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Introduction

These lectures are motivated by the dynamical study of differential equa-
tions in the complex domain. Most of the topic will concern holomorphic
foliations on complex surfaces, and their connections with the theory of
complex projective structures on curves. In foliation theory, the interplay
between geometry and dynamics is what makes the beauty of the subject.
In these lectures, we will try to develop this relationship even more.

On the geometrical side, we have generalizations of the foliation cycles
introduced by Sullivan, see [68]: namely the foliated harmonic currents, see
e.g. [36, 4]. Those currents permit to think of the foliation as if it were a
genuine algebraic curve. For instance, one can associate a homology class,
compute intersections with divisors on the surface etc. . . These currents
can often be viewed as limits of the (conveniently normalized) currents of
integration on large leafwise domains defined via the uniformization of the
leaves. This point of view, closely related to Nevanlinna theory, is very
fruitful in the applications as we will see. See [5, 28].

On the dynamical side, the leafwise Brownian motions (w.r.t. to some
hermitian metric on the tangent bundle to the foliation, e.g. coming from
uniformization of leaves) generate a Markov process on the complex surface,
whose study was begun by Garnett, see [34]. This Markov process seems
to play a determinant role in the dynamics of foliated complex surfaces.
One reason is that the Brownian motion in two dimensions is conformally
invariant. Another reason is that leafwise Brownian trajectories equidis-
tribute w.r.t. the product of a certain foliated harmonic current times the
leafwise volume element. This makes the connection with the geometrical
side mentioned above.

One of the main theme that will be developed in these lectures is the
construction of numerical invariants that embrace these two aspects (dy-
namical and geometrical) of foliated complex surfaces. The discussion will
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emphasize on the definition and properties of the foliated Lyapunov expo-
nent of a harmonic current, which heuristically measures the exponential
rate of convergence of leaves toward each other along leafwise Brown-
ian trajectories. A fruitful formula expresses this dynamical invariant in
terms of the intersection of some foliated harmonic currents and the nor-
mal/canonical bundles of the foliation, see [16]. This formula is a good
illustration of the interplay between geometry and dynamics in foliation
theory. This will be developed in the first lecture.

In the second and third lectures, we will collect some applications of
this formula in different contexts.

The first application concerns Levi-flats in complex algebraic surfaces.
Those are (real) hypersurfaces that are foliated by holomorphic curves.
Most examples occur as three (real) dimensional analytic invariant subsets
of singular algebraic foliations. Foliations having Levi-flats are analogous to
Fuchsian groups (those having an invariant analytic circle in the Riemann
sphere) in the context of Kleinian groups or to Blashke products/Tchebychef
polynomials (having an invariant analytic circle/interval) in the context of
iteration of rational functions. Very little is known about Levi-flats in al-
gebraic surfaces. For instance, it is still unknown wether every algebraic
surface contains a Levi-flat. A folklore conjecture predicts that the com-
plex projective plane should not have any. Still, there exists a multitude
of examples, e.g. in flat ruled bundles over curves, in singular holomorphic
fibrations, in ramified covers of these etc. As we will see, some new restric-
tions concerning the topology of Levi-flats can be deduced from a detailed
analysis of the foliated Lyapunov exponent and its relation to the geometry
of the ambiant surface. For instance, we will prove that a Levi-flat hyper-
surface in a surface of general type is not diffeomorphic to the unitary
tangent bundle of a two dimensional compact orbifold of negative curva-
ture, nor to a hyperbolic torus bundle, and that its fundamental group has
exponential growth. This will be explained in the second lecture, where
we’ll also construct many examples of Levi-flats, most notably we will real-
ize all the models of Thurston’s geometries as Levi-flats in algebraic surfaces
appart the elliptic one. All this is based on a work in collaboration with
Christophe Dupont, see [20].

The second application concerns complex projective structures on
curves. These structures are of interest in various problems of uniformiza-
tion in two or three dimensions. We will define some new invariants
associated to complex projective structures: a Lyapunov exponent, a de-
gree, and a family of harmonic measures (analogous to harmonic measure
of a compact set in the complex line), and we will see how to relate these
invariants. The connexion with foliation theory will be of utmost im-
portance. It comes from the study of the particular class of transversally
holomorphic foliations : any algebraic curve transverse to such a folia-
tion inherits a complex projective structure by restricting the transverse
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projective structure of the foliation to the curve. As an illustration of this
point of view, an algebraic curve in a Hilbert modular surface of the form
Γ\H×H, where Γ is a cocompact lattice in PSL(2,R)×PSL(2,R) inherits
two (branched) complex projective structures from the two (horizontal and
vertical) foliations. We will derive applications of these new invariants,
most notably some estimates for the dimension of harmonic measures of
complex projective structures. In particular, we will recover the Jones–
Wolff and Makarov estimates for classical harmonic measures of limit sets
of Kleinian groups. Another application will be to reinforce the analogy
between complex projective structures and polynomial dynamics, that was
brought to light by McMullen, see [58]. All these developments have been
obtained in collaboration with Romain Dujardin, see [19].

Acknowledgments. I warmly thank the organizers of the conference
Geometry and Foliations 2013 who gave me the opportunity to deliver
these lectures.

1. Lecture 1 – Lyapunov exponents associated to
foliated complex surfaces

1.1. Basic definitions and examples

In this lecture, S will be a complex surface, and F a non singular holo-
morphic foliation on S. Recall that F is a maximal atlas of holomorphic
charts (x, z) : U → D×D (D ⊂ C is the unit disc) defined on open subsets
U covering S, and overlaping as

(x′, z′) = (x′(x, z), z′(z)).

Hence the local fibrations z = cst are preserved by the change of coord-
inates. The fibers of these local fibrations, called the plaques, are glued
together and define Riemann surfaces, called the leaves of the foliation.
The sets D 3 z are called transversal sets, and will be denoted Dt. We
refer to the book [10] for the basics on foliation theory: most notably, the
definition of holonomy maps, transverse invariant measures etc. . .

The data of S and F will be referred to as foliated complex surface. We
assume in the sequel that there exists a compact saturated subset M ⊂ S,
saturated meaning that it is a union of leaves of F . We have in mind various
sources of examples.

Definition 1.1 (Levi-flat). A hypersurface M of class C2 in a complex
surface S inherits a unique distribution by complex lines called the Cauchy–
Riemann distribution. It is defined by the formula TM ∩ iTM where
i =
√
−1. The hypersurface M is called Levi-flat iff the Cauchy–Riemann
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distribution integrates in a foliation, called the Cauchy–Riemann folia-
tion and denoted by F . If the hypersurface M is Levi-flat and analytic,
then F can be extended in the neighborhood of M as a non singular
holomorphic foliation.

In analytic regularity, a more intrinsic view-point is the following

Example 1.2 (Foliated 3-manifolds). A 2-dimensional analytic foliation
of a compact 3-manifold equipped with an analytic complex structure on
its leaves can be embedded in a germ of foliated complex surface. Such a
complex structure can be built using a leafwise orientation plus an analytic
metric on TF , since Riemannian surfaces are conformally flat. In analytic
regularity, this is a theorem of Gauss, see [15, Théorème I.2.1].

Other examples are

Example 1.3 (Riemann-Hilbert correspondance). Let C be an algebraic
curve, and π1(C) → PSL(2,C) ' Aut(P1(C)) be a representation. We
define Sρ = C nρ P1(C) as the flat P1(C) bundle over C with monodromy

ρ. Recall that Sρ is defined as the quotient of C̃ × P1(C) by the action of
π1(C) given by

γ · (x, z) = (γ · x, ρ(γ) · z),

for every γ ∈ π1(C) and (x, z) ∈ C̃ × P1(C). Here C̃ denotes a universal
cover of C, and π1(C) the covering group of this covering. The horizontal

fibration on C̃ × P1(C) whose fibers are the subsets C̃ × z for z ∈ P1(C),
defines on Sρ a non singular holomorphic foliation Fρ.

Remark 1.4. In the case the representation ρ takes values in PSL(2,R),
the foliated surface (Sρ,Fρ) contains a Levi-flat, defined as the twisted
product C nρ P1(R).

1.2. Foliated harmonic currents

As before, let (S,F) be a foliated complex surface and let M be a compact
saturated subset of S. We denote by OF the sheaf of continuous functions
on M which are holomorphic along the leaves, and by C∞F the sheaf of func-
tions f which are smooth along the leaves and all whose leafwise derivatives
∂α+βf
∂xα∂xβ

in holomorphic foliated coordinates are continuous in (x, z). This
definition is independent of the chosen foliated coordinate system. We also

denote by ApF (resp. A
(p,q)
F ) the set of C∞F forms of degree p (resp. bidegree

(p, q)) on TF .
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Definition-Proposition 1.5. A foliated harmonic current is a linear
form T : A1,1

F → R which verifies ∂∂T = 0 in the weak sense (namely
T (∂∂f) = 0 for any smooth function f : S → R), and which is positive
on F (namely T (η) > 0 if η|F > 0). In foliated coordinates, a foliated
harmonic current takes the form

(1.6) T (η) =

∫
Dt

[∫
D×z

ϕ(x, z)η(dxdx)

]
ν(dzdz)

where ν is a Radon measure on the transversal Dt and ϕ ∈ L1(dxdx ⊗ ν)
is harmonic on ν-a.e. plaque D× z.

Proposition 1.7. A compact saturated subset supports a foliated har-
monic current.

Proof. The following proof is due to Ghys, see [36], following ideas of
Sullivan, see [68]. Let A1,1

c be the set of continuous (1, 1)-forms along the
leaves of M , P ⊂ A1,1

c denotes the open convex cone of positive ones, and
E be the set of uniform limits of forms of the type ∂∂f|M with f ∈ C∞(S).
By the maximal principle, P ∩ E = ∅, hence the Hahn-Banach separation
theorem concludes.

