}.

The KZ connection ω commutes with the diagonal action of g on
Mλ1 ⊗ · · · ⊗Mλn , hence it acts on the space of null vectors
N [|Λ| − 2m].
The monodromy of KZ connection

θκ,λ : Pn −→ AutN [|Λ| − 2m]
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Comparison theorem

We fix a complex number λ and consider the case
λ1 = · · · = λn = λ. We have

θκ,λ : Bn −→ AutN [nλ− 2m].

Theorem

There exists an open dense subset U in (C∗)2 such that for
(λ, κ) ∈ U the homological representation ρn,m with the
specialization

q = e−2π
√
−1λ/κ, t = e2π

√
−1/κ

is equivalent to the monodromy representation of the KZ
connection θλ,κ with values in the space of null vectors

N [nλ− 2m] ⊂M⊗nλ .
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Local system over the configuration space

π : Xn+m → Xn : projection defined by
(z1, · · · , zn, t1, · · · , tm) 7→ (z1, · · · , zn).
Xn,m : fiber of π.

Φ =
∏

1≤i<j≤n
(zi − zj)

λiλj
κ

∏
1≤i≤m,1≤`≤n

(ti − z`)−
λ`
κ

×
∏

1≤i<j≤m
(ti − tj)

2
κ

(multi-valued function on Xn+m).
Consider the local system L associated with Φ.
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Solutions to KZ equation

Notation:
W [|Λ| − 2m] has a basis

F Jv = F j1vλ1 ⊗ · · · ⊗ F jnvλn

with |J | = j1 + · · ·+ jn = m and vλj ∈Mλj the highest weight
vector.

Theorem (Schechtman-Varchenko, Date-Jimbo-Matsuo-Miwa, ...)

The hypergeometric integral∑
|J |=m

(∫
∆

ΦRJ(z, t)dt1 ∧ · · · ∧ dtm
)
F Jv

lies in N [|Λ| − 2m] and is a solution of the KZ equation, where ∆
is a cycle in Hm(Yn,m,L∗).
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is a cycle in Hm(Yn,m,L∗).
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Homology basis

For generic λ, κ,

Hj(Yn,m,L∗) ∼= 0, j 6= m

and we have an isomorphism

Hm(Yn,m,L∗) ∼= H lf
m (Yn,m,L∗)

(homology with locally finite chains)

The above homology is spanned by bounded chambers.

bounded chambers : basis of twisted homology
(the case n = 3,m = 2).
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Homology basis (continued)

For non-negative integers m1, · · · ,mn−1 satisfying

m1 + · · ·+mn−1 = m

we define a bounded chamber ∆m1,··· ,mn−1 in Rm by

1 < t1 < · · · < tm1 < 2

2 < tm1+1 < · · · < tm1+m2 < 3

· · ·
n− 1 < tm1+···+mn−2+1 + · · ·+ tm < n.

Put M = (m1, · · · ,mn−1) and write ∆M for ∆m1,··· ,mn−1 .
The bounded chamber ∆M defines a homology class
[∆M ] ∈ H lf

m (Xn,m,L) and its image ∆M = πn,m(∆M ) defines a

homology class [∆M ] ∈ H lf
m (Yn,m,L).

Under a genericity condition [∆M ] form a basis of H lf
m (Yn,m,L).
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Outline of proof of comparison theorem

Now the fundamental solutions of the KZ equation with values in
N [nλ− 2m] is give by the matrix of the form(∫

∆M

ωM ′

)
M,M ′

with M = (m1, · · · ,mn−1) and M ′ = (m′1, · · · ,m′n−1) such that
m1 + · · ·+mn−1 = m and m′1 + · · ·+m′n−1 = m. with ωM ′ a
multivalued m-form on Xn,m.
The column vectors of the above matrix form a basis of the
solutions of the KZ equation with values in N [nλ− 2m]. Thus the
representation rn,m : Bn → AutHm(Yn,m,L∗) is equivalent to the
action of Bn on the solutions of the KZ equation with values in
N [nλ− 2m].
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Quantum symmetry

Theorem

There is an isomorphism

Nh[λn− 2m] ∼= Hm(Yn,m,L∗)

which is equivariant with respect to the action of the braid group
Bn, where Nh[λn− 2m] is the space of null vectors for the
corresponding Uh(g)-module with h = 1/κ.
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Quantum symmetry for twisted chains

There is the following correspondence:

twisted multi-chains⇐⇒ weight vectors F j1v1 ⊗ · · · ⊗ F jnvn

twisted boundary operator⇐⇒ the action of E ∈ Uh(g)

Hm(Yn,m,L∗)⇐⇒ Nh[λn− 2m]

j j
1 n

twisted multi-chains
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Wess-Zumino-Witten model

Conformal Field Theory

p
p p

1

2 n

(Σ, p1, · · · , pn) : Riemann surface with marked points
λ1, · · · , λn : level K highest weights

HΣ(p, λ) : space of conformal blocks
vector space spanned by holomorphic parts of the WZW partition
function.
Geometry : vector bundle over the moduli space of Riemann
surfaces with n marked points with projectively flat connection.
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The space of conformal blocks

Conformal field theory
(Σ, p1, · · · , pn) : Riemann surface with marked points

7→
HΣ : complex vector space - the space of conformal blocks

The mapping class group Γg,n acts on HΣ :
Quantum representations

p
p p

1

2 n
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Representations of an affine Lie algebra

ĝ = g⊗C((ξ))⊕Cc : affine Lie algebra with commutation relation

[X ⊗ f, Y ⊗ g] = [X,Y ]⊗ fg + Resξ=0 df g 〈X,Y 〉c

K a positive integer (level)
ĝ = N+ ⊕N0 ⊕N−
c acts as K · id.

