Geometric representation theory of braid groups related to quantum groups and hypergeometric integrals

Toshitake Kohno

The University of Tokyo

September 15, 2013

Braid groups

Braid groups were introduced by E. Artin in 1920's.

The isotopy classes of geometric braids as above form a group by composition. This is the braid group with n strands denoted by B_{n}.

Braid relations

B_{n} is generated by $\sigma_{i}, 1 \leq i \leq n-1$ with relations

$$
\begin{aligned}
& \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j|>1
\end{aligned}
$$

Quantum symmetry in representations of braid groups

- Monodromy representations of logarithmic connections
- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections
- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections
- Quantum symmetry in homological representations
- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections
- Quantum symmetry in homological representations
- Space of conformal blocks and Gauss-Manin connection
- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections
- Quantum symmetry in homological representations
- Space of conformal blocks and Gauss-Manin connection
- Homological representations and dual Garside structures
- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections
- Quantum symmetry in homological representations
- Space of conformal blocks and Gauss-Manin connection
- Homological representations and dual Garside structures
- Categorification of KZ connection

Configuration spaces

$\mathcal{F}_{n}(X)$: configuration space of ordered distinct n points in X.

$$
\begin{gathered}
\mathcal{F}_{n}(X)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in X^{n} ; x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
\mathcal{C}_{n}(X)=\mathcal{F}_{n}(X) / \mathfrak{S}_{n}
\end{gathered}
$$

Configuration spaces

$\mathcal{F}_{n}(X)$: configuration space of ordered distinct n points in X.

$$
\begin{gathered}
\mathcal{F}_{n}(X)=\left\{\left(x_{1}, \cdots, x_{n}\right) \in X^{n} ; x_{i} \neq x_{j} \text { if } i \neq j\right\} \\
\mathcal{C}_{n}(X)=\mathcal{F}_{n}(X) / \mathfrak{S}_{n}
\end{gathered}
$$

Suppose $X=\mathbf{C}$.

$$
\pi_{1}\left(\mathcal{F}_{n}(\mathbf{C})\right)=P_{n}, \quad \pi_{1}\left(\mathcal{C}_{n}(\mathbf{C})\right)=B_{n}
$$

We set $X_{n}=\mathcal{F}_{n}(\mathbf{C})$

Logarithmic forms

We set

$$
\omega_{i j}=d \log \left(z_{i}-z_{j}\right), \quad 1 \leq i \neq j \leq n
$$

Consider a total differential equation of the form $d \phi=\omega \phi$ for a logarithmic form

$$
\omega=\sum_{i<j} A_{i j} \omega_{i j}
$$

with $A_{i j} \in M_{m}(\mathbf{C})$.

Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

$$
\begin{aligned}
& {\left[A_{i k}, A_{i j}+A_{j k}\right]=0, \quad(i, j, k \text { distinct }),} \\
& {\left[A_{i j}, A_{k \ell}\right]=0, \quad(i, j, k, \ell \text { distinct })}
\end{aligned}
$$

The following are generalized for the complement of the union of complex hyperplanes.

Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

$$
\begin{aligned}
& {\left[A_{i k}, A_{i j}+A_{j k}\right]=0, \quad(i, j, k \text { distinct })} \\
& {\left[A_{i j}, A_{k \ell}\right]=0, \quad(i, j, k, \ell \text { distinct })}
\end{aligned}
$$

The following are generalized for the complement of the union of complex hyperplanes.

- As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_{n}.

Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

$$
\begin{aligned}
& {\left[A_{i k}, A_{i j}+A_{j k}\right]=0, \quad(i, j, k \text { distinct })} \\
& {\left[A_{i j}, A_{k \ell}\right]=0, \quad(i, j, k, \ell \text { distinct })}
\end{aligned}
$$

The following are generalized for the complement of the union of complex hyperplanes.

- As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_{n}.
- The horizontal section of ω is expressed as an infinite sum of iterated integrals of logarithmic forms (hyperlogarithms).

Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

$$
\begin{aligned}
& {\left[A_{i k}, A_{i j}+A_{j k}\right]=0, \quad(i, j, k \text { distinct })} \\
& {\left[A_{i j}, A_{k \ell}\right]=0, \quad(i, j, k, \ell \text { distinct })}
\end{aligned}
$$

The following are generalized for the complement of the union of complex hyperplanes.

- As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_{n}.
- The horizontal section of ω is expressed as an infinite sum of iterated integrals of logarithmic forms (hyperlogarithms).
- Any unipotent representations of P_{n} are give by hyperlogarithms (Aomoto).

Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

$$
\begin{aligned}
& {\left[A_{i k}, A_{i j}+A_{j k}\right]=0, \quad(i, j, k \text { distinct }),} \\
& {\left[A_{i j}, A_{k \ell}\right]=0, \quad(i, j, k, \ell \text { distinct })}
\end{aligned}
$$

The following are generalized for the complement of the union of complex hyperplanes.

- As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_{n}.
- The horizontal section of ω is expressed as an infinite sum of iterated integrals of logarithmic forms (hyperlogarithms).
- Any unipotent representations of P_{n} are give by hyperlogarithms (Aomoto).
- Infinitesimal pure braid relations describe the nilpotent completion of the pure braid group P_{n} over \mathbf{Q} (Malcev algebra).

Riemann-Hilbert correspondence

Theorem

For any linear representation $\rho: P_{n} \rightarrow G L_{m}(\mathbf{C})$ sufficiently close to identity, there exists a flat connection

$$
\omega=\sum_{i<j} A_{i j} d \log \left(z_{i}-z_{j}\right)
$$

with $A_{i j} \in M_{m}(\mathbf{C})$ such that the monodromy of the connection ω is given by ρ.

Poincaré's paper

SUR

LES GROUPES DES ÉQuations linéaires ${ }^{(1)}$

Acta mathematica, 1. 4. p. 201-311; 188 i.