Remark 1.8. The existence of foliated harmonic current has been gener-
alized to singular holomorphic foliations by Berndtsson and Sibony. We
refer to [4, Theorem 1.4].

Definition-Proposition 1.9 (Foliation cycles). A foliation cycle is a fo-
liated harmonic current which is d-closed, namely it satisfies T (dη) = 0 for
every η ∈ A1

F . A foliation cycle is expressed locally as

(1.10) T (η) =

∫
Dt

[∫
D×z

η

]
ν(dzdz)

where ν is a Radon measure. The family of measures ν defines a transverse
invariant measure for the foliation (M,F).

Example 1.11 (Leaf closed at infinity). The basic example of foliation
cycle is the integration current on a leaf. A generalization of this is due
to Plante, see [62, Theorem 3.1]. Assume that An ⊂ Ln is a sequence of
compact domains contained in leaves Ln of M , and that we have

(1.12)
length(∂An)

area(An)
→n→∞ 0

where the length and area are measured w.r.t. to a hermitian metric along
the leaves. Then the family of currents Tn := 1

area(An)
[An] is relatively
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compact in the weak∗ topology, and moreover any limit limnk→∞ Tnk is a
foliation cycle. Sullivan generalized this construction, see [68, Theorem
II.8].

1.3. Uniformization

Other examples of foliation cycles or foliated harmonic currents come from
the uniformization of Riemann surfaces, which is stated as follows.

Theorem 1.13 (Poincaré-Koebe). Every Riemann surface is covered
resp. by P1(C),C or D. This trichotomy is exclusive. The Riemann surface
is resp. called elliptic, parabolic or hyperbolic.

We refer to the book [15] for the history and the various proofs of
this theorem.

Example 1.14 (Ahlfors). If L is a parabolic leaf contained in M , and
f : C→ L a uniformization of L, one can extract from the family of currents

(1.15) ∀η ∈ A1,1
F (M), Tr(η) :=

1

areaf∗g(Dr)

∫
Dr
f ∗η

a subsequence converging in the weak∗ topology towards a foliation cycle.
Here Dr := {x ∈ C | |x| < r}. We refer to [1] and [7, Lemme 0] for a proof
of this fact.

Let us now review what happens if the leaves are hyperbolic. We
begin by the following theorem of Verjovsky, generalized by Candel in the
context of general Riemann surface laminations. Recall that the unit disc
has a unique complete conformal metric of curvature −1, given by

(1.16) gP =
1

4

|dx|2

(1− |x|2)2
.

This metric is invariant under the group Aut(D) of automorphisms of the
unit disc, hence it defines a conformal metric on any hyperbolic Riemann
surface. We have

Theorem 1.17 (Verjovsky-Candel). Assume that all the leaves of M are
hyperbolic. Then the Poincaré metric on each of these leaves defines a
continuous metric on TF|M .

Example 1.18 (Fornaess-Sibony). Assume that all the leaves of M are
hyperbolic Riemann surfaces. Let f : D → L be the uniformization of one
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leaf of M . Then the family of currents

(1.19) ∀η ∈ A1,1(M), Tr(η) =

∫
Dr log

(
r
|x|

)
f ∗η(dxdx)∫

Dr log
(
r
|x|

)
vP (dxdx)

is relatively compact in the weak∗ topology and the limit of any convergent
subsequence Trn with rn → 1 is foliated harmonic. Here vP refers to the
volume element of the Poincaré metric.

1.4. Homology, intersection, and Chern-Candel classes

A foliation cycle being a closed current of dimension 2 on S, it naturally
defines a homology class [T ] ∈ H2(S,R) (by duality) by the formula

[T ] · [η] = T (η),

for every closed 2-form. In particular, one can consider the intersection
product [T ] · c1(E) if E → S is any complex line bundle over S, and c1(E)
denotes the first Chern class of E. We will denote it succintly by T · E.
One can compute this intersection by using differential geometry, namely

(1.20) T · E =
1

2π
T (ω)

where ω is the curvature form of any connexion ∇ on E. In fact, it is
sufficient to have a smooth connexion which is only defined along every
leaf of F , but we will not verify this here. All this makes sense since the
curvature forms of two different connexions on E differ by an exact 2-form.

This does not work this way if T is only assumed to be harmonic, since
in this case we only get a homology class in the dual of the Bott-Chern
cohomology group

(1.21) H1,1

∂∂
(S,C) = {closed (1, 1)-forms}/∂∂C∞(S).

Nevertheless, following an observation of Candel, one can define the inter-
section product of T with E when E is any holomorphic line bundle along
the leaves ofM (namely every element ofH1(M,O∗F)). This can be achieved
by the use of the Chern connexion of a hermitian metric on E, whose ex-
pression is on E, whose expression is given locally by

(1.22) ω‖·‖ =
1

i
∂∂ log‖s‖2,

where s is any local holomorphic section of E. One then defines

(1.23) T · E :=
1

2π
T (ω‖·‖),
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where ‖·‖ is any hermitian metric on E. Since T is harmonic, the definition
does not depend on the chosen hermitian metric on E.

This formula permits to define an important invariant of a harmonic
current: its Euler characteristic. This is the intersection of the harmonic
current with the tangent bundle of the foliation F . In what follows, we will
be more interested in the opposite of this number, namely the intersection
of T with the canonical bundle of F being defined by KF := T ∗F .

An interesting case is where S is a compact Kähler surface, since
under this assumption one knows that the group (1.21) is isomorphic to
the Dolbeaut cohomology group H1,1

∂
(S,C) ⊂ H2(S,C), by the ∂∂-lemma.

Thus we can define a homology class [T ] of T belonging to H2(S,C) (by
duality) in that case. Observe that if E → S is a holomorphic line bundle,
the number T ·E defined by (1.23) computes the cohomological intersection
[T ] · c1(E), where c1(E) is the Chern class of E.

1.5. Garnett’s theory

Here is the basic ingredient that will be needed in this lecture. Let (L, g) be
a complete Riemannian manifold with bounded curvature, and x ∈ L be a
point. Then there exists a unique measure W x, called the Wiener measure,
on the set Ωx of continuous paths ω : [0,∞) → L starting at ω(0) = x,
satisfying the following
(1.24)

W x({ω | ω(ti) ∈Bi}) =

∫
B1×···×Bk

k∏
j=1

p(xj−1,xj, tj − tj−1)vg(dx1) · · ·vg(dxk)

for every k ∈ N∗, every non decreasing sequence t0 = 0 ≤ t1 ≤ t2 ≤ · · · ≤
tk−1 ≤ tk, every family {Bj}j of Borel subsets of L, and the convention
x0 = x. Here, vg denotes the volume element, and p(x, y, t) is the heat
kernel on L (namely p(x, · , · ) satisfies the heat equation ∂u

∂t
= ∆u and

p(x, y, t)dy weakly tends to the Dirac mass δx at x). We refer to [13,
Chapter VI].

Let now (S,F) be a foliated complex surface, and M be a F -saturated
closed subset of S. Let g be a smooth hermitian metric on TF , defined
in a neighborhood of M , and ∆F the leafwise Laplacian associated to this
metric. A foliated harmonic measure on M is a probability measure which
satisfies in the weak sense the equation ∆Fµ = 0. Those are the measures

(1.25) µ := T ∧ vg

where T is a (conveniently normalized) foliated harmonic current and vg is
the leafwise volume element of the Riemannian tensor g. In particular, a
foliated harmonic measure always exists, by Proposition 1.7.
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Let Ω be the set of continuous paths ω : [0,∞) → M which are con-
tained in a leaf of M , and Ωw those conditioned to begin at ω(0) = w.
Shifting the time defines a semi-group σ = {σt}t≥0 of transformations act-
ing on Ω by the formula σt(ω)( · ) := ω(t+ · ). Given a probability measure
µ on M , let µ be the measure on Ω defined by µ :=

∫
M
Wwµ(dw). An easy

observation shows that if µ is harmonic, then the measure µ is σ-invariant.
We can then apply ergodic theory to the system (Ω, σ, µ). Garnett proved
the following version of the random ergodic theorem in this context:

Theorem 1.26 (Random Ergodic Theorem). If the foliated harmonic
measure µ is extremal in the compact convex set of harmonic measures,
then the system (Ω, σ, µ) is ergodic.

We refer to [34] and to the survey paper by Candel [12]. A foliated
harmonic measure satisfying the assumptions of the theorem will be called
ergodic. Observe that in particular, for a.e. point w w.r.t. a foliated ergodic
harmonic measure, Ww-a.e. Brownian path starting at x equidistributes
w.r.t. µ.

1.6. The foliated Lyapunov exponent

In this section, we endow the tangent bundle TF , resp. the normal bundle
NF , with smooth hermitian metrics. Recall that if ω : [0, t] → L is a con-
tinuous path in a leaf of L, there is a holonomy map hω : τω(0) → τω(t) from
a transversal τω(0) at ω(0) to a transversal τω(t) at ω(t). See the book [10]
for the definition of holonomy map. The derivative of hω at ω(0) ∈ τω(0)

will be denoted Dhω(ω(0)).

Definition-Proposition 1.27. Let T be an ergodic foliated harmonic
current on M , and µ = T ∧ vg the associated foliated harmonic measure.
There exists a number λ = λ(T ), such that for µ-a.e. point w ∈ M , and
Ww-almost every path ω : [0,∞)→ Lw starting at ω(0) = w, we have

(1.28)
1

t
log‖Dhω|[0,t](ω(0))‖ = λ.