λ : an integer with 0 ≤ λ ≤ K
Hλ : irreducible quotient of Mλ called the integrable highest
weight modules.
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Geometric background

G : the Lie group SL(2,C)
LG = Map(S1, G) : loop group
L −→ LG : complex line bundle with c1(L) = K

The affine Lie algebra ĝ acts on the space of sections Γ(L).
The integrable highest weight modules Hλ, 0 ≤ λ ≤ K, appears as
sub representations.
As the infinitesimal version of the action of the central extension of
Diff(S1) the Virasoro Lie algebra acts on Hλ.
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The space of conformal blocks - definition -

Suppose 0 ≤ λ1, · · · , λn ≤ K.
p1, · · · , pn ∈ Σ
Assign highest weights λ1, · · · , λn to p1, · · · , pn.
Hj : irreducible representations of ĝ with highest weight λj at
level K.

Mp denotes the set of meromorphic functions on Σ with poles at
most at p1, · · · , pn.

The space of conformal blocks is defined as

HΣ(p, λ) = Hλ1 ⊗ · · · ⊗ Hλn/(g⊗Mp)

where g⊗Mp acts diagonally via Laurent expansions at
p1, · · · , pn.
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Conformal block bundle

Σg : Riemann surface of genus g
p1, · · · , pn : marked points on Σg

Fix the highest weights λ1, · · · , λn.

The union ⋃
p1,··· ,pn

HΣg(p, λ)

for any complex structures on Σg forms a vector bundle on Mg,n,
the moduli space of Riemann surfaces of genus g with n marked
points.

This vector bundle is called the conformal block bundle and is
equipped with a natural projectively flat connection. The
holonomy representation of the mapping class group is called the
quantum representation.
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genus 0 case

The flat connection is the KZ connection.
L : rank 1 local system over Yn,m associated with Φ
m = 1

2(λ1 + · · ·+ λn − λn+1)
p = (p1, · · · , pn,∞)
There is a surjective period map

Hm(Yn,m,L∗) −→ H∗CP 1(p, λ)

The above period map is not injective in general, which is related
to fusion rules, resonance at infinity etc.

44 / 51



Gauss-Manin connection

Hn,m : local system over Xn with fiber Hm(Yn,m,L∗)

Theorem

There is surjective bundle map to the conformal block bundle

Hn,m −→
⋃
H∗CP 1(p, λ)

via hypergeometric integrals. The KZ connection is interpreted as
Gauss-Manin connection.

cf. Looijenga’s work
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Quantum representations of mapping class groups

Σg : Riemann surface of genus g
Γg = Diff+(Σg)/isotopy : mapping class group
HΣg : the space of conformal blocks at level K

There is a projectively linear action of Γg on the space of
conformal blocks HΣg , which is called the quantum representation
of the mapping class group.
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Properties of quantum representations

A basis of the space of conformal block is described by colored
trivalent graphs which are dual to pants decomposition of a
surface. There is a combinatorial description of the action of the
mapping class group.

m

t

The Dehn twist τt along t acts as a diagonal matrix.
The representation behaves nicely with respect to a stabilization
for Heegaard splitting.

47 / 51



Images of quantum representations

The quantum representations are projectively unitary.

ρK : Γg −→ PU(HΣg)

The k-th Johnson subgroup acts trivially on the k-th lower central
series of the fundamental group π1(Σg).

The image of the quantum representation is “big” in the following
sense.

Theorem (Funar-K.)

Suppose g ≥ 4 and K sufficiently large. Then the image of any
Johnson subgroup by ρK contains a non-abelian free group.
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Index finite subgroups of mapping class groups

Put Kg = Ig(2), the second Johnson subgroup.
ρ([Kg,Kg]) is of finite index in the image of the quantum
representation ρ(Γg).
Let Ug be the kernel of

Γg −→ ρ(Γg)/ρ([Kg,Kg])

Then, Ug is a finite index subgroup of Γg. This construction gives
a systematic way to construct many finite index subgroups of Γg.

Question : Does Ug have infinite abelianization?

49 / 51



Dual Garside structure

The bounded chamber basis ∆M plays an important role in
detecting the dual Garside structure from the homological
representation with respect to this basis.

Theorem (T. Ito and B. Wiest)

The dual Garside length of a braid word β with respect to the
Birman-Ko-Lee band generators is expressed as

max degq ρn,m(β)−min degq ρn,m(β).
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Categorification of KZ connections

There is a work in progress to construct 2-holonomy of KZ
connection for braid cobordism based on the 2-connection
investigated by L. Cirio and J. Martins of the form

A =
∑
i<j

ωijΩij

B =
∑
i<j<k

(ωij ∧ ωik Pjik + ωij ∧ ωjk Pijk),

where A has values in the algebra of 2-chord diagrams, a
categorification of the algebra of horizontal chord diagrams and

∂B = dA+
1

2
A ∧A.
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