Abstract

Dans trois Mémoires [Theiorie des groupes fuchsiens (${ }^{2}$) (Acta mathematica, I. I, p. 1-6a); Ménoire sur les fonctions fuchsiennes (${ }^{\text {² }}$ (Acta, 1. 1, p. 193-294); Mèmoire sur les groupes Kleineiens (${ }^{4}$) (Acta, t. 3, p. 49-9a)] j'ai êtudié les groupes discontinus formés par des substitutions linéaires et les fonctions uniformes qui ne sont pas altérées par les substitutions de ces groupes. Avant de montrer comment ces fonctions et d'autres analogues donnent les intégrales des équations linéaires à coefficients algébriques, il ext nécessaire de résoudre deux problèmes importants :

1* Etant donnće une équation linéaire à coefficients algebriques, determiner son groupe. x^{0} Etant donnée une équation linéaire du second ordre dépendant de certains paramètres arbitraires, disposer de ces paramètres de manière que le groupe de l'equation soit fuchsien.

Soit maintenant $w_{i m n}^{k}$ le coefficient de $\alpha^{m} \beta^{n}$ dans le développement de w_{i}^{k}. Ce coefficient s'exprimera pour la même raison par des quadratures, et il en sera de même des coefficients qui entrent dans le développement des invariants, car ce sont des polynomes entiers par rapport aux $\boldsymbol{w}_{i m n}^{k}$. On peut d'ailleurs pousser plus loin l'étude du développement de la fonction v_{i}. A cet effet posons

$$
\begin{aligned}
& \Lambda\left(x, \alpha_{1}\right)=\int_{6}^{x} \frac{d x}{x-\alpha_{1}} \\
& \Lambda\left(x, \alpha_{1}, \alpha_{2}\right)=\int_{0}^{x} \frac{d x \Lambda\left(x, \alpha_{1}\right)}{x-\alpha_{2}} \\
& \left.\ldots \ldots \ldots \ldots, \ldots \ldots, \ldots \ldots, \alpha_{q-1}, \alpha_{17}\right)=\int_{0}^{x} \frac{d x \Lambda\left(x, \alpha_{1}, \alpha_{7}, \ldots, \alpha_{q-1}\right)}{x-\alpha_{q}} \\
& \Lambda\left(x, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{1}\right.
\end{aligned}
$$

Remarquons maintenant quoon peut mettre l'équation (1) sous la forme de p équations simultanées du premier ordre. Si les intégrales sont régulières dans le voisinage de chacun des points singuliers, nous pourrons introduire p variables simultanées $u_{1}=\mathfrak{r}, u_{2}, \ldots, u_{p}$ et remplacer l'équation (1) par les p équations símultanées

$$
\frac{d u_{i}}{d x}=\Sigma \varphi_{i k} u_{\hbar} .
$$

Les ẹik seront des fonctions rationnelles de la forme suivante :

$$
\begin{equation*}
\varphi_{i k}=\sum \frac{\mathrm{A}_{i . k \lambda}}{x-a_{\lambda}} \tag{2}
\end{equation*}
$$

Aomoto's paper

Fonctions hyperlogarithmiques et groupes de monodromie unipotents

Par Kazuhiko Аомото

Dans cet article le problème de Riemann-Hilbert dans le sens résireint est formulé dans l'espace projectif $P^{l}(\boldsymbol{C})$ en utilisant les équations de Schlesinger et Lappo-Danilevski et résolu moyennant "fonctions hyperlogarithmiques" dans le cas de monodromie unipotente (Théorème 1). Ce résultat est analogue à celui de K. T. Chen [5] mais ici plus précis. Soit S un ensemble analytique de codimension une dans $P^{l}(\boldsymbol{C})$ et soit $\pi_{1}\left(P^{l}(\boldsymbol{C})-S\right)$ le groupe fondamental de $P^{l}(\boldsymbol{C})-S$ par rapport à un point base x_{0}. On montrera ensuite que l'anneau de groupe

$$
\lim _{s=\infty} C\left[\pi_{1}\left(P^{l}(\boldsymbol{C})-S\right)\right] / \mathcal{F}_{s}
$$

 mie $\mathfrak{F S}$ où \mathfrak{J}_{s} désigne le s-ième puissance de l'idéal d'augmentation \mathfrak{J} de l'anneau de groupe $C\left[\pi_{1}\left(P^{l}(C)-S\right)\right]$ (Théorème 2). En particulier on aura la dualité de $\hat{\mathbb{E}}(\mathbb{C})$ et la cohomologie à 0 dimension des intégrales itérées de K. T. Chen (voir aussi [4]).

K. T. Chen's iterated integals of differential forms

$\omega_{1}, \cdots, \omega_{k}$: differential forms on M
ΩM : loop space M

$$
\begin{gathered}
\Delta_{k}=\left\{\left(t_{1}, \cdots, t_{k}\right) \in \mathbf{R}^{k} ; 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\} \\
\varphi: \Delta_{k} \times \Omega M \rightarrow \underbrace{M \times \cdots \times M}_{k}
\end{gathered}
$$

defined by $\varphi\left(t_{1}, \cdots, t_{k} ; \gamma\right)=\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{k}\right)\right)$

K. T. Chen's iterated integals of differential forms

$\omega_{1}, \cdots, \omega_{k}$: differential forms on M
ΩM : loop space M

$$
\begin{gathered}
\Delta_{k}=\left\{\left(t_{1}, \cdots, t_{k}\right) \in \mathbf{R}^{k} ; 0 \leq t_{1} \leq \cdots \leq t_{k} \leq 1\right\} \\
\varphi: \Delta_{k} \times \Omega M \rightarrow \underbrace{M \times \cdots \times M}_{k}
\end{gathered}
$$

defined by $\varphi\left(t_{1}, \cdots, t_{k} ; \gamma\right)=\left(\gamma\left(t_{1}\right), \cdots, \gamma\left(t_{k}\right)\right)$
The iterated integral of $\omega_{1}, \cdots, \omega_{k}$ is defined as

$$
\int \omega_{1} \cdots \omega_{k}=\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

Iterated integrals as differential forms on loop space

The expression

$$
\int_{\Delta_{k}} \varphi^{*}\left(\omega_{1} \times \cdots \times \omega_{k}\right)
$$

is the integration along fiber with respect to the projection $p: \Delta_{k} \times \Omega M \rightarrow \Omega M$.
differential form on the loop space ΩM with degree $p_{1}+\cdots+p_{k}-k$.