The proof of this fact relies on the ergodic theorem applied to the cocyle

(1.29) Ht(ω) := log‖Dhω|[0,t](ω(0))‖,

which satisfies the relation Ht+s(ω) = Ht(ω) + Hs(σt(ω)) for every ω ∈
Ω and every s, t ≥ 0. To get the result one needs to verify that Ht is
µ-integrable. This relies on Cheng-Li-Yau estimates for the heat kernel:

p(x, y, t) ≤ C exp(−αd(x, y)2),
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where C, α > 0 are constant depending only on t and the local geometry of
the manifold. See [14].

In the case all the leaves of F are hyperbolic Riemann surfaces, one
can parametrize Brownian motions using the Poincaré metric. In this case,
the Lyapunov exponent depends on cohomological quantities.

Proposition 1.30 (Cohomological formula for the Lyapunov exponent).
Let (S,F) be a foliated complex surface and M be a minimal set. Assume
that the leaves of M are hyperbolic Riemann surfaces. We endow its tangent
bundle with the Poincaré metric. Then for every ergodic foliated harmonic
current T on M , we have

λ(T ) = −T ·NF
T ·KF

.

In this formula, NF = TS/TF and KF = T ∗F stand for the normal bundle
and the canonical bundle of F .

Proof. We repoduce here the proof given in [16, Appendice A]. Observe
that the formula depends only on T modulo multiplication by a positive
constant, so we can assume that the measure µ := T ∧ vg has mass one.
Introduce some coordinates (x, z) where the foliation is defined by dz = 0,
and consider the infinitesimal distance between leaves, namely the function∥∥ ∂
∂z

∥∥. This function depends on the foliated coordinates, but when changing
coordinates, it is multiplied by a positive function which is constant on
the leaves. In particular, the function ∆F log

∥∥ ∂
∂z

∥∥ is well-defined on M .

Similarly dF log
∥∥ ∂
∂z

∥∥ is a well-defined 1-form along the leaves of F .

Lemma 1.31. λ =
∫
M

∆F log
∥∥ ∂
∂z

∥∥ dµ.

Proof. The starting point of the proof relies on the fact that
∫
Htdµ =

λt, hence

λ =
d

dt |t=0

∫
Htdµ.

Now, we have ∫
Htdµ =

∫
X

[∫
Ωw
HtdW

w

]
µ(dw).

So we deduce

λ =

∫
X

[
d

dt |t=0

∫
Ωw
HtdW

w

]
µ(dw).

Fix w and introduce the universal covering L̃w of Lw, viewed as the set of
homotopy classes of paths ω : [0, 1]→ Lw starting at w with fixed extremi-
ties. Let ϕ be a primitive of the form dF log

∥∥ ∂
∂z

∥∥ which vanishes at w. The
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Laplacian of ϕ is invariant by the covering group and gives the function
∆F log

∥∥ ∂
∂z

∥∥ on the quotient. Moreover, we have Ht(ω) = ϕ(ω|[0,t]). Hence
we get

d

dt |t=0

∫
Ωw
HtdW

w =
d

dt |t=0
Ew(ϕ(ω(t))) = ∆Fϕ(w) = ∆F log

∥∥∥∥ ∂∂z
∥∥∥∥(w).

This proves the formula.

Proposition 1.30 follows from Lemma 1.31 and from the following ele-
mentary identity 2i∂∂ = ∆g · vg.

Remark 1.32. The existence of an analogous Lyapunov exponent for sin-
gular holomorphic foliations (say on algebraic surfaces) is not obvious at
all. Assume for instance we are in the following situation. Let (S,F) be a
singular holomorphic foliation of a compact complex surface, whose leaves
are hyperbolic Riemann surfaces, and whose singularities are linearizable.
Then the product T ∧ vP is finite, see [22], and Garnett’s theory can be
extended almost line by line, by using the fact that the Poincaré metric is
continuous in that case. The only problem to define the Lyapunov exponent
in this context is the integrability of the cocyle (1.29). The integrability
can be proved when the singularities are in the Siegel domain, namely con-
jugate to ones of the form xdy−αydx where α ∈ R. Then Proposition 1.30
holds with a correction term involving some indices defined at each singu-
larity. However, in the hyperbolic case =α 6= 0, the integrability remains
an open problem.

1.7. Unique ergodicity

A general principle is that foliated harmonic currents associated to minimal
sets are unique. This fact was already observed in the work of Garnett
(unique ergodicity of the weak stable foliation of the geodesic flow of a
compact surface of constant curvature −1, see [34, Proposition 5]). Here is
a general result that we obtained in collaboration with Victor Kleptsyn:

Theorem 1.33 (Unique ergodicity). Let (S,F) be a foliated complex sur-
face, and M be a minimal set. Assume that F does not support any foliation
cycle on M . Then there exists a unique harmonic current on M up to mul-
tiplication by a constant. Moreover, given a hermitian metric on TF , there
exists a number λ < 0 such that for every point w ∈M , and Ww-a.e. leaf-
wise Brownian path ω starting at w, the limit (1.28) exists and equal λ.

We refer to [21] for the proof of this result, the main step being the
existence of at least one harmonic current whose associated Lyapunov ex-
ponent is negative. This being done, a second step (the similarities between
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Brownian motions on different leaves) permits to infer unique ergodicity.
A weak version of the contraction statement was used by Thurston for the
construction of his universal circle theorem, see [70].

Observe that under the assumption of Theorem 1.33, the leaves of
M are hyperbolic Riemann surfaces since otherwise there would exist a
foliation cycle. In particular, for every uniformization f : D → L of a
leaf, the family of currents Tr defined by (1.19) converge to a certain har-
monic current T . In the context of flat P1-bundles over a compact curve
C, Bonatti and Gomez-Mont have obtained a much more precise equi-
distribution statement, namely that of large leafwise discs. See [5]. Recall
that a representation from an abstract group to PSL(2,C) is non elementary
iff it does not preserve any probability measure on P1(C).

Theorem 1.34 (Equidistribution of large leafwise discs). Let C be an al-
gebraic curve and ρ : π1(C) → PSL(2,C) be a representation sending the
peripheral curves to parabolic transformations. Assume that ρ is non ele-
mentary. Then for every sequence of points wn ∈ Sρ = C nρ P1, and every
sequence of positive numbers Rn tending to infinity, we have the following

(1.35)
1

V (Rn)
[BF(wn, Rn)]→n→∞ T,

where V (R) is the volume of a ball of radius R in hyperbolic plane, and T
is the unique harmonic current normalized so that

∫
T ∧ vP = 1.

Remark 1.36. Theorem 1.34 can be generalized when the base curve C is
a quasi-projective curve, but we will not state this version of the result here.

We end this lecture by insisting on the fact that the dynamical method
based on the Lyapunov exponent does not work to prove unique ergodic-
ity in the context of singular holomorphic foliations on compact complex
surfaces since, as was already mentioned, the definition of the Lyapunov
exponent is unclear in this case. Fornaess and Sibony succeeded proving
a similar unique ergodicity statement for generic singular holomorphic fo-
liations of the complex projective plane, see [27, 28]. Their proof is based
on a completely different approach (a computation of the self-intersection
of a foliated harmonic current together with Hodge index theorem), which
nevertheless does not extend to all compact complex surfaces: it necesitates
a non trivial automorphism group of the ambiant surface.
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2. Lecture 2: Topology of Levi-flats in algebraic
surfaces

2.1. A rough guide to complex algebraic surfaces

A smooth complex algebraic manifold is a compact complex manifold which
embeds holomorphically in a complex projective space PN(C) for some
N ≥ 1. By the GAGA principle, such a compact complex submanifold
is defined by algebraic homogeneous equations.

An important character in the understanding of an algebraic mani-
fold X is its canonical bundle, namely the bundle KX :=

∧d T ∗X, where
d is the dimension of X. The plurigenera of X are defined by the di-
mensions Pn(X) = h0(X,nKX) of the spaces of holomorphic sections of
the powers nKX of the canonical bundle (the tensor product of line bun-
dles is denoted additively in the sequel). Their asymptotics when n tends
to +∞ is governed by the Kodaira dimension k(X), which is defined by
k(X) := limn→∞

logPn
logn

. The Kodaira dimension can assume any value

k ∈ {−∞, 0, 1, . . . , d}, where by convention k(X) = −∞ means that the
plurigenera vanishes for every n.

As we have seen, algebraic curves can be classified into three classes,
depending upon the type of their universal covering: P1, C or D. This
trichotomy can be detected by the Kodaira dimension, being respectively
equal to −∞, 0 or 1.

Algebraic surfaces are more difficult to classify. The surfaces with
Kodaira dimension being −∞, 0, 1 are relatively well understood, thanks
to the classification of Enriques-Kodaira, and fall into eight classes: ra-
tional, ruled, K3, Enriques, Kodaira, toric, hyperelliptic, and properly
quasi-elliptic. We refer to [3] for a complete treatment of this topic. Con-
cerning the class of surfaces with Kodaira dimension 2, not much is known
about their classification, though many examples have been found. These
surfaces are called surfaces of general type, and in a sense, are the most
commun surfaces.

Examples of general type surfaces are smooth hypersurfaces of degree
d ≥ 5 in P3(C), quotients of bounded domains in C2, double covers of P2(C)
ramified along a non singular curve of even degree ≥ 8 etc. Surfaces with
a metric of negative holomorphic curvature are of general type. There is
a weak converse to this statement: a theorem of Mumford states that the
canonical bundle of a (minimal) surface of general type admits a metric
whose curvature is positive on all complex directions appart from a finite
union of (−2)-rational curves.
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2.2. Thurston’s eight geometries as Levi-flats in algebraic
surfaces

We will say that a 3-manifold possesses a geometry if it admits a complete
locally homogeneous metric (homogenous meaning that two different points
admit isometric neighborhoods). Thurston classified in eight classes the
compact 3-manifolds possessing a geometry, depending on the isometric
class of their universal cover among:

(2.1) S3, R3, H3, S2 × R, H2 × R, Nil, ˜SL(2,R), Sol.

