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Braid groups

Braid groups were introduced by E. Artin in 1920’s.

/>/

The isotopy classes of geometric braids as above form a group by
composition. This is the braid group with n strands denoted by B,,.

)
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Braid relations

1 2 n

|- XH ‘

By, is generated by 0;, 1 < ¢ < n — 1 with relations

0i0i4+10; = 041030441

0;0j = 004, |i—j|>1




Quantum symmetry in representations of braid groups

Homological representations Monodromy of
of braid groups KZ connection

Hypergeometric integrals

Drinfeld-K. Theorem

Representations of braid groups via
guantum groups
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Monodromy representations of logarithmic connections
Knizhnik-Zamolodchikov (KZ) connection

Homological representations and KZ connections
Quantum symmetry in homological representations
Space of conformal blocks and Gauss-Manin connection

Homological representations and dual Garside structures

Categorification of KZ connection



Configuration spaces

Fn(X) : configuration space of ordered distinct n points in X.

Fo(X) ={(z1, - ,an) € X" 5 a; # xj if i # j},
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Configuration spaces

Fn(X) : configuration space of ordered distinct n points in X.

Fo(X) ={(z1, - ,an) € X" 5 a; # xj if i # j},
Suppose X = C.

T (Fn(C)) = Pn,  m(Cn(C)) = By

We set X,, = F,,(C)
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Logarithmic forms

We set
wij = dlog(z; — zj), 1<i#j<n.

Consider a total differential equation of the form d¢ = w¢ for a
logarithmic form
w = Z Aijwz-j
i<j
with Aij € Mm(C)



Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations
[Aik, Aij + Ajx] =0, (i,7,k distinct),
[Aij, Ake) =0, (4,7, k,¢ distinct)

The following are generalized for the complement of the union of
complex hyperplanes.
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Infinitesimal pure braid relations

As the integrability condition we infinitesimal pure braid relations

[Aik, Aij + Ajx] =0, (i,7,k distinct),
[Aij, Aeel =0, (i,4, k. ¢ distinct)

The following are generalized for the complement of the union of
complex hyperplanes.

@ As the holonomy of the flat connection w we obtain linear
representation of the pure braid group P,.

@ The horizontal section of w is expressed as an infinite sum of
iterated integrals of logarithmic forms (hyperlogarithms).

@ Any unipotent representations of P, are give by
hyperlogarithms (Aomoto).

@ Infinitesimal pure braid relations describe the nilpotent

completion of the pure braid group P, over Q (Malcev
algebra).



Riemann-Hilbert correspondence

Theorem

For any linear representation p : P, — GL,,(C) sufficiently close
to identity, there exists a flat connection

w = Z Al-jdlog(zi — Zj)

1<j

with A;; € M,,(C) such that the monodromy of the connection w
is given by p.




Poincaré’'s paper

SUR

LES GROUPES DES EQUATIONS LINEAIRES”

Acta mathematica, 1, §, p. 201-311; 188§,

Dans trois Méy
2); Mémoire sur les fonctions fuchsiennes (*) (Acta, 1.1,

ires [ Theorie des groupes fuchsicns (*) ( Acta mathema-

tica, 1.1, p
P 294 ); Mémoire sur les groupes kleindens (*) (Acta, v. 3, p. 49-92)]
J'ui éudié les groupes discontinus formés par des substitutions lindaires et les

fonctions uniformes qui ne sont pas altérées par les substitutions de o

fi et d'antres anall

groupes. Avant de montrer ces

nent les intégrales des équations 1i b coeffici Igébriques, il ext

nécessaire de résoudre deux problémes importants :

1* Etant donnée une équation lindaire @ coefficients algébriques, déter-
miner son groupe.

2* Etant donnde une équation lindaire du second ordre dépendant de
certains paramétres arbitraires, disposer de ces paramétres de maniére
que le groupe de Uéquation soit fuchsien.