Differentiation on loop spaces

As a differential form on the loop space $d \int \omega_{1} \cdots \omega_{k}$ is

$$
\begin{aligned}
& \sum_{j=1}^{k}(-1)^{\nu_{j-1}+1} \int \omega_{1} \cdots \omega_{j-1} d \omega_{j} \omega_{j+1} \cdots \omega_{k} \\
+ & \sum_{j=1}^{k-1}(-1)^{\nu_{j}+1} \int \omega_{1} \cdots \omega_{j-1}\left(\omega_{j} \wedge \omega_{j+1}\right) \omega_{j+2} \cdots \omega_{k}
\end{aligned}
$$

where $\nu_{j}=\operatorname{deg} \omega_{1}+\cdots+\operatorname{deg} \omega_{j}-j$.

Bar complex for Orlik-Solomon algebra

$\mathcal{A}=\left\{H_{1}, \cdots, H_{m}\right\}:$ arrangement of affine hyperplanes in the complex vector space \mathbf{C}^{n} defined by linear forms $f_{j}, 1 \leq j \leq m$. Consider the complement

$$
M(\mathcal{A})=\mathbf{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H
$$

A be the Orlik-Solomon algebra generated by the logarithmic forms $\omega_{j}=d \log f_{j}, 1 \leq j \leq m$.

Bar complex for Orlik-Solomon algebra

$\mathcal{A}=\left\{H_{1}, \cdots, H_{m}\right\}:$ arrangement of affine hyperplanes in the complex vector space \mathbf{C}^{n} defined by linear forms $f_{j}, 1 \leq j \leq m$. Consider the complement

$$
M(\mathcal{A})=\mathbf{C}^{n} \backslash \bigcup_{H \in \mathcal{A}} H
$$

A be the Orlik-Solomon algebra generated by the logarithmic forms $\omega_{j}=d \log f_{j}, 1 \leq j \leq m$. .
The reduced bar complex of the Orlik-Solomon algebra is the tensor algebra defined by

$$
\bar{B}^{*}(A)=\bigoplus_{k \geq 0}\left(\bigotimes^{k} \bar{A}\right)
$$

(\bar{A} : degree shifted by 1.) There is a natural filtration defined by

$$
\mathcal{F}^{-k}\left(\bar{B}^{*}(A)\right)=\bigoplus_{\ell \leq k}\left(\bigotimes^{\ell} \bar{A}\right)
$$

Bar complex and fundamental group

Theorem

For the reduced bar complex for the Orlik-Solomon algebra there is an isomorphism

$$
\mathcal{F}^{-k} H^{0}\left(\bar{B}^{*}(A)\right) \cong \operatorname{Hom}\left(\mathbf{Z} \pi_{1}\left(M, \mathbf{x}_{0}\right) / J^{k+1}, \mathbf{C}\right)
$$

Bar complex and fundamental group

Theorem

For the reduced bar complex for the Orlik-Solomon algebra there is an isomorphism

$$
\mathcal{F}^{-k} H^{0}\left(\bar{B}^{*}(A)\right) \cong \operatorname{Hom}\left(\mathbf{Z} \pi_{1}\left(M, \mathbf{x}_{0}\right) / J^{k+1}, \mathbf{C}\right)
$$

In the case $M=\mathcal{F}_{n}(\mathbf{C})$ the above space is isomorphic to the space order k invariants for the pure braid group P_{n} (a prototype for Kontsevich integrals).

Holonomy Lie algebra

Define the holonomy Lie algebra as a quotient of free Lie algebra by

$$
\mathfrak{h}(M)=\mathcal{L}\left(X_{1}, \cdots, X_{m}\right) / \mathfrak{a}
$$

where \mathfrak{a} is an ideal generate by

$$
\left[X_{j_{p}}, X_{j_{1}}+\cdots+X_{j_{k}}\right], \quad 1 \leq p<k
$$

for maximal family of hyperplanes $\left\{H_{j_{1}}, \cdots, H_{j_{k}}\right\}$ such that

$$
\operatorname{codim}_{\mathbf{C}}\left(H_{j_{1}} \cap \cdots \cap H_{j_{k}}\right)=2
$$

Universal holonomy map

We put

$$
\omega=\sum_{j=1}^{m} \omega_{j} X_{j} .
$$

Then there is a universal holonomy map

$$
\Theta_{0}: \pi_{1}\left(M, \mathbf{x}_{0}\right) \longrightarrow \mathbf{C}\left\langle\left\langle X_{1}, \cdots, X_{m}\right\rangle\right\rangle / \mathfrak{a}
$$

defined by

$$
\Theta_{0}(\gamma)=1+\sum_{k=1}^{\infty} \int_{\gamma} \underbrace{\omega \cdots \omega}_{k}
$$

Universal holonomy map

We put

$$
\omega=\sum_{j=1}^{m} \omega_{j} X_{j} .
$$

Then there is a universal holonomy map

$$
\Theta_{0}: \pi_{1}\left(M, \mathbf{x}_{0}\right) \longrightarrow \mathbf{C}\left\langle\left\langle X_{1}, \cdots, X_{m}\right\rangle\right\rangle / \mathfrak{a}
$$

defined by

$$
\Theta_{0}(\gamma)=1+\sum_{k=1}^{\infty} \int_{\gamma} \underbrace{\omega \cdots \omega}_{k}
$$

This induces an isomorphism

$$
\mathbf{C} \widehat{\pi}_{1}\left(M, \mathbf{x}_{0}\right) \cong \mathbf{C}\left\langle\left\langle X_{1}, \cdots, X_{m}\right\rangle\right\rangle / \mathfrak{a}
$$

By taking the primitive part we have an isomorphism between nilpotent completion of the fundamental group and the holonomy Lie algebra over \mathbf{Q}.