The spaces Sp,Rp and Hp for p ∈ {2, 3} stand for the complete simply
connected Riemannian manifolds of dimension p of constant sectional cur-
vature, resp. 1, 0,−1. The last three models are Lie groups equipped with
left invariant metrics. We refer to the article of Scott [65] for a more com-
plete treatment. Let M be one of the eight simply connected manifolds in
the list (2.1). We say that a compact 3-manifold M carries the geometry
of M if M is the quotient of M by a discrete group of isometries of M.

All the geometries (2.1) are carried by Levi-flats in algebraic complex
surfaces, appart S3. The fact that S3 does not appear is an observation by
Inaba and Michshenko, see [46, Theorem 1], which relies on the Kähler prop-
erty for algebraic surfaces, together with the famous theorem of Novikov
on existence of Reeb components, see 2.5.

Proposition 2.2 (Inaba-Michshenko). A Levi-flat in a Kähler surface has
an infinite fundamental group. In particular, such a Levi-flat does not carry
the geometry S3.

Let us review the argument. We adopt the following definition:

Definition 2.3 (Reeb component). A Reeb component is a domain con-
tained in M which is saturated by the foliation and diffeomorphic to the
solid torus.

Recall that a Kähler form on a surface S is a closed (1, 1)-form ω which
is positive on complex lines of the tangent bundle, namely ω(u, iu) > 0 for
every u 6= 0 ∈ TS. A complex surface is called Kähler iff it admits a Kähler
form.

Lemma 2.4. The Cauchy–Riemann foliation of a Levi-flat in a Kähler
surface does not have any Reeb component.

Proof. By contradiction, the integral of ω on the boundary would both
be positive (by Kähler property) and zero (by Stokes formula).
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Hence, Proposition 2.2 is a consequence of Lemma 2.4 and of the
following result:

Theorem 2.5 (Novikov). Let M be a compact orientable 3-manifold
endowed with a transversally orientable 2-dimensional foliation F of class
C2. The following assertions are equivalent

(a) The foliation F contains a Reeb component.

(b) There exists a leaf L ∈ F such that the inclusion map π1(L)→ π1(M)
between the fundamental groups has a non-trivial kernel.

Moreover, if there exists a closed and homotopically trivial loop transverse
to F , then the foliation F contains a Reeb component. This occurs in
particular when the fundamental group of M is finite.

We now review examples showing that all of the geometries (2.1) except
S3 are carried by Levi-flats in algebraic surfaces. First we recall that the
geometries Nil, Sol and H3 are supported by non trivial surface bundles. A
surface bundle is the quotient of [0, 1]×Σ by the relation (0, x) ∼ (1,Φ(x)),
where Σ is a compact oriented surface and Φ is a diffeomorphism of Σ
preserving the orientation.

We shortly denote a surface bundle S1 nΦ Σ. Its monodromy is the
projection [Φ] of Φ in the mapping class group MCG(Σ). An element
[Φ] ∈ MCG(Σ) is called elliptic if its order is finite, reducible if there is a
finite collection of pairwise disjoint simple closed curves in Σ whose union
is invariant by a diffeomorphism in [Φ], and pseudo-Anosov in the other
cases, see [69, Section 2].

If Σ has genus 1, the surface bundle is called a torus bundle. The
group SL(2,Z) acts on Σ ' R2/Z2 by linear transformations and captures
all the classes of MCG(Σ). A unipotent torus bundle is a torus bundle
whose monodromy comes from a unipotent matrix in SL(2,Z) (reducible
monodromy), it carries the Nil geometry. A hyperbolic torus bundle is a
torus bundle whose monodromy comes from a hyperbolic matrix in SL(2,Z)
(pseudo-Anosov monodromy), it carries the Sol geometry.

We shall realize such surface bundles in singular holomorphic fibrations.
Such a fibration stands for a holomorphic map f : S → B where S is a
complex surface and B is a compact Riemann surface, see [3, Chapter V].
Let p1, . . . , pn be the singular values of f (it may be empty). A fibered
Levi-flat hypersurface is a Levi-flat hypersurface of the form f−1(γ), where
f : S → B is a singular holomorphic fibration and γ ⊂ B \ {p1, . . . , pn}
is a simple closed path. Such hypersurfaces were already considered by
Poincaré in his study of cycles on algebraic surfaces, see [63].

Proposition 2.6. Every geometry R3, H3, S2 × R, H2 × R, Nil or Sol is
carried by a fibered Levi-flat hypersurface. Moreover, H3 and H2 × R are
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carried by fibered Levi-flat hypersurfaces in surfaces of general type.

We give the sketch of proof of this fact. It is easy to realize R3, S2×R
and H2 × R by using products of compact Riemann surfaces S = Σ × B.
To exhibit fibered Levi-flat hypersurfaces with the geometries Nil and Sol,
we use the following classical proposition, see [31, Chapter II, Section 2.3].
Here the complex surface S comes from a singular holomorphic fibration
by elliptic curves over the Riemann sphere.

Proposition 2.7. Let f : S → P1(C) be a singular elliptic fibration. Let
p1, . . . , pn be the singular values of f , assume that this set is not empty.
Then the monodromy representation from the fundamental group of P1(C)\
{p1, . . . , pn} to SL(2,Z) is surjective.

Using this proposition, one easily constructs Levi-flat hypersurfaces of
the form f−1(γ) (up to finite coverings of f) carrying the geometries Nil or
Sol. We refer to [20]. To realize H3 we use Thurston’s theorem, see [69,
Theorem 0.1].

Theorem 2.8 (Thurston). Let Σ be a compact oriented surface of genus
g ≥ 2. A surface bundle S1 nΦ Σ carries the geometry H3 if and only if its
monodromy [Φ] is pseudo-Anosov.

By using the same arguments as before, the following theorem provides
fibered Levi-flat hypersurfaces modelled on H3, see [67, Corollary 1].

Theorem 2.9 (Shiga). Let B be a compact Riemann surface with genus
larger than or equal to 2. Let f : S → B be a singular holomorphic fibration,
such that the generic fiber has genus ≥ 2 and its modulus is not locally
constant (e.g. a Kodaira fibration). Let p1, . . . , pn be the critical values of
f . Then there exists an immersed simple closed curve γ in B \ {p1, . . . , pn}
whose monodromy is pseudo-Anosov.

Note that the surface S in this theorem is of general type, since the
genus of the base and the fibers of f is larger than 1, see [3, Chapter 3,
Theorem 18.4]. This completes the proof of Proposition 2.6.

It remains to treat the geometry of ˜SL(2,R). This geometry is sup-
ported for instance by non-trivial circle bundles over compact oriented
surfaces of genus g ≥ 2, see [65, Theorem 5.3]. There exists Levi-flat hyper-
surfaces with this topology in flat P1(C)-bundles over compact Riemann
surfaces. Namely, we consider a representation ρ : π1(C) → PSL(2,C),
and the flat P1(C) bundle Sρ = C nρ P1(C), see 1.3; the subset Mρ :=
Cnρ P1(R) ⊂ Sρ is an analytic Levi-flat hypersurface, having the structure
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of an oriented circle bundle over C. We denote e the Euler class of Mρ.
We recall that this invariant belongs to H2(C,Z) ' Z and characterizes
the circle bundle up to isomorphism, see e.g. [57, Section 2]. Note that
|e| = 2g − 2 if and only if ρ is an isomorphism between π1(C) and a Fuch-
sian group. In this case Mρ is diffeomorphic to the unitary tangent bundle
of C, see [72, Proposition 6.2].

Proposition 2.10. Let C be a compact oriented surface of genus g ≥ 2
and let e ∈ Z satisfying |e| ≤ 2g − 2. There exists a flat P1(C)-bundle S
over C and a Levi-flat hypersurface M ⊂ S which is diffeomorphic to a
circle bundle over C with Euler class e.

Proof. If |e| ≤ 2g − 2 then there exists a representation ρ : π1(C) →
PSL(2,R) such that Mρ has Euler class e, see [38, Theorems A and B].

2.3. Levi-flat circle bundles in surfaces of general type

We begin with an upper bound on the Euler class of Levi-flat circle bundles.

Proposition 2.11. Let S be a surface of general type and M be a Levi-flat
hypersurface of class C2 in S. Assume that M is an oriented circle bundle
over a compact oriented surface C of genus g ≥ 2. Then the Euler class of
M satisfies |e| ≤ 2g − 2.

Sketch of proof. We can assume e 6= 0. We first prove that the Cauchy–
Riemann foliation has no compact leaf. As we will see later, see 2.4, the
general type assumption implies that every leaf is hyperbolic. Assuming
by contradiction that there exists a compact leaf L, it would have genus
g ≥ 2, and the Euler class being different from 0, it is easy to see that
L would be compressible, namely the map π1(L) → π1(M) would not be
injective. Novikov’s theorem would then provide a Reeb component, which
contradicts the fact that the surface is Kähler. Hence, there are no compact
leaves, and the result follows from the combination of the next two results.

Theorem 2.12 (Thurston). Let M be an oriented circle bundle over a
compact oriented surface Σ of genus g ≥ 2. Assume that F is an ori-
ented 2-dimensional foliation on M of class C2, and that F does not have
any compact leaf. Then there exists a diffeomorphism Ψ of M of class C2

isotopic to the identity such that Ψ∗F is transverse to the circle fibration.