Soit maintenant w¥,

coefficient s’exprimera pour la méme raison par des quadratures, et il en sera

le coefficient de «™@3” dans le développement de wh. Ce
de méme des coefficients qui entrent dans le développement des invariants, car

ce sont des polynomes entiers par rapport aux w#, . On peut d’ailleurs pousser

plus loin I'étude du développement de la fonction ¢;. A cet effet posons

A= [,
o

ey
Ay, o) = [

Alzy 2y, asy ooy 2y, 2y)

TdrA(z. 2y, %8, ...y Bget)
.[ -  o—a

Remarquons maintenant. qu'on peut metire I'équation (1) sous la forme

de p équations simultandes du premier ordre. Si les intégrales sont réguliéres

dans le voisinage de chacun des points singuliers, nous pourrons introduire

p varviables simultanées 1w, = ¢, ., ..., u, et remplacer I'équation (1) par les

p équations simultandes

(2)
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Aomoto’s paper

Fonctions hyperlogarithmiques et
groupes de monodromie
unipotents

Par Kazuhiko AoMoTto

Dans cet article le probléme de Riemann-Hilbert dans le sens résireint est
formulé dans I’espace projectif P!(C) en utilisant les équations de Schlesinger et
Lappo-Danilevski et résolu moyennant “fonctions hyperlogarithmiques” dans le cas
de monodromie unipotente (Théoréme 1). Ce résultat est analogue A celui de K. T.
Chen [5] mais ici plus précis. Soit S un ensemble analytique de codimension une
dans P'(C) et soit z,(P/C)—S) le groupe fondamental de P!(C)—S par rapport &
un point base 2,. On montrera ensuite que l'anneau de groupe

lim C[z, (PHC) = S)1/3,
est isomorphe aw completé @(G)’) de Ualgébre enveloppante C(®) de algébre d’holono-
mie ® ol J, désigne le s-iéme puissance de I’idéal d’augmentation § de ’anneau
de groupe C[z,(P'(C)—S)] (Théoréme 2). En particulier on aura la dualité de é(@)
et la cohomologie a 0 dimension des intégrales itérées de K. T. Chen (voir aussi

[4)).



K. T. Chen's iterated integals of differential forms

w1, ,wg . differential forms on M
QM : loop space M

Ap={(ts, ) ERF; 0<ty <+ <t < 1}

O: A X QM — M x -+ x M
S ——
k

defined by @(t1, -+ ,tg;y) = (y(t1), -+, v(tg))

13/51



K. T. Chen's iterated integals of differential forms

w1, ,wg . differential forms on M
QM : loop space M

Ap={(ts, ) ERF; 0<ty <+ <t < 1}

O: A X QM — M x -+ x M
S ——
k

defined by @(t1, -+ ,tg;y) = (y(t1), -+, v(tg))

The iterated integral of wy, -+ ,wy is defined as

Ag
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Iterated integrals as differential forms on loop space

The expression

/ e (w1 X -+ X wg)
Ag

is the integration along fiber with respect to the projection
p: AL x QM — QM.

differential form on the loop space QM
with degree p1 + -+ pr — k.
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Differentiation on loop spaces

As a differential form on the loop space d [wy - - - wy is
k

j=1

k—1

+ (—1)Vj+1/wl"'wj—1(wj A Wj+1)wijt2 * - W

=1

where v; = degwy + - - - + degw; — j.
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Bar complex for Orlik-Solomon algebra

A={Hy,---,Hpy} : arrangement of affine hyperplanes in the
complex vector space C™ defined by linear forms f;, 1 < j < m.
Consider the complement

MA) =C"\ |JH
HeA

A be the Orlik-Solomon algebra generated by the logarithmic
forms w; = dlog f;, 1 < j <m. .
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Bar complex for Orlik-Solomon algebra

A={Hy,---,Hpy} : arrangement of affine hyperplanes in the
complex vector space C™ defined by linear forms f;, 1 < j < m.
Consider the complement