Riemann-Hilbert problem for unipotent monodromy

The following statement was first obtained by Aomoto.

Theorem

Let

$$
\rho: \pi_{1}\left(M, \mathbf{x}_{0}\right) \longrightarrow \mathrm{GL}(V)
$$

be a unipotent representation of the fundamental group of the complement of hyperplane arrangement. Then there exists an integrable connection

$$
\omega=\sum_{j=1}^{\ell} A_{j} \omega_{j}, \quad A_{j} \in \operatorname{End}\left(V_{j}\right)
$$

such that each A_{j} is nilpotent and the monodromy representation of ω coincides with ρ.

For a unipotent representation $\rho: \pi_{1}\left(M, \mathbf{x}_{0}\right) \longrightarrow \mathrm{GL}(V)$ there exists k such that ρ induces a homomorphism

$$
\widetilde{\rho}: \mathbf{C} \pi_{1}\left(M, \mathbf{x}_{0}\right) / J^{k+1} \longrightarrow \operatorname{End}(V)
$$

The universal holonomy homomorphism of the connection $\sum_{j=1}^{\ell} \omega_{j} X_{j}$ induces an isomorphism

$$
\theta: \mathbf{C} \pi_{1}\left(M, \mathbf{x}_{0}\right) / J^{k+1} \cong \mathbf{C}\left\langle\left\langle X_{1}, \cdots, X_{\ell}\right\rangle\right\rangle /\left(\mathfrak{a}+\widehat{J}^{k+1}\right)
$$

where \widehat{J} denotes the completed augmentation ideal. Define a homomorphism

$$
\alpha: \mathbf{C}\left\langle\left\langle X_{1}, \cdots, X_{\ell}\right\rangle\right\rangle /\left(\mathfrak{a}+\widehat{J}^{k+1}\right) \longrightarrow \operatorname{End}(V)
$$

by $\alpha=\widetilde{\rho} \circ \theta^{-1}$ and put $A_{j}=\alpha\left(X_{j}\right), 1 \leq j \leq \ell$.

KZ connections

\mathfrak{g} : complex semi-simple Lie algebra.
$\left\{I_{\mu}\right\}$: orthonormal basis of \mathfrak{g} w.r.t. Killing form.
$\Omega=\sum_{\mu} I_{\mu} \otimes I_{\mu}$
$r_{i}: \mathfrak{g} \rightarrow \operatorname{End}\left(V_{i}\right), 1 \leq i \leq n$ representations.

KZ connections

\mathfrak{g} : complex semi-simple Lie algebra.
$\left\{I_{\mu}\right\}$: orthonormal basis of \mathfrak{g} w.r.t. Killing form.
$\Omega=\sum_{\mu} I_{\mu} \otimes I_{\mu}$
$r_{i}: \mathfrak{g} \rightarrow \operatorname{End}\left(V_{i}\right), 1 \leq i \leq n$ representations.
$\Omega_{i j}$: the action of Ω on the i-th and j-th components of $V_{1} \otimes \cdots \otimes V_{n}$.

$$
\omega=\frac{1}{\kappa} \sum_{i<j} \Omega_{i j} d \log \left(z_{i}-z_{j}\right), \quad \kappa \in \mathbf{C} \backslash\{0\}
$$

ω defines a flat connection for a trivial vector bundle over the configuration space $X_{n}=\mathcal{F}_{n}(\mathbf{C})$ with fiber $V_{1} \otimes \cdots \otimes V_{n}$ since we have

$$
\omega \wedge \omega=0
$$

Monodromy representations of braid groups

As the holonomy we have representations

$$
\theta_{\kappa}: P_{n} \rightarrow G L\left(V_{1} \otimes \cdots \otimes V_{n}\right)
$$

In particular, if $V_{1}=\cdots=V_{n}=V$, we have representations of braid groups

$$
\theta_{\kappa}: B_{n} \rightarrow G L\left(V^{\otimes n}\right)
$$

Monodromy representations of braid groups

As the holonomy we have representations

$$
\theta_{\kappa}: P_{n} \rightarrow G L\left(V_{1} \otimes \cdots \otimes V_{n}\right)
$$

In particular, if $V_{1}=\cdots=V_{n}=V$, we have representations of braid groups

$$
\theta_{\kappa}: B_{n} \rightarrow G L\left(V^{\otimes n}\right)
$$

We shall express the horizontal sections of the KZ connection : $d \varphi=\omega \varphi$ in terms of homology with coefficients in local system homology on the fiber of the projection map

$$
\pi: X_{m+n} \longrightarrow X_{n}
$$

$X_{n, m}$: fiber of $\pi, \quad Y_{n, m}=X_{n, m} / \mathfrak{S}_{m}$

Relative configuration spaces

Fix $P=\{(1,0), \cdots,(n, 0)\} \subset D$, where D is a 2 dimensional disc. $\Sigma=D \backslash P$

$$
\mathcal{F}_{n, m}(D)=\mathcal{F}_{m}(\Sigma), \quad \mathcal{C}_{n, m}(D)=\mathcal{F}_{m}(\Sigma) / \mathfrak{S}_{m}
$$

Homology of relative configuration spaces

$$
H_{1}\left(\mathcal{C}_{n, m}(D) ; \mathbf{Z}\right) \cong \mathbf{Z}^{\oplus n} \oplus \mathbf{Z}
$$

Abelian coverings

Consider the homomorphism

$$
\alpha: H_{1}\left(\mathcal{C}_{n, m}(D) ; \mathbf{Z}\right) \longrightarrow \mathbf{Z} \oplus \mathbf{Z}
$$

defined by $\alpha\left(x_{1}, \cdots, x_{n}, y\right)=\left(x_{1}+\cdots+x_{n}, y\right)$.