Theorem 2.13 (Milnor-Wood). Let M be an oriented circle bundle over
a compact oriented surface Σ of genus g ≥ 2. If M supports a transversally
oriented 2-dimensional foliation which is transverse to the circle fibration,
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then its Euler class satisfies |e| ≤ 2g − 2.

Remark 2.14. The question of the existence of Levi-flats in algebraic sur-
faces diffeomorphic to circle bundles over hyperbolic compact surface with
arbitrarily large Euler class, obtained by the technique called in french
“tourbillonement de Reeb”, remains open.

The following result provides a construction of Levi-flat hypersurfaces
in surfaces of general type with a non trivial Euler class.

Theorem 2.15. For every ε > 0 there exist a surface of general type Sε
and a Levi-flat hypersurface Mε ⊂ Sε which is diffeomorphic to an oriented
circle bundle Mε over a compact oriented surface Cε of genus ≥ 2. We have
|e(Mε)/χ(Cε)| ∈ [1/5 − ε, 1/5], where e(Mε) denotes the Euler class of Mε

and Eu(Cε) denotes the Euler characteristic of Cε.

Sketch of proof. Here we only prove that there exists a Levi-flat in a
surface of general type which is diffeomorphic to a non trivial circle bun-

dle, hence carrying the geometry ˜SL(2,R). Let C be a compact algebraic
curve of genus g ≥ 2. By the uniformization theorem, see 1.13, there is a

biholomorphism D : C̃ → H which is equivariant w.r.t. some representation
ρ : π1(C) → Aut(H) ⊂ Aut(P1(C)). Let (Sρ,Fρ) be the flat P1(C)-bundle
over C of monodromy ρ, defined as in 1.3. There is a Levi-flat defined by
Mρ = C n P1(R), which is diffeomorphic to the unitary tangent bundle of
the surface C equipped with e.g. its Poincaré metric. The bundle Sρ → C
has a holomorphic section s : C → Sρ defined as the level of the universal
covers by s(x) = (x,D(x)). Of course we are not done since the Kodaira
dimension of Sρ is −∞, hence Sρ is not of general type.

We construct (Sε,Mε) as a double ramified covering of (Sρ,Mρ). To
define such a ramified cover, let E → Sρ be a holomorphic line bundle and
h : Sρ → 2E (recall our additive notation for tensor product of line bundles)
be a holomorphic section, whose zero divisor h−1(0) is a smooth reduced
algebraic curve in Sρ. The algebraic surface

(2.16) Sε = {(w, ζ) ∈ E | ζ2 = h(w)}.

is a 2 : 1 ramified cover (defined by π(x, ζ) = x), ramifying over h−1(0). We
easily verify that the pull-back of Fρ is a singular holomorphic foliation Fε
whose singularities are the pull-back in Sε of the points of tangency between
Fρ and h−1(0). Hence assuming that h−1(0) intersects Mρ transversally,
the set Mε = π−1(Mρ) is a Levi-flat hypersurface of Sε. To understand its
topology, one has to understand the topology of the link h−1(0)∩Mρ in Mρ.
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It is well-known that if E is sufficiently ample1 then the surface Sε
constructed above is of general type (e.g. if F is ample, then the sufficiently
large powers of F will work). For such a line bundle, choosing at random
the section h of its square would probably lead to a hyperbolic manifold
Mε. Hence we will need to make a very particular choice. Define F =
O
(
ks +

∑
j∈J fj

)
where k is an integer, and fj are distinct fibers of the

fibration Sρ → C. If we assume furthermore that k and the number |J | of
fibers fj are both even, then it is possible to find a line bundle E such that
2E = F . By definition of F there exists a holomorphic section h0 : Sρ → F
such that h−1

0 (0) = s ∪
⋃
j fj. Observe that the zero set of h0 is transverse

to Mρ and that its intersection with Mρ is a union of |J | fibers of the
circle fibration Mρ → C, hence is a quite simple link. The section h0 is
not convenient for our purpose, since its zero set is not smooth (at the
intersection points of fj and s). Nevertheless, we can show that if k and
|J | are large enough, the line bundle E is ample, and one can make a small
perturbation h of h0 with a smooth zero set. For such a choice, the couple
(E, h) yields the desired Levi-flat Mε ⊂ Sε diffeomorphic to a non trivial
circle bundle. See details in [20].

The sup of the ratios |e(M)/Eu(C)|, where M is a Levi-flat in a surface
of general type diffeomorphic to a circle bundle of Euler class e(M) over a
hyperbolic compact surface C, is unknown. The following result shows that
the value |e(M)/Eu(C)| = 1 (the maximal permitted by Proposition 2.11)
is not reached:

Theorem 2.17. A Levi-flat hypersurface of class C2 in a surface of gen-
eral type is not diffeomorphic to the unitary tangent bundle of a hyperbolic
compact two dimensional orbifold.

The proof of this result uses a foliated Lyapunov exponent associated to
the Cauchy–Riemann foliation and its sketch is postponed to Corollary 2.25.
See [20] for details.

2.4. Hyperbolicity and topological consequences

The following result will be crucial for studying the topology of Levi-flats
in surfaces of general type.

Proposition 2.18. Let M be a Levi-flat of class C2 in a surface of general
type. Then the Cauchy–Riemann foliation of F has hyperbolic leaves.

1Ample means that it carries a metric of positive curvature.
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Sketch of proof. We prove Proposition 2.18 under the assumption that
KS is ample, namely that it has a metric of positive curvature. Assume
that F has a compact leaf L. Adjunction formula then gives

Eu(L) = −L ·KS − L ·NL.

The first term of the right hand side is < 0 because KS has a metric of
positive curvature, and the second one is zero because the normal bundle
of L has a flat connexion (the Bott connexion induced by the foliation),
hence C is hyperbolic.

Assume now that there exists a parabolic leaf L. A theorem of Candel
shows that there exists an Ahlfors current T such that T ·KF = 0 (see [11]).
Using the leafwise adjunction formula we obtain

T ·KF = T ·KS + T ·NF

The right hand side is > 0 for the same reason as before (take the Bott
connexion on NF in equation (1.20)). This yields a contradiction.

We deduce the following application:

Theorem 2.19. Let S be a surface of general type and let M be an im-
mersed Levi-flat hypersurface of class C2 in S. Then the fundamental group
of M has exponential growth. In particular M does not carry the geometries
S3, S2 × R, R3 nor Nil.

Sketch of proof. Since there is no Reeb component, Novikov’s theory
shows that the leaves of the pull-back of the Cauchy–Riemann foliation in
the universal cover of M are simply connected, and that moreover they are

quasi-isometrically embedded in M̃ . Hence, M̃ has exponential growth, by
Proposition 2.18 and by Verjovsky-Candel result on the continuity of the
Poincaré metric, see 1.17.

Remark 2.20. The hyperbolicity of the Cauchy–Riemann foliation is re-
lated to the following open conjecture.

Conjecture 2.21 (Green-Griffiths). Let S be a surface of general type.
There exists a proper subvariety Y ⊂ S such that every entire curve f : C→
S satisfies f(C) ⊂ Y .

This problem was solved by McQuillan [59] for surfaces of general type
satisfying c2

1(S) > c2(S). He proved that every non-degenerate entire curve
f : C → S is tangent to a singular holomorphic foliation on (a finite cover
of) S. A contradiction is deduced from positivity properties of the tangent
bundle of the foliation. Brunella provided an alternative proof in [7] by
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using the normal bundle of the foliation. An important difficulty in these
works is that f(C) can contain a singular point of the foliation. In our non-
singular context the proof is simpler because we directly use adjunction
formula. We refer to the survey [23] for recent results concerning Green-
Griffiths conjecture.

2.5. The Anosov property and application to the topology of
Levi-flats

A Levi-flat M ⊂ S in a complex surface is called Anosov if its Cauchy–
Riemann foliation is topologically conjugate to the weak unstable foliation
of a 3-dimensional Anosov flow on some compact 3-manifold N . Classical
examples of Anosov flows are the geodesic flow on the unitary tangent
bundle of compact orientable surfaces of genus ≥ 2 and the horizontal flow
on hyperbolic torus bundles. There are many other examples, for instance
on hyperbolic 3-manifolds and graph 3-manifolds, see [30, 39, 41]. One
can verify that Anosov Levi-flat hypersurfaces do not have any transverse
invariant measure, their foliation F is therefore hyperbolic. We have the
following upper bound for the Lyapunov exponent.

Theorem 2.22. Let S be a complex surface and M be an immersed Anosov
Levi-flat hypersurface in S. We endow the leaves of the Cauchy–Riemann
foliation F with the Poincaré metric gP . Let T be an ergodic foliated har-
monic current of F . Then the Lyapunov exponent of T satisfies λ(T ) ≤ −1.

Sketch of proof. We use that the trajectories of the Anosov flow in the
hyperbolic uniformizations of the leaves are quasigeodesics for the Poincaré
metric, to produce a new flow by stretching these trajectories to geodesics.
We obtain a continuous flow on M whose orbits are leafwise geodesics for
the Poincaré metric. Let vP the leafwise Poincaré volume form. Since
the result does not depend the projective class of T , we can assume that
the foliated harmonic measure T ∧ vP has mass one. This latter is shown
to be a SRB measure for the stretched flow. Moreover, the Lyapunov
exponents of this measure are 1, 0, λ. (The Lyapunov exponents are not
a priori defined since the stretched flow is only continuous. However, it is
smooth along the leaves, which gives the exponents 1 and 0, and using the
C1 transverse structure of the foliation we can define another exponent,
which we identify with λ). The ingredients for this computation involve
the shadowing property of geodesics by Brownian paths due to Ancona, see
[2, théorème 7.3, p. 103]. The bound λ(T ) + 1 ≤ 0 to be proved then relies
on volume estimates in the spirit of Margulis-Ruelle’s inequality.