MA) =C"\ |JH

HeA

A be the Orlik-Solomon algebra generated by the logarithmic
forms w; = dlog f;, 1 < j <m. .
The reduced bar complex of the Orlik-Solomon algebra is the
tensor algebra defined by

k
5 -@ (@)
k>0
(A : degree shifted by 1.) There is a natural filtration defined by

1
FHB(4) =PRA)

1<k
16/51



Bar complex and fundamental group

For the reduced bar complex for the Orlik-Solomon algebra there is
an isomorphism

F*HYB" (A)) = Hom(Zm (M, Xo)/Jk+17 C)
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Bar complex and fundamental group

For the reduced bar complex for the Orlik-Solomon algebra there is
an isomorphism

F*HYB" (A)) = Hom(Zm (M, Xo)/Jk+17 C)

In the case M = F,,(C) the above space is isomorphic to the
space order k invariants for the pure braid group P, (a prototype
for Kontsevich integrals).
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Holonomy Lie algebra

Define the holonomy Lie algebra as a quotient of free Lie algebra by
h(M) = L(X1,-+, Xim)/a
where a is an ideal generate by
(X5, X5 +---+X;,], 1<p<k
for maximal family of hyperplanes {Hj,,--- , Hj, } such that

codime(Hj;, N---NHj,) =2
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Universal holonomy map

We put
m
w= ijXj.
j=1

Then there is a universal holonomy map
@0 : 7T1(M,X0) — C<<X1, cee ,Xm>>/a
defined by

@o(v)zl—kz /w---w
k=1 Y7 k
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Universal holonomy map

We put
m
w= ijXj.
j=1

Then there is a universal holonomy map
@0 : 7T1(M,X0) — C<<X1, cee ,Xm>>/a

defined by

@o(v)zl—kz /w---w
k=1 Y7 k

This induces an isomorphism
Cmi (M, x0) = C((X1, -, Xm))/a

By taking the primitive part we have an isomorphism between
nilpotent completion of the fundamental group and the holonomy
Lie algebra over Q.
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Riemann-Hilbert problem for unipotent monodromy

The following statement was first obtained by Aomoto.

Theorem
Let

p:m(M,x9) — GL(V)

be a unipotent representation of the fundamental group of the
complement of hyperplane arrangement. Then there exists an
integrable connection

L
w = ZAij', Aj S End(V})
j=1

such that each A; is nilpotent and the monodromy representation
of w coincides with p.
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For a unipotent representation p : w1 (M, x0) — GL(V') there
exists k such that p induces a homomorphism

p: Cmy(M,x0)/ ¥ — End(V).

The universal holonomy homomorphism of the connection
Z§:1 w;jX; induces an isomorphism
0 : Cmy(M,x0)/J* = CU(Xy, -+, X)) /(a+ )

where .J denotes the completed augmentation ideal. Define a
homomorphism

a: CUXy, -, X))/ (a+ J*) — End(V)

by « =pof~and put 4; = a(X;), 1<j <l

21/51



KZ connections

g : complex semi-simple Lie algebra.

{I,} : orthonormal basis of g w.r.t. Killing form.
Q=3 , Lol

ri: g — End(V;), 1 <i < n representations.



KZ connections

g : complex semi-simple Lie algebra.

{I,} : orthonormal basis of g w.r.t. Killing form.
Q=3 , Lol

ri: g — End(V;), 1 <i < n representations.

€2;; : the action of € on the i-th and j-th components of
Vi@ @V,

1
= =3 Qydlog(z — %), C
w P jdlog(z; — z;), ke C\{0}

w defines a flat connection for a trivial vector bundle over the
configuration space X,, = F,,(C) with fiber V; @ --- ® V}, since we
have

wAw=0



Monodromy representations of braid groups

As the holonomy we have representations

Op: P, — GL(V1®---®V,).