Abelian coverings

Consider the homomorphism

$$
\alpha: H_{1}\left(\mathcal{C}_{n, m}(D) ; \mathbf{Z}\right) \longrightarrow \mathbf{Z} \oplus \mathbf{Z}
$$

defined by $\alpha\left(x_{1}, \cdots, x_{n}, y\right)=\left(x_{1}+\cdots+x_{n}, y\right)$.
Composing with the abelianization map
$\pi_{1}\left(\mathcal{C}_{n, m}(D), x_{0}\right) \rightarrow H_{1}\left(\mathcal{C}_{n, m}(D) ; \mathbf{Z}\right)$, we obtain the homomorphism

$$
\beta: \pi_{1}\left(\mathcal{C}_{n, m}(D), x_{0}\right) \longrightarrow \mathbf{Z} \oplus \mathbf{Z}
$$

$\pi: \widetilde{\mathcal{C}}_{n, m}(D) \rightarrow \mathcal{C}_{n, m}(D):$ the covering corresponding to $\operatorname{Ker} \beta$.

Homological representations

$H_{*}\left(\widetilde{\mathcal{C}}_{n, m}(D) ; \mathbf{Z}\right)$ considered to be a $\mathbf{Z}[\mathbf{Z} \oplus \mathbf{Z}]$-module by deck transformations.

Express $\mathbf{Z}[\mathbf{Z} \oplus \mathbf{Z}]$ as the ring of Laurent polynomials $R=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$.

$$
H_{n, m}=H_{m}\left(\widetilde{\mathcal{C}}_{n, m}(D) ; \mathbf{Z}\right)
$$

Homological representations

$H_{*}\left(\widetilde{\mathcal{C}}_{n, m}(D) ; \mathbf{Z}\right)$ considered to be a $\mathbf{Z}[\mathbf{Z} \oplus \mathbf{Z}]$-module by deck transformations.

Express $\mathbf{Z}[\mathbf{Z} \oplus \mathbf{Z}]$ as the ring of Laurent polynomials $R=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$.

$$
H_{n, m}=H_{m}\left(\widetilde{\mathcal{C}}_{n, m}(D) ; \mathbf{Z}\right)
$$

$H_{n, m}$ is a free R-module of rank

$$
d_{n, m}=\binom{m+n-2}{m}
$$

$\rho_{n, m}: B_{n} \longrightarrow \operatorname{Aut}_{R} H_{n, m}:$ homological representations $(m>1)$ extensively studied by Bigelow and Krammer ; they are faithful representations.

Representations of $s l_{2}(\mathbf{C})$

$\mathfrak{g}=s l_{2}(\mathbf{C})$ has a basis

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

$\lambda \in \mathbf{C}$
M_{λ} : Verma module of $s l_{2}(\mathbf{C})$ with highest weight vector v such that

$$
H v=\lambda v, E v=0
$$

M_{λ} is spanned by

$$
v, F v, F^{2} v, \cdots
$$

Space of null vectors

$\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbf{C}^{n}, \quad|\Lambda|=\lambda_{1}+\cdots+\lambda_{n}$
Consider the tensor product $M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}}$.

Space of null vectors

$\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbf{C}^{n}, \quad|\Lambda|=\lambda_{1}+\cdots+\lambda_{n}$
Consider the tensor product $M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}}$.
m : non-negative integer

$$
W[|\Lambda|-2 m]=\left\{x \in M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}} ; H x=(|\Lambda|-2 m) x\right\}
$$

Space of null vectors

$\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbf{C}^{n}, \quad|\Lambda|=\lambda_{1}+\cdots+\lambda_{n}$
Consider the tensor product $M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}}$.
m : non-negative integer

$$
W[|\Lambda|-2 m]=\left\{x \in M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}} ; H x=(|\Lambda|-2 m) x\right\}
$$

The space of null vectors is defined by

$$
N[|\Lambda|-2 m]=\{x \in W[|\Lambda|-2 m] ; E x=0\}
$$

Space of null vectors

$\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \mathbf{C}^{n}, \quad|\Lambda|=\lambda_{1}+\cdots+\lambda_{n}$
Consider the tensor product $M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}}$.
m : non-negative integer

$$
W[|\Lambda|-2 m]=\left\{x \in M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}} ; H x=(|\Lambda|-2 m) x\right\}
$$

The space of null vectors is defined by

$$
N[|\Lambda|-2 m]=\{x \in W[|\Lambda|-2 m] ; E x=0\} .
$$

The KZ connection ω commutes with the diagonal action of \mathfrak{g} on $M_{\lambda_{1}} \otimes \cdots \otimes M_{\lambda_{n}}$, hence it acts on the space of null vectors $N[|\Lambda|-2 m]$.
The monodromy of KZ connection

$$
\theta_{\kappa, \lambda}: P_{n} \longrightarrow \operatorname{Aut} N[|\Lambda|-2 m]
$$

Comparison theorem

We fix a complex number λ and consider the case
$\lambda_{1}=\cdots=\lambda_{n}=\lambda$. We have

$$
\theta_{\kappa, \lambda}: B_{n} \longrightarrow \operatorname{Aut} N[n \lambda-2 m] .
$$

Theorem

There exists an open dense subset U in $\left(\mathbf{C}^{*}\right)^{2}$ such that for $(\lambda, \kappa) \in U$ the homological representation $\rho_{n, m}$ with the specialization

$$
q=e^{-2 \pi \sqrt{-1} \lambda / \kappa}, \quad t=e^{2 \pi \sqrt{-1} / \kappa}
$$

is equivalent to the monodromy representation of the $K Z$ connection $\theta_{\lambda, \kappa}$ with values in the space of null vectors

$$
N[n \lambda-2 m] \subset M_{\lambda}^{\otimes n}
$$

Local system over the configuration space

$\pi: X_{n+m} \rightarrow X_{n}:$ projection defined by $\left(z_{1}, \cdots, z_{n}, t_{1}, \cdots, t_{m}\right) \mapsto\left(z_{1}, \cdots, z_{n}\right)$. $X_{n, m}$: fiber of π.

$$
\begin{aligned}
\Phi= & \prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)^{\frac{\lambda_{i} \lambda_{j}}{\kappa}} \prod_{1 \leq i \leq m, 1 \leq \ell \leq n}\left(t_{i}-z_{\ell}\right)^{-\frac{\lambda_{\ell}}{\kappa}} \\
& \times \prod_{1 \leq i<j \leq m}\left(t_{i}-t_{j}\right)^{\frac{2}{\kappa}}
\end{aligned}
$$

(multi-valued function on X_{n+m}).
Consider the local system \mathcal{L} associated with Φ.