Corollary 2.23. Let S be a surface of general type and let M be an im-
mersed Levi-flat hypersurface in S. Then M is not Anosov.
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Sketch of proof. We indicate the proof when KS has a metric of positive
curvature. The proof then relies on the leafwise adjunction formula, which
gives T ·KF = T · NF + T ·KS > T · NF . We deduce that the Lyapunov
exponent verifies the following pinching estimates

(2.24) −1 < λ(T ) ≤ 0

which is contradictory with being Anosov by Theorem 2.22.

Corollary 2.25. A Levi-flat in a surface of general type is not diffeo-
morphic to a quotient of the Lie groups Sol or PSL(2,R) by a cocom-
pact lattice.

Sketch of proof. The proof is by contradiction. Assuming that a Levi-
flat is diffeomorphic to one of those manifolds, we use deep results of
resp. Ghys/Sergiescu, see [37], and Matsumoto, see [57], which enable to
prove that the Levi-flat is Anosov. Hence the contradiction comes from
Corollary 2.23. In order to apply the mentioned theorems, one needs to
verify that the Cauchy–Riemann foliation has no compact leaf, which is
done by using the hyperbolicity of the leaves together with Novikov’s the-
ory.

3. Lecture 3 – Complex projective structures:
Lyapunov exponent, degree and harmonic measure

3.1. A rough guide to complex projective structures

Let C be a smooth complex quasi-projective curve of negative Euler char-
acteristic. We denote by g its genus and by n its number of punctures. A
complex projective structure on C is a maximal atlas of holomorphic charts
zj : Uj ⊂ C → P1(C) (called projective charts) which overlap as

zj =
azk + b

czk + d
,

on the intersection Uj ∩ Uk, where a, b, c, d are complex numbers such that
ad − bc 6= 0. We will denote P1 = P1(C), and will refer to P1-structures
instead of complex projective structures. Two P1-structures on C are equiv-
alent if they define the same atlas of projective charts.

It is convenient to define a P1-structure on C in terms of the so-called
development-holonomy pair (dev, hol). Each projective chart can be ex-

tended analytically as a locally injective meromorphic map dev : C̃ → P1,
satisfying the equivariance property dev ◦ γ = hol(γ) ◦ dev, where hol is
a representation π1(C) → PSL(2,C). A development-holonomy pair is
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not unique for a given projective structure. Namely, if A ∈ PSL(2,C),
(A ◦ dev, A ◦ hol ◦A−1) gives another development-holonomy pair. We refer
here to the survey paper by Dumas, see [24] for a comprehensive treatment
of this notion.

When the surface C is not compact (hence by assumption it is biholo-
morphic to a compact Riemann surface punctured at a finite set), we restrict
ourselves to the subclass of parabolic P1-structures. Such a structure has
the following well-defined local model around the punctures: each puncture
has a neighborhood which is projectively equivalent to the quotient of the
upper half plane by the translation z 7→ z + 1.

A P1-structure on C can be understood by the way of the Schwarzian
derivative. Indeed, introduce the following differential operator called the
Schwarzian:

(3.1) S(f) := {f, z}dz2 where {f, z} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

for every holomorphic local diffeomorphism f : U ⊂ C → C. We have the
following two fundamental properties

(1) S(g ◦ f) = S(f) + f ∗S(g) for every local diffeomorphisms f : U ⊂
C→ V ⊂ C and g : V ⊂ C→ W ⊂ C.

(2) S(f) = 0 iff f(z) = az+b
cz+d

for some complex numbers a, b, c, d such that
ad− bc 6= 0.

In particular, let σ1 and σ2 be two P1-structures on C. Pick projective
charts z1 and z2 defined on some commun open set U ⊂ C of σ1 and
σ2 respectively, and define the holomorphic quadratic differential qσ1,σ2 =
{z2, z1}dz2

1 . Properties (1) and (2) show that qσ1,σ2 does not depend on
the chosen projective charts z1 and z2, and thus defines a holomorphic
quadratic differential on the curve C. Reciprocally, given a P1-structure
σ1 and a holomorphic quadratic differential q on C, there exists a unique
P1-structure σ2 on C such that q = qσ1,σ2 . In particular, at least when C is
compact, the set of projective structures on C is an affine space directed by
the vector space of holomorphic quadratic differentials on C. This shows
that the set P (C) of P1-structures on a compact algebraic curve of genus
g ≥ 2 is isomorphic to C3g−3. We will not discuss here the analogous
computation in the punctured case, which relies on results of Fuchs and
Schwarz, but we state the result: the set P (C) of parabolic P1-structures
on C is isomorphic to C3g−3+n.

One of the interests in studying complex projective structures comes
from their relations to uniformization problems in two or three dimen-
sions. The main illustration of this is certainly given by the uniformization
theorem of Poincaré-Koebe, which in particular defines a canonical projec-
tive structure σFuchs (by viewing C as a quotient of H under a Fuchsian
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group). Other kind of uniformizations have been considered, e.g. Schottky
uniformizations, and lead to parabolic P1-structures as well. More gener-
ally, the Ahlfors finiteness theorem provides many examples of parabolic
P1-structures:

Theorem 3.2 (Ahlfors finiteness theorem). Let Γ be a finitely generated
discrete subgroup of PSL(2,C). Then the quotient of the discontinuity set
Ω ⊂ P1 by Γ is a finite type Riemann surface. Moreover, if Γ is torsion
free, the natural P1-structure that it inherits is parabolic.

The last (less known) part of the theorem is proved in [1, Lemma 1].
The structures produced by Theorem 3.2 have been known as covering
projective structures, because they are characterized by the fact that the
developing map is a covering onto its image [49, 50]. A particular example
is given by quasi-Fuchsian deformations of the canonical structure σFuchs.
These structures play an important role in Teichmüller theory. Recall that
the Teichmüller space T (C) is defined as the set of equivalence classes of
couples (D, [Ψ]) where D is a Riemann surface and [Ψ] is a homotopy class
of diffeomorphism between C and D. Two couples (D1, [Ψ1]) and (D2, [Ψ2])
are considered as equivalent if Ψ2 ◦Ψ−1

1 is homotopic to a biholomorphism
from D1 to D2. Recall the following important result.

Theorem 3.3 (Bers simultaneous uniformization theorem). For every
(D, [Ψ]) ∈ T (C), there exists a unique representation ρ from π1(C) to
PSL(2,C) (up to conjugation) preserving a partition P1 = DC ∪ Λ ∪ DD,
where Λ is a topological circle, and DC (resp. DD) is the image of a ρ-

equivariant univalent holomorphic (resp. anti-holomorphic) map from C̃

(resp. D̃, observe that we have an identification of π1(D) with π1(C) in-
duced by Ψ) to P1.

Let P (C) be the set of (parabolic) P1-structures on C. Observe that
for every (D, [Ψ]) ∈ T (C), the holomorphic univalent ρ-equivariant map-
ping given by Theorem 3.3 produces a (parabolic) P1-structure, and that
this later determines the element (D, [Ψ]). This defines an embedding
B : T (C) → P (C), called the Bers embedding. Bers proved that the map
B is holomorphic, and that its image B(C) is relatively compact in P (C).
This later is called the Bers slice.

There are many other examples of parabolic P1-structures. For instance
surgery operations such as grafting (see Hejhal’s original construction in
[42]) may produce a parabolic P1-structure with holonomy a Kleinian group
that is not of covering type.

Theorem 3.4 (Hejhal). There exist P1-structures on compact curves such
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that the developing map is not a covering onto its image, but whose holon-
omy has image a discrete subgroup of PSL(2,C).

Such projective structures are usually called exotic. The prototype of
such an exotic projective structure is obtained by inserting a Hopf annulus
after cutting a given P1-structure along a simple closed curve. More pre-
cisely start with the quotient Cu of H by a lattice Γ ⊂ PSL(2,R) containing
as a primitive element the hyperbolic transformation γ(z) = αz for α > 1,
and consider

C =
(
Cu \ γu ∪H \ γH

)
/{γ±u ' γ∓H},

where γu = α\iR+∗ ⊂ Cu, H = α\C∗ is the Hopf torus, and γH = α\iR+∗ ⊂
H. The set of exotic P1-structures in P (C) is organized as a countable union
of non empty connected open subsets called exotic components.

Using the point of view of the Schwarzian derivative, one can construct
yet other examples of P1-structures on C. For instance, one can prove that
there exists a non empty open subset of P (C) formed by P1-structures on
C whose holonomy has image a dense subgroup of PSL(2,C). We refer to
[9] for a proof of this fact in the case of the fourth punctured sphere, which
readily extends to all algebraic curves.

There are nice pictures of the decomposition of P (C) into the vari-
ous subsets described above: Bers slice, exotic components, etc. We refer
e.g. to [48].

3.2. The degree of a P1-structure

Let gP be the unique complete conformal metric of curvature −1 on C. It
is well known that when C is of finite type, the hyperbolic metric has finite
volume. Recall that a representation π1(C)→ PSL(2,C) is non elementary
if it does not preserve any probability measure on the Riemann sphere. The
holonomy of a parabolic projective structure always non elementary: see
[33, Theorem 11.6.1, p. 695] for the compact case, and [9, Lemma 10] for
the punctured case.

If σ is a parabolic projective structure, we want to define δ(σ) as a
nonnegative number counting the average asymptotic covering degree of

devσ : C̃ → P1. For any x ∈ C̃ we denote by B(x,R) the ball centered at x
of radius R in the Poincaré metric, and by vol the hyperbolic volume.