In particular, if Vi =--- =V, =V, we have representations of
braid groups
0, : B, — GL(V®™).
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Monodromy representations of braid groups

As the holonomy we have representations

Op: P, — GL(V1®---®V,).

In particular, if Vi =--- =V, =V, we have representations of
braid groups
0, : B, — GL(V®™).

We shall express the horizontal sections of the KZ connection :
dy = wy in terms of homology with coefficients in local system
homology on the fiber of the projection map

7 Xman — Xn-

Xpm : fiberof 1, Y, = X0 m/Gpy
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Relative configuration spaces

Fix P ={(1,0),---,(n,0)} C D, where D is a 2 dimensional disc.
S=D\P




Homology of relative configuration spaces
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Abelian coverings

Consider the homomorphism
a:Hi(Com(D);Z) —ZSZ

defined by (1, -+ ,zp,y) = (x1 4+ -+ + Tn, Y).
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Abelian coverings

Consider the homomorphism
a:Hi(Com(D);Z) —ZSZ

defined by (1, -+ ,zp,y) = (x1 4+ -+ + Tn, Y).

Composing with the abelianization map

T1(Crnm (D), z0) = H1(Cpm(D); Z), we obtain the homomorphism
B :m(Com(D),x0) — Z & Z.

e 5nm(D) — Cp,m(D) : the covering corresponding to Ker f3.
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Homological representations

H*(CNHm(D)7 Z) considered to be a Z[Z @ Z]-module by deck
transformations.

Express Z[Z @ Z] as the ring of Laurent polynomials
R = Z[gt t*1].
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Homological representations

H*(CNHm(D)7 Z) considered to be a Z[Z @ Z]-module by deck
transformations.

Express Z[Z @ Z] as the ring of Laurent polynomials
R = Z[gt t*1].

Hn,m — Hm(gn,m(D)a Z)

H,, ,, is a free R-module of rank

dnym:<m+n—2>.
m

Pn,m : Bn — Autg H,, , : homological representations (m > 1)
extensively studied by Bigelow and Krammer ; they are faithful
representations.
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Representations of sl,(C)

g = sl2(C) has a basis

m= (5 5 )= (5 3)r=(00),

reC
M)y : Verma module of sla(C) with highest weight vector v such
that

Hv=M, Ev=0

M) is spanned by

v,Fu, Fv, - -

28 /51



Space of null vectors

Consider the tensor product M), ® --- ® M,,.



Space of null vectors

AZ(>\1,"',)\n)€Cn, |A|:)\1+...+)\n
Consider the tensor product M), ® --- ® M,,.
m : non-negative integer

WIA| =2m] ={z e My, ®---®@ M), ; Hx = (|A| - 2m)z}

29 /51



Space of null vectors

A=A, ) eC™ A= 1+ + )\,
Consider the tensor product M), ® --- ® M,,.
m : non-negative integer
WAl =2m]| ={z e My, ® ---® M), ; Hx = (|A| — 2m)x}

The space of null vectors is defined by

N[|A| = 2m] = {x € W[|A| —2m] ; Ex = 0}.
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Space of null vectors

A:(Al,"',)\n)ECn, |A|:)\1+...+)\n
Consider the tensor product M), ® --- ® M,,.
m : non-negative integer

WIA| =2m] ={z e My, ®---®@ M), ; Hx = (|A| - 2m)z}
The space of null vectors is defined by
N[|A| = 2m] = {x € W[|A| —2m] ; Ex = 0}.

The KZ connection w commutes with the diagonal action of g on
My, ® ---® M),,, hence it acts on the space of null vectors
N[|A| = 2m].

The monodromy of KZ connection

Opx 2 Py — Aut N[|A| — 2m)]

29 /51



Comparison theorem

We fix a complex number A\ and consider the case
Al ==X, = A. We have

0. : B — Aut N[nA — 2m).