Solutions to KZ equation

Notation:
$W[|\Lambda|-2 m]$ has a basis

$$
F^{J} v=F^{j_{1}} v_{\lambda_{1}} \otimes \cdots \otimes F^{j_{n}} v_{\lambda_{n}}
$$

with $|J|=j_{1}+\cdots+j_{n}=m$ and $v_{\lambda_{j}} \in \mathcal{M}_{\lambda_{j}}$ the highest weight vector.

Solutions to KZ equation

Notation:
$W[|\Lambda|-2 m]$ has a basis

$$
F^{J} v=F^{j_{1}} v_{\lambda_{1}} \otimes \cdots \otimes F^{j_{n}} v_{\lambda_{n}}
$$

with $|J|=j_{1}+\cdots+j_{n}=m$ and $v_{\lambda_{j}} \in \mathcal{M}_{\lambda_{j}}$ the highest weight vector.

Theorem (Schechtman-Varchenko, Date-Jimbo-Matsuo-Miwa, ...)

The hypergeometric integral

$$
\sum_{|J|=m}\left(\int_{\Delta} \Phi R_{J}(z, t) d t_{1} \wedge \cdots \wedge d t_{m}\right) F^{J} v
$$

lies in $N[|\Lambda|-2 m]$ and is a solution of the $K Z$ equation, where Δ is a cycle in $H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right)$.

Homology basis

For generic λ, κ,

$$
H_{j}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong 0, \quad j \neq m
$$

and we have an isomorphism

$$
H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}^{*}\right)
$$

(homology with locally finite chains)

Homology basis

For generic λ, κ,

$$
H_{j}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong 0, \quad j \neq m
$$

and we have an isomorphism

$$
H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \cong H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}^{*}\right)
$$

(homology with locally finite chains)
The above homology is spanned by bounded chambers.

bounded chambers: basis of twisted homology
(the case $n=3, m=2$).

Homology basis (continued)

For non-negative integers m_{1}, \cdots, m_{n-1} satisfying

$$
m_{1}+\cdots+m_{n-1}=m
$$

we define a bounded chamber $\Delta_{m_{1}, \cdots, m_{n-1}}$ in \mathbf{R}^{m} by

$$
\begin{aligned}
& 1<t_{1}<\cdots<t_{m_{1}}<2 \\
& 2<t_{m_{1}+1}<\cdots<t_{m_{1}+m_{2}}<3 \\
& \cdots \\
& n-1<t_{m_{1}+\cdots+m_{n-2}+1}+\cdots+t_{m}<n .
\end{aligned}
$$

Put $M=\left(m_{1}, \cdots, m_{n-1}\right)$ and write Δ_{M} for $\Delta_{m_{1}, \cdots, m_{n-1}}$.
The bounded chamber Δ_{M} defines a homology class
$\left[\Delta_{M}\right] \in H_{m}^{l f}\left(X_{n, m}, \mathcal{L}\right)$ and its image $\bar{\Delta}_{M}=\pi_{n, m}\left(\Delta_{M}\right)$ defines a homology class $\left[\bar{\Delta}_{M}\right] \in H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}\right)$.
Under a genericity condition $\left[\bar{\Delta}_{M}\right]$ form a basis of $H_{m}^{l f}\left(Y_{n, m}, \mathcal{L}\right)$.

Outline of proof of comparison theorem

Now the fundamental solutions of the KZ equation with values in $N[n \lambda-2 m]$ is give by the matrix of the form

$$
\left(\int_{\bar{\Delta}_{M}} \omega_{M^{\prime}}\right)_{M, M^{\prime}}
$$

with $M=\left(m_{1}, \cdots, m_{n-1}\right)$ and $M^{\prime}=\left(m_{1}^{\prime}, \cdots, m_{n-1}^{\prime}\right)$ such that $m_{1}+\cdots+m_{n-1}=m$ and $m_{1}^{\prime}+\cdots+m_{n-1}^{\prime}=m$. with $\omega_{M^{\prime}}$ a multivalued m-form on $X_{n, m}$.
The column vectors of the above matrix form a basis of the solutions of the KZ equation with values in $N[n \lambda-2 m]$. Thus the representation $r_{n, m}: B_{n} \rightarrow$ Aut $H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right)$ is equivalent to the action of B_{n} on the solutions of the KZ equation with values in $N[n \lambda-2 m]$.

Quantum symmetry

Theorem

There is an isomorphism

$$
N_{h}[\lambda n-2 m] \cong H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right)
$$

which is equivariant with respect to the action of the braid group B_{n}, where $N_{h}[\lambda n-2 m]$ is the space of null vectors for the corresponding $U_{h}(\mathfrak{g})$-module with $h=1 / \kappa$.

Quantum symmetry for twisted chains

There is the following correspondence:
twisted multi-chains \Longleftrightarrow weight vectors $F^{j_{1}} v_{1} \otimes \cdots \otimes F^{j_{n}} v_{n}$ twisted boundary operator \Longleftrightarrow the action of $E \in U_{h}(\mathfrak{g})$

$$
H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \Longleftrightarrow N_{h}[\lambda n-2 m]
$$

twisted multi-chains

Wess-Zumino-Witten model

Conformal Field Theory

$\left(\Sigma, p_{1}, \cdots, p_{n}\right)$: Riemann surface with marked points $\lambda_{1}, \cdots, \lambda_{n}$: level K highest weights

Wess-Zumino-Witten model

Conformal Field Theory

$\left(\Sigma, p_{1}, \cdots, p_{n}\right)$: Riemann surface with marked points
$\lambda_{1}, \cdots, \lambda_{n}$: level K highest weights
$\mathcal{H}_{\Sigma}(p, \lambda)$: space of conformal blocks
vector space spanned by holomorphic parts of the WZW partition function.