Definition-Proposition 3.5. Let C be a Riemann surface of finite type
and σ be a parabolic P1-structure on X. Choose a universal convering

c : C̃ → C, and a developing map dev : C̃ → P1. Let (xn) be a sequence of

points in C̃ whose projections c(xn) stay in a compact subset of C, Rn be
a sequence of radii tending to infinity, and (zn) be an arbitrary sequence in
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P1. Then the limit

(3.6) δ = lim
n→∞

#B(xn, Rn) ∩ dev−1(zn)

vol(B(xn, Rn))

exists, and does not depend on the chosen sequences (xn), (Rn) nor on the
developing map dev. The number δ is invariant by taking finite coverings,
so does not behave like a degree. We define deg(σ) = vol(C)δ, and call this
number the degree of the P1-structure.

The very reason for the normalization deg(σ) = vol(X)δ is clearer when
dealing with branched projective structures. Such structures are defined by
non constant equivariant meromorphic maps defined on the universal cover
w.r.t. a representation of the covering group to PSL(2,C). The most basic
example of a branched projective structure is a non constant meromorphic
function f : C → P1. For such a structure, one verifies that the limit (3.6)
exists, and that the average degree in the sense of 3.5 coincides with the
topological degree of the map f .

The existence of the limit in (3.6) is not obvious, in particular due
to the possibility of boundary effects. The proof ultimately relies on the
equidistribution theorem of Bonatti and Gomez-Mont [5] mentioned in the
first lecture, Theorem 1.34.

It also makes use of the following dictionary between projective struc-
tures on curves and transverse sections of flat P1-bundles over curves, which
was developped in depth in [53].

Suppose that σ is a P1-structure. Introduce the flat P1-bundle
(Shol,Fhol), see 1.3, where (dev, hol) is a development-holonomy pair for
the structure σ. Observe that the bundle map Shol → C has a section
s : C → Shol defined at the level of the universal covers by x 7→ (x, dev(x)).
This section – we identify the section and its image here – is transverse to
the foliation Fhol.

Reciprocally, if ρ : π1(C) → PSL(2,C) is any representation, a section
of Sρ transverse to the foliation Fρ gives rise to a projective structure on
C, by restricting the transverse projective structure of the foliation Fρ
to the section. This operation is the inverse of the one described in the
last paragraph.

Sketch of proof of 3.5. After these preliminaries, let us sketch the proof
of the convergence (3.6). We will give the proof only in the case C is com-
pact. The punctured case necesitates a separate technical analysis. We
refer to [19] for the details. Let σ a P1-structure and s its corresponding
section of Shol. We denote by T a foliated harmonic current on (Shol,Fhol)
normalized so that its product with the Poincaré volume form is 1. The
number #B(xn, Rn) ∩ dev−1(zn) is easily seen to be the number of inter-
section of points of the leafwise ball BF(wn, Rn) with s, where wn is the
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projection in Sρ of the point (xn, zn). Hence since the leafwise balls nor-
malized by their volume (considered as currents) tend to T (Theorem 1.34),

one shows (with a little additional technical work) that #B(xn,Rn)∩dev−1(zn)
vol(B(xn,Rn))

tends to the geometric intersection product of T with s. This product is
defined in the following way: T can be thought of as a family of transverse
measures for the foliation Fρ, and it induces a Radon measure on any curve
of Sρ. The mass of this measure is by definition the intersection product of
T with s and is denoted T ∧̇ s.

A corollary from the proof of 3.5 yields the following.

Corollary 3.7. The degree vanishes iff σ is a covering projective structure.

3.3. Lyapunov exponent of P1-structures

Fix a basepoint ? ∈ C, in particular an identification between the covering
group π1(C) and the usual fundamental group π1(C, ?). As C is endowed
with its Poincaré metric, Brownian motion on C is well-defined. Let W? be
the Wiener measure on the set of continuous paths ω : [0,∞)→ X starting
at ω(0) = ?.

Definition-Proposition 3.8. Let C and σ be as above. Define a family
of loops as follows: for t > 0, consider a Brownian path ω issued from ?,
and concatenate ω|[0,t] with a shortest geodesic joining ω(t) and ?, thus
obtaining a closed loop ω̃t. Then for W? a.e. Brownian path ω the limit

(3.9) χ(σ) = lim
t→∞

1

t
log ‖hol (ω̃t)‖

exists and does not depend on ω. This number is by definition the Lyapunov
exponent of σ.

Here ‖ · ‖ is any matrix norm on PSL(2,C). The existence of the limit
in (3.9) was established in [18, Definition-Proposition 2.1]. As expected
it is a consequence of the subadditive ergodic theorem. In the notation
of [18], χ(σ) = χBrown(hol). Another way to define χ(σ) goes as follows
(see [18, Remark 3.7]: identify π1(C) with a Fuchsian group Γ and choose
independently random elements γn ∈ Γ∩BH(0, Rn), relative to the counting
measure. Here (Rn) is a sequence tending to infinity as fast as, say nα for
α > 0. Then almost surely

1

dH(0, γn(0))
log ‖hol(γn)‖ −→

n→∞
χ(σ).

The following formula relates the Lyapunov exponent χ(σ) to the de-
gree defined in the last subsection.
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Theorem 3.10. Let σ be a parabolic holomorphic P1 structure on C. Let
as above χ(σ), δ(σ), and deg(σ) respectively denote the Lyapunov expo-
nent, the unnormalized degree and the degree of σ. Then the following
formula holds:

(3.11) χ(σ) =
1

2
+ 2πδ(σ) =

1

2
+

deg(σ)

|eu(X)|
.

Theorem 3.10 could be understood as the analogue of the familiar
Manning-Przytycki formula [55, 64] for the Lyapunov exponent of the max-
imal entropy measure of a polynomial. Recall that this formula states that
for a polynomial P of degree d in one variable

χ = log d+
∑

P ′(c)=0

G(c),

where G is the Green function. See [55, 64]. The term log d is constant
on parameter space (equal to the entropy of the polynomial P ), as the
term 1

2
in formula (3.11), and the term

∑
cG(c) is non negative, as well as

the degree.
This reinforces an analogy between Mandelbrot sets and Bers slices that

was brought to light by McMullen [58]. Namely, the Lyapunov exponent is
minimal on these sets (equal to log d for the Mandelbrot set and to 1/2 for
the Bers slice). We will develop more on this analogy later on.

Sketch of proof. Surprisingly enough, the proof is based on the ergodic
theory of holomorphic foliations. Again we will indicate the proof only when
C is compact, and refer to [19] for the punctured case. Recall that there is a
dictionary between P1-structures and transverse sections of flat P1-bundles.
In this dictionary, there is a simple relation between the Lypaunov exponent
χ defined in 3.8 and the foliated Lyapunov exponent defined in 1.6.

Lemma 3.12. Let σ be a P1-structure, (dev, hol) a development-holonomy
pair, and λ(σ) be the Lyapunov exponent of the foliated complex surface
(Shol,Fhol) computed w.r.t. the leafwise Poincaré metric. Then χ(σ) =
−2λ(σ).

The proof of this lemma essentially follows from the formula of the
derivative of a Moebius map in the spherical metric, namely if h(z) = az+b

cz+d
,

then ‖Dh(z)‖ = |ad−bc|
|az+b|2+|cz+d|2 . We refer to [19] for the detailed proof of

Lemma 3.12.
Next, the proof of Theorem 3.10 relies on cohomological computations

in H1,1(Shol,C). Recall that a P1-bundle is an algebraic surface, by the
GAGA principle, and in particular is Kähler. Also recall that by the ∂∂-
lemma, in a Kähler compact surface, a closed (1, 1)-form is exact iff it is
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∂∂-exact. This means that T · E = T · F if E and F have the same Chern
classes, see 1.4.

The cohomology of Shol is easy to compute. Indeed, a P1-bundle over
a curve is diffeomorphic to a product as soon as there exists a section of
even self-intersection. In our situation, we have such a section at hand: the
section s being (at the level of the universal covers) the graph of dev. We
claim: s2 = Eu(C). This is due to the fact that there is an isomorphism
between the tangent bundle of C and its normal bundle, since C is both
transverse to the foliation Fhol and to the fibration Shol → C. In particular,
we infer H1,1(Shol,C) = C[s] ⊕ C[f ], where f is any fiber of the fibration.
The intersection product on H1,1(Shol,C) is given by s2 = Eu(C), f 2 = 0,
and f · s = 1.

After these preliminaries, let us use the combination of Lemma 3.12
and Proposition 1.30, to get

χ =
1

2

T ·NF
T ·KF

.

We have NF ·f = 2 and NF ·s = Eu(C). So we infer [NF ] = 2[s]−Eu(C)[f ].
Let T be the unique harmonic current whose product with the Poincaré

volume form is equal to 1. We then have T ·f = 1
vol(C)

and T ·KF = |Eu(C)|
vol(C)

.

This gives

χ =
vol(C)

2Eu(C)
(2 T · s+ |Eu(C)| T · f) = 2π T · s+

1

2
.

The proof is completed by showing that the cohomological intersection T ·s
coincides with the geometric intersection δ = T ∧̇ s. This last fact is not
immediate since one cannot regularize the current of integration on s (recall
s2 < 0) but this is done by hand. We refer to [19] for more details.