Theorem

There exists an open dense subset U in (C*)? such that for
(A, k) € U the homological representation py, ., with the
specialization

q= 6—271’\/—1)\//6’ t = eQT(\/—l/KJ
is equivalent to the monodromy representation of the KZ
connection 0y ., with values in the space of null vectors

NnA —2m] C M2".
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Local system over the configuration space

7 Xp+m — Xn : projection defined by
(Zl,"' 7Z1’L7t17"' 7tm) — (Z17"' ,Zn).
Xn,m : fiber of 7.

AjNs

o= [] G-z [ ti-z2*

1<i<j<n 1<i<m,1<0<n

X H (ti —tj)%

1<i<j<m

(multi-valued function on X,,4,).
Consider the local system L associated with ®.
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Solutions to KZ equation

Notation:
WI|A| — 2m] has a basis

FJv:Fjlv)\l ®"'®Fj"1))\n

with [J| = j1 + -+ + j, = m and vy, € M, the highest weight
vector.
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Solutions to KZ equation

Notation:
WI|A| — 2m] has a basis

Floy = FjlvAl Q- ® Fj"vAn

with [J| = j1 + -+ + j, = m and vy, € M, the highest weight
vector.

Theorem (Schechtman-Varchenko, Date-Jimbo-Matsuo-Miwa, ...)

The hypergeometric integral

> (/ ®Ry(z,t)dtL A - - /\dtm> Fly
A

=

lies in N[|A| — 2m] and is a solution of the KZ equation, where A
is a cycle in Hy, (Y m, L£).
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Homology basis

For generic A, &,
H;(Ypm, L) =0, j#m
and we have an isomorphism
Hpy (Yom, £5) = HY (Y, L)

(homology with locally finite chains)
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Homology basis

For generic A, &,
H;(Ypm, L) =0, j#m
and we have an isomorphism
Hpy (Yom, £5) = HY (Y, L)

(homology with locally finite chains)

The above homology is spanned by bounded chambers.

bounded chambers : basis of twisted homology

(the case n = 3,m = 2).
33/51



Homology basis (continued)

For non-negative integers mq,--- ,my_1 satisfying
mp 4+ +mup_1=m
we define a bounded chamber A, ... 1, , in R™ by

<ty < <tm <2
2<tm1+1<"'<tm1+m2<3

n—1< tm1+“'+mn—2+1 +- F ity < n.

Put M = (mq,--- ,my—1) and write Aps for Ay oo -
The bounded chamber Aj; defines a homology class

[A] € H%(Xmm,ﬁ) and its image Ap; = T, (Any) defines a
homology class [Ay/] € H%(Ymm,ﬁ).

Under a genericity condition [A /] form a basis of H%(Yn’m,ﬁ).
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Outline of proof of comparison theorem

Now the fundamental solutions of the KZ equation with values in
N[nA —2m)] is give by the matrix of the form

A M,M'

with M = (my,--- ,mp—1) and M' = (m},---,m] _;) such that
mi+--+mp—1 =mand mj +---+m),_; =m. with wyp a
multivalued m-form on X, ,,.

The column vectors of the above matrix form a basis of the
solutions of the KZ equation with values in N[nA — 2m]. Thus the
representation 7y, , : By, — Aut Hy, (Y, m, L) is equivalent to the
action of B;, on the solutions of the KZ equation with values in
N[nX —2m)].
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Quantum symmetry

Theorem

There is an isomorphism
Np[An —2m] =2 Hp(Yom, L)

which is equivariant with respect to the action of the braid group
B,,, where Ny[An — 2m)] is the space of null vectors for the
corresponding Uy, (g)-module with h = 1/k.
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Quantum symmetry for twisted chains
There is the following correspondence:

twisted multi-chains <= weight vectors Fily, @ -+ @ Finy,

twisted boundary operator <= the action of E € Uy(g)

Hy(Yom, LY) <= Np[An — 2m)]

Ji I,

twisted multi-chains
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Wess-Zumino-Witten model