Wess-Zumino-Witten model

Conformal Field Theory

$\left(\Sigma, p_{1}, \cdots, p_{n}\right)$: Riemann surface with marked points
$\lambda_{1}, \cdots, \lambda_{n}$: level K highest weights
$\mathcal{H}_{\Sigma}(p, \lambda)$: space of conformal blocks
vector space spanned by holomorphic parts of the WZW partition function.
Geometry : vector bundle over the moduli space of Riemann surfaces with n marked points with projectively flat connection.

Conformal field theory
$\left(\Sigma, p_{1}, \cdots, p_{n}\right)$: Riemann surface with marked points
\mapsto
\mathcal{H}_{Σ} : complex vector space - the space of conformal blocks

The mapping class group $\Gamma_{g, n}$ acts on \mathcal{H}_{Σ} :
Quantum representations

Representations of an affine Lie algebra

$\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbf{C}((\xi)) \oplus \mathbf{C} c$: affine Lie algebra with commutation relation

$$
[X \otimes f, Y \otimes g]=[X, Y] \otimes f g+\operatorname{Res}_{\xi=0} d f g\langle X, Y\rangle c
$$

K a positive integer (level)
$\widehat{\mathfrak{g}}=\mathcal{N}_{+} \oplus \mathcal{N}_{0} \oplus \mathcal{N}_{-}$
c acts as $K \cdot$ id.

Representations of an affine Lie algebra

$\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbf{C}((\xi)) \oplus \mathbf{C} c$: affine Lie algebra with commutation relation

$$
[X \otimes f, Y \otimes g]=[X, Y] \otimes f g+\operatorname{Res}_{\xi=0} d f g\langle X, Y\rangle c
$$

K a positive integer (level)
$\widehat{\mathfrak{g}}=\mathcal{N}_{+} \oplus \mathcal{N}_{0} \oplus \mathcal{N}_{-}$
c acts as $K \cdot$ id.
λ : an integer with $0 \leq \lambda \leq K$
\mathcal{H}_{λ} : irreducible quotient of \mathcal{M}_{λ} called the integrable highest weight modules.

Geometric background

$G:$ the Lie group $S L(2, \mathbf{C})$
$L G=\operatorname{Map}\left(S^{1}, G\right)$: loop group
$\mathcal{L} \longrightarrow L G:$ complex line bundle with $c_{1}(\mathcal{L})=K$

Geometric background

G : the Lie group $S L(2, \mathbf{C})$
$L G=\operatorname{Map}\left(S^{1}, G\right)$: loop group
$\mathcal{L} \longrightarrow L G:$ complex line bundle with $c_{1}(\mathcal{L})=K$
The affine Lie algebra $\widehat{\mathfrak{g}}$ acts on the space of sections $\Gamma(\mathcal{L})$.
The integrable highest weight modules $\mathcal{H}_{\lambda}, 0 \leq \lambda \leq K$, appears as sub representations.
As the infinitesimal version of the action of the central extension of $\operatorname{Diff}\left(S^{1}\right)$ the Virasoro Lie algebra acts on \mathcal{H}_{λ}.

The space of conformal blocks - definition -

Suppose $0 \leq \lambda_{1}, \cdots, \lambda_{n} \leq K$.
$p_{1}, \cdots, p_{n} \in \Sigma$
Assign highest weights $\lambda_{1}, \cdots, \lambda_{n}$ to p_{1}, \cdots, p_{n}.
\mathcal{H}_{j} : irreducible representations of $\widehat{\mathfrak{g}}$ with highest weight λ_{j} at level K.

Suppose $0 \leq \lambda_{1}, \cdots, \lambda_{n} \leq K$.
$p_{1}, \cdots, p_{n} \in \Sigma$
Assign highest weights $\lambda_{1}, \cdots, \lambda_{n}$ to p_{1}, \cdots, p_{n}.
\mathcal{H}_{j} : irreducible representations of $\widehat{\mathfrak{g}}$ with highest weight λ_{j} at level K.
\mathcal{M}_{p} denotes the set of meromorphic functions on Σ with poles at most at p_{1}, \cdots, p_{n}.

Suppose $0 \leq \lambda_{1}, \cdots, \lambda_{n} \leq K$.
$p_{1}, \cdots, p_{n} \in \Sigma$
Assign highest weights $\lambda_{1}, \cdots, \lambda_{n}$ to p_{1}, \cdots, p_{n}.
\mathcal{H}_{j} : irreducible representations of $\widehat{\mathfrak{g}}$ with highest weight λ_{j} at level K.
\mathcal{M}_{p} denotes the set of meromorphic functions on Σ with poles at most at p_{1}, \cdots, p_{n}.

The space of conformal blocks is defined as

$$
\mathcal{H}_{\Sigma}(p, \lambda)=\mathcal{H}_{\lambda_{1}} \otimes \cdots \otimes \mathcal{H}_{\lambda_{n}} /\left(\mathfrak{g} \otimes \mathcal{M}_{p}\right)
$$

where $\mathfrak{g} \otimes \mathcal{M}_{p}$ acts diagonally via Laurent expansions at p_{1}, \cdots, p_{n}.

Conformal block bundle

Σ_{g} : Riemann surface of genus g
p_{1}, \cdots, p_{n} : marked points on Σ_{g}
Fix the highest weights $\lambda_{1}, \cdots, \lambda_{n}$.

Conformal block bundle

Σ_{g} : Riemann surface of genus g
p_{1}, \cdots, p_{n} : marked points on Σ_{g}
Fix the highest weights $\lambda_{1}, \cdots, \lambda_{n}$.
The union

$$
\bigcup_{p_{1}, \cdots, p_{n}} \mathcal{H}_{\Sigma_{g}}(p, \lambda)
$$

for any complex structures on Σ_{g} forms a vector bundle on $\mathcal{M}_{g, n}$, the moduli space of Riemann surfaces of genus g with n marked points.

Conformal block bundle

Σ_{g} : Riemann surface of genus g
p_{1}, \cdots, p_{n} : marked points on Σ_{g}
Fix the highest weights $\lambda_{1}, \cdots, \lambda_{n}$.
The union

$$
\bigcup_{p_{1}, \cdots, p_{n}} \mathcal{H}_{\Sigma_{g}}(p, \lambda)
$$

for any complex structures on Σ_{g} forms a vector bundle on $\mathcal{M}_{g, n}$, the moduli space of Riemann surfaces of genus g with n marked points.

This vector bundle is called the conformal block bundle and is equipped with a natural projectively flat connection. The holonomy representation of the mapping class group is called the quantum representation.

genus 0 case

The flat connection is the KZ connection.
\mathcal{L} : rank 1 local system over $Y_{n, m}$ associated with Φ
$m=\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n}-\lambda_{n+1}\right)$
$p=\left(p_{1}, \cdots, p_{n}, \infty\right)$
There is a surjective period map

$$
H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right) \longrightarrow \mathcal{H}_{\mathbf{C} P^{1}}^{*}(p, \lambda)
$$

The above period map is not injective in general, which is related to fusion rules, resonance at infinity etc.

Gauss-Manin connection

$\mathcal{H}_{n, m}$: local system over X_{n} with fiber $H_{m}\left(Y_{n, m}, \mathcal{L}^{*}\right)$

Theorem

There is surjective bundle map to the conformal block bundle

$$
\mathcal{H}_{n, m} \longrightarrow \bigcup \mathcal{H}_{\mathbf{C} P^{1}}^{*}(p, \lambda)
$$

via hypergeometric integrals. The $K Z$ connection is interpreted as Gauss-Manin connection.
cf. Looijenga's work

Quantum representations of mapping class groups

Σ_{g} : Riemann surface of genus g
$\Gamma_{g}=$ Diff $^{+}\left(\Sigma_{g}\right) /$ isotopy : mapping class group $\mathcal{H}_{\Sigma_{g}}$: the space of conformal blocks at level K

Quantum representations of mapping class groups

Σ_{g} : Riemann surface of genus g
$\Gamma_{g}=$ Diff $^{+}\left(\Sigma_{g}\right) /$ isotopy : mapping class group $\mathcal{H}_{\Sigma_{g}}$: the space of conformal blocks at level K

There is a projectively linear action of Γ_{g} on the space of conformal blocks $\mathcal{H}_{\Sigma_{g}}$, which is called the quantum representation of the mapping class group.

Properties of quantum representations

A basis of the space of conformal block is described by colored trivalent graphs which are dual to pants decomposition of a surface. There is a combinatorial description of the action of the mapping class group.

The Dehn twist τ_{t} along t acts as a diagonal matrix. The representation behaves nicely with respect to a stabilization for Heegaard splitting.

Images of quantum representations

The quantum representations are projectively unitary.

$$
\rho_{K}: \Gamma_{g} \longrightarrow P U\left(\mathcal{H}_{\Sigma_{g}}\right)
$$

Images of quantum representations

The quantum representations are projectively unitary.

$$
\rho_{K}: \Gamma_{g} \longrightarrow P U\left(\mathcal{H}_{\Sigma_{g}}\right)
$$

The k-th Johnson subgroup acts trivially on the k-th lower central series of the fundamental group $\pi_{1}\left(\Sigma_{g}\right)$.

Images of quantum representations

The quantum representations are projectively unitary.

$$
\rho_{K}: \Gamma_{g} \longrightarrow P U\left(\mathcal{H}_{\Sigma_{g}}\right)
$$

The k-th Johnson subgroup acts trivially on the k-th lower central series of the fundamental group $\pi_{1}\left(\Sigma_{g}\right)$.

The image of the quantum representation is "big" in the following sense.

Theorem (Funar-K.)

Suppose $g \geq 4$ and K sufficiently large. Then the image of any Johnson subgroup by ρ_{K} contains a non-abelian free group.

Index finite subgroups of mapping class groups

Put $K_{g}=I_{g}(2)$, the second Johnson subgroup.
$\rho\left(\left[K_{g}, K_{g}\right]\right)$ is of finite index in the image of the quantum representation $\rho\left(\Gamma_{g}\right)$.
Let U_{g} be the kernel of

$$
\Gamma_{g} \longrightarrow \rho\left(\Gamma_{g}\right) / \rho\left(\left[K_{g}, K_{g}\right]\right)
$$

Then, U_{g} is a finite index subgroup of Γ_{g}. This construction gives a systematic way to construct many finite index subgroups of Γ_{g}.

Question: Does U_{g} have infinite abelianization?

Dual Garside structure

The bounded chamber basis Δ_{M} plays an important role in detecting the dual Garside structure from the homological representation with respect to this basis.

Theorem (T. Ito and B. Wiest)

The dual Garside length of a braid word β with respect to the Birman-Ko-Lee band generators is expressed as

$$
\max \operatorname{deg}_{q} \rho_{n, m}(\beta)-\min \operatorname{deg}_{q} \rho_{n, m}(\beta)
$$

Categorification of KZ connections

There is a work in progress to construct 2-holonomy of KZ connection for braid cobordism based on the 2-connection investigated by L. Cirio and J. Martins of the form

$$
\begin{gathered}
A=\sum_{i<j} \omega_{i j} \Omega_{i j} \\
B=\sum_{i<j<k}\left(\omega_{i j} \wedge \omega_{i k} P_{j i k}+\omega_{i j} \wedge \omega_{j k} P_{i j k}\right),
\end{gathered}
$$

where A has values in the algebra of 2-chord diagrams, a categorification of the algebra of horizontal chord diagrams and

$$
\partial B=d A+\frac{1}{2} A \wedge A
$$