Conformal Field Theory

(3,p1,- -+ ,pn) : Riemann surface with marked points
AL, -+, Ap o level K highest weights
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Wess-Zumino-Witten model

Conformal Field Theory

(3,p1,- -+ ,pn) : Riemann surface with marked points

A1, 5 Ap o level K highest weights

Hs(p, \) : space of conformal blocks

vector space spanned by holomorphic parts of the WZW partition

function.
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Wess-Zumino-Witten model

Conformal Field Theory

(3,p1,- -+ ,pn) : Riemann surface with marked points

A1, 5 Ap o level K highest weights

Hs(p, \) : space of conformal blocks

vector space spanned by holomorphic parts of the WZW partition
function.

Geometry : vector bundle over the moduli space of Riemann
surfaces with n marked points with projectively flat connection.
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The space of conformal blocks

Conformal field theory
(3,p1,- -+ ,pn) : Riemann surface with marked points
—
Hs, : complex vector space - the space of conformal blocks

The mapping class group Iy, acts on Hy; :
Quantum representations

39/51



Representations of an affine Lie algebra

g=9®C((&))®Cc: affine Lie algebra with commutation relation
(X @ f,Y ®@g]=[X,Y]® fg+Rese—odf g (X,Y)c
K a positive integer (level)

g=N Ny & N_
c acts as K -id.
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Representations of an affine Lie algebra

g=9®C((&))®Cc: affine Lie algebra with commutation relation
X®[,Y®g]=[X,Y]® fg+ Rese=o df g (X,Y)c

K a positive integer (level)
g=N Ny & N_

c acts as K -id.
A aninteger with 0 < A< K

H : irreducible quotient of M, called the integrable highest
weight modules.
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Geometric background

G : the Lie group SL(2,C)
LG = Map(S*,G) : loop group
L — LG : complex line bundle with ¢;(£) = K
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Geometric background

G : the Lie group SL(2,C)
LG = Map(S*,G) : loop group
L — LG : complex line bundle with ¢;(£) = K

The affine Lie algebra g acts on the space of sections I'(L).

The integrable highest weight modules H), 0 < A < K, appears as
sub representations.

As the infinitesimal version of the action of the central extension of
Diff (S') the Virasoro Lie algebra acts on .
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The space of conformal blocks - definition -

Suppose 0 < Ag,--- , A < K.

D1, ,Pn € D

Assign highest weights Ay, -, A\, to p1,--+ , Pn.

H; : irreducible representations of g with highest weight \; at
level K.
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The space of conformal blocks - definition -

Suppose 0 < Ag,--- , A < K.

P1s ,pn € X

Assign highest weights Ay, -, A\, to p1,--+ , Pn.

H; : irreducible representations of g with highest weight \; at
level K.

M,, denotes the set of meromorphic functions on 3 with poles at
most at p1, -, Pn.
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The space of conformal blocks - definition -

Suppose 0 < A1, , \ < K.

P1cccPn €%

Assign highest weights Ay, -, A\, to p1,--+ , Pn.

H; : irreducible representations of g with highest weight \; at
level K.

M,, denotes the set of meromorphic functions on 3 with poles at
most at p1, -, Pn.

The space of conformal blocks is defined as
%E(p,)\) = H)\l ® U ®%)\n/(g®Mp)

where g ® M, acts diagonally via Laurent expansions at
b1, - ,DPn-
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Conformal block bundle

>, : Riemann surface of genus g
P1,- - ,Pn : Marked points on X,
Fix the highest weights Ay, -, Ap.
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Conformal block bundle

>, : Riemann surface of genus g
P1,- - ,Pn : Marked points on X,
Fix the highest weights Ay, -, Ap.

The union

U Hzg (p7 )‘)
P1,Pn

for any complex structures on X, forms a vector bundle on M,
the moduli space of Riemann surfaces of genus g with n marked
points.
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Conformal block bundle

>, : Riemann surface of genus g
P1,- - ,Pn : Marked points on X,
Fix the highest weights Ay, -, Ap.

The union

U Hzg (p7 )‘)
P1,Pn

for any complex structures on X, forms a vector bundle on M,
the moduli space of Riemann surfaces of genus g with n marked
points.

This vector bundle is called the conformal block bundle and is
equipped with a natural projectively flat connection. The
holonomy representation of the mapping class group is called the
quantum representation.
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genus 0 case

The flat connection is the KZ connection.

L : rank 1 local system over Y}, ,,, associated with ®
m=xsA++ A — Apt1)

p=(p1, ++ ,Pn,0)

There is a surjective period map

Hpy(Yom, L) — Hegpr (p, N)

The above period map is not injective in general, which is related
to fusion rules, resonance at infinity etc.
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Gauss-Manin connection

Hpm : local system over X,, with fiber Hy, (Yy, 1, L)

Theorem

There is surjective bundle map to the conformal block bundle

/Hn,m — U /HEP1 (pa )‘)

via hypergeometric integrals. The KZ connection is interpreted as
Gauss-Manin connection.

cf. Looijenga’s work
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Quantum representations of mapping class groups

¥4 : Riemann surface of genus g
I'y, = Diff *(X,) /isotopy : mapping class group
Hs, : the space of conformal blocks at level K
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Quantum representations of mapping class groups

: Riemann surface of genus g
= Diff *(3,)/isotopy : mapping class group
Hs, : the space of conformal blocks at level K

g
Ly

There is a projectively linear action of I'y on the space of
conformal blocks Hsy,, which is called the quantum representation
of the mapping class group.
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Properties of quantum representations

A basis of the space of conformal block is described by colored
trivalent graphs which are dual to pants decomposition of a
surface. There is a combinatorial description of the action of the
mapping class group.

The Dehn twist 74 along ¢ acts as a diagonal matrix.
The representation behaves nicely with respect to a stabilization
for Heegaard splitting.
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Images of quantum representations

The quantum representations are projectively unitary.

pk : Ty — PU(Hs,)

48 /51



Images of quantum representations

The quantum representations are projectively unitary.

pk : Ty — PU(Hs,)

The k-th Johnson subgroup acts trivially on the k-th lower central
series of the fundamental group 71 (%,).
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Images of quantum representations

The quantum representations are projectively unitary.

PK : Fg — PU(HEQ)

The k-th Johnson subgroup acts trivially on the k-th lower central
series of the fundamental group 71 (%,).

The image of the quantum representation is "big” in the following
sense.

Theorem (Funar-K.)

Suppose g > 4 and K sufficiently large. Then the image of any
Johnson subgroup by px contains a non-abelian free group.
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Index finite subgroups of mapping class groups

Put K, = I4(2), the second Johnson subgroup.

p([Ky, Kg]) is of finite index in the image of the quantum
representation p(I'y).

Let Uy be the kernel of

Ly — p(Tyg)/p([Kg, Kql)

Then, Uy is a finite index subgroup of I'y. This construction gives
a systematic way to construct many finite index subgroups of I';.

Question : Does U, have infinite abelianization?
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Dual Garside structure

The bounded chamber basis Ajs plays an important role in
detecting the dual Garside structure from the homological
representation with respect to this basis.

Theorem (T. Ito and B. Wiest)

The dual Garside length of a braid word (3 with respect to the
Birman-Ko-Lee band generators is expressed as

max deg, pn.m(B) — min deg, pnm(B)-
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Categorification of KZ connections

There is a work in progress to construct 2-holonomy of KZ
connection for braid cobordism based on the 2-connection
investigated by L. Cirio and J. Martins of the form

A= Z wijQij
1<j
B = Z (wl-j N Wik sz’k + wij A Wik Pijk:)7
i<j<k
where A has values in the algebra of 2-chord diagrams, a
categorification of the algebra of horizontal chord diagrams and

8B:dA+%AAA

51/51