3.4. Harmonic measures of P1-structures

Let C be a smooth quasi-projective curve of negative Euler characteristic
and σ a parabolic type projective structure on C. As before, we endow C
and its universal covering with the Poincaré metric. We associate to σ a
family of harmonic measures {νx}x∈X̃ on the Riemann sphere, indexed by

C̃. It can be defined in several ways. The following appealing presentation
was introduced by Hussenot in his PhD thesis [45]:

Definition-Proposition 3.13 (Hussenot). Let C be a Riemann surface
of finite type and σ be a parabolic projective structure on C. Choose a

representing pair (dev, hol). Then for every x ∈ C̃, and Wx a.e. Brownian
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path starting at ω(0) = x, there exists a point e(ω) on P1 defined by the
property that

1

t

∫ t

0

dev∗
(
δω(s)

)
ds −→

t→+∞
δe(ω).

The distribution of the point e(ω) subject to the condition that ω(0) = x is
the measure νx. In particular, due to the conformal invariance of Brownian
motion, for a covering P1-structure, we recognize the classical harmonic
measures on the limit set of a Kleinian group.

Another definition of the harmonic measures is based on the so-called
Furstenberg boundary map, which was designed in [32], based on the dis-
cretization of Brownian motion in the hyperbolic plane H (see also Margulis
[56, Theorem 3] for a different approach). Furstenberg showed that if Γ is a
cofinite Fuchsian group and ρ : Γ→ PSL(2,C) is a non-elementary represen-
tation, there exists a unique measurable equivariant mapping θ : P1(R) →
P1 defined a.e. with respect to Lebesgue measure. Choose a biholomor-

phism C̃ ' H, thereby identifying π1(C) with a cofinite Fuchsian group.
For every x ∈ H, let mx be the classical harmonic measure (i.e. the exit dis-
tribution of Brownian paths issued from x), which is a probability measure
with smooth density on P1(R). The harmonic measure νx is then defined
by νx = θ∗mx. From this perspective it is clear that, the measures νx are
mutually absolutely continuous and depend harmonically on x.

Theorem 3.14. Let C be compact algebraic curve and σ be a parabolic
projective structure on C. Let as above χ be its Lyapunov exponent and
(νx)x∈X̃ be the associated family of harmonic measures. Then for every x,

dimH(νx) ≤
1

2χ
≤ 1.

Furthermore dimH(νx) = 1 if and only if the developing maps are injective.

So, as in the polynomial case, formula (3.11) provides an alternate
approach to the classical bound dimH(ν) ≤ 1 for the harmonic measure on
boundary of discontinuity components of finitely generated Kleinian groups,
which follows from the famous results of Makarov [54] and Jones–Wolff [47].
In addition, with this method we are also able to show that dimH(ν) < 1
when the component is not simply connected. Indeed we have the more
precise bound dimH(ν) ≤ A

2χ
, where 0 ≤ A ≤ 1 is an invariant of the flat

foliation, and A < 1 when hol is not injective. This A has been defined by
Frankel and is called the action, see [29].

We also see that the value of the dimension of the harmonic measures
detects exotic quasifuchsian structures, that is, projective structures with
quasifuchsian holonomy which do not belong to the Bers slice.
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Sketch of proof. The curve C will be assumed to be compact, we refer
to [19] for the punctured case. The main observation is to see the family of
harmonic measures of a P1-structure as a foliated harmonic current. This
is summarized in the following statement.

Proposition 3.15. Let σ be a P1-structure on a compact C, and let
(dev, hol) be a development-holonomy pair. Let (Shol,Fhol) be the flat P1-
bundle constructed in 1.3. Let T ′ be the unique foliated harmonic current
whose intersection with the fibers of Shol is 1. The family of harmonic mea-

sures of σ is the family of desintegration of a (lift) of T ′ to C̃ × P1 on the
fibers x× P1.

Observe that the current T ′ in this proposition is equal to T ′ = vol(C)T ,
where T is the current such that the foliated harmonic measure µ = T ∧ vP
has mass one. The proof of proposition relies on the fact that the map
x 7→ νx is harmonic, which is clear from the Furstenberg/Margulis point
of view.

We now review an invariant of the harmonic current T that was intro-
duced by Frankel, under the name of action. See [29]. It is defined as the
non negative number

(3.16) A = A(T ) =

∫
Shol

‖∇F logϕ‖2 dµ,

where the functions ϕ are the densities of the desintegration of T along
the leaves. The function ϕ are positive harmonic functions, so that the
integral (3.16) is convergent. More precisely, by observing that the functions
ϕ can be extended analytically on the universal cover of the leaves, and
applying the Schwarz Pick lemma, one shows that A(T ) ≤ 1. See [16] for
more details.

Using the fact that ϕ is harmonic, one finds the formula ‖∇ logϕ‖2 =
−∆ logϕ, so that ∫

Shol

∆(logϕ) dµ = −A.

Using exactly the same argument as in the proof of Lemma 1.31, we infer
the following result:

Lemma 3.17. For µ-a.e. w ∈ Shol, and Ww-a.e. leafwise Brownian path
ω starting at w, we have

lim
t→∞

1

t
logDT (hω|[0,t])(w) = −A,

where DTh :=
h−1νω(t)

νω(0)
is the Radon-Nikodyn derivative with respect to the

measure induced by T on P1-fibers, namely the family of harmonic measures.
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Hence, for every ε > 0, the maps hω|[0,t] contract conformally the spheri-

cal distances by the factor exp((λ±ε)t), whereas they contract the harmonic
measures by the factor exp((−A(T )± ε)t). We deduce the heuristic

dim(νx) =
A

|λ|
=

A

2χ
≤ 1

2χ
.

Using a weak notion of dimension, the so-called essential dimension (de-
noted by dimess), one can prove part of this heuristic, namely the inequality

(3.18) dimess(νx) ≤
A

2χ
.

This uses an argument of Ledrappier [52, Thm 1] in the context of random
product of matrices that we adapt to our setting. The proof of Theorem
3.14 then follows from (3.18) and the fact that the Hausdorff dimension is
bounded by the essential dimension.

3.5. Geometry of Bers slices

As another application of formula (3.11), we recover a result due to Shiga [66].

Theorem 3.19 (Shiga). Let C be a hyperbolic Riemann surface of finite
type (of genus g with n punctures). The closure of the Bers embedding
B(C) is a polynomially convex compact subset of the space P (C) ' C3g−3+n

of holomorphic projective structures on C. As a consequence, B(C) is a
polynomially convex (or Runge) domain.

Recall that a compact set K in CN is polynomially convex if K̂ =
K, where

K̂ =

{
z ∈ CN , |P (z)| ≤ sup

K
|P | for every polynomial P

}
.

An open set U ⊂ CN is said to be polynomially convex (or Runge) if

for every K b U , K̂ ⊂ U . The theorem may be reformulated by saying
that B(C) is defined by countably many polynomial inequalities of the
form |P | ≤ 1. This is not an intrinsic property of Teichmüller space, but
rather a property of its embedding into the space P (C) of holomorphic
projective structures on C (as opposed to the Bers-Ehrenpreis theorem
that Teichmüller is holomorphically convex).

Shiga’s proof is based on the Grunsky inequality on univalent func-
tions. Only the polynomial convexity of B(C) is asserted in [66], but the

proof covers the case of B(C) as well. Our approach is based on the ele-
mentary fact that the locus of minima of a global psh function on CN is
polynomially convex.
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Sketch of proof. We just prove here the polynomial convexity of the Bers
slice B(C). The polynomial convexity of B(C) is more involved, we refer
to [19]. It was shown in [18] that σ 7→ χ(σ) is a continuous (Hölder)
plurisubharmonic (psh for short) function on P (X), hence it follows from
formula 3.11 that deg is continuous and psh, too. In addition we see that
χ(σ) reaches its minimal value 1

2
exactly when deg(σ) = 0, see 3.7. This

already proves that the interior of {δ = 0}, namely the set of covering
P1-structures, is polynomially convex. But this set is exactly the Bers slice,
so we are done.

We finish this lecture by reviewing yet another application of formula
(3.11) to equidistribution properties in P (C). In [18] we showed that Tbif :=
ddcχ is a bifurcation current, in the sense that its support is precisely the
set of projective structures whose holonomy representation is not locally
structurally stable in P (X). The support of this current is the exterior of
the Bers slice B(C).

Analogous bifurcation currents have been defined for families of rational
mappings on P1. It turns out that the exterior powers T kbif are interesting
and rather well understood objects in that context (see [26] for an account).
In particular, in the space of polynomials of degree d, the maximal exte-
rior power T d−1

bif is a positive measure supported on the boundary of the
connectedness locus, which is the right analogue in higher degree of the
harmonic measure of the Mandelbrot set [25].

For bifurcation currents associated to spaces of representations, nothing
is known in general about the exterior powers T kbif . In our situation, we are
able to obtain some information.

Theorem 3.20. Let C be a compact Riemann surface of genus g ≥ 2. Let
Tbif = ddcχ be the natural bifurcation current on P (C). Then ∂B(C) is
contained in Supp(T 3g−3

bif ).

Notice that 3g − 3 is the maximum possible exponent. It is likely
that the support of T 3g−3

bif is much larger than ∂B(C). The reason for the
compactness assumption here is that the proof requires some results of Otal
[61] and Hejhal [43] that are known to hold only when X is compact.

If γ is a geodesic on C w.r.t. to the Poincaré metric, we let Z(γ)
be the subvariety of P (C) defined by the property that tr2(hol(γ)) = 4
(i.e. hol(γ) is parabolic or the identity). As a consequence of Theorem 3.20
and of the equidistribution theorems of [18] we obtain the following result,
which contrasts with the description of ∂B(C) “from the inside” in terms of
maximal cusps and ending laminations ([60, 6], see [51] for a nice account).
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Corollary 3.21. For every ε > 0 there exist 3g−3 closed geodesics γ1, . . . ,
γ3g−3 on C such that ∂B(C) is contained in the ε-neighborhood of Z(γ1) ∩
· · · ∩ Z(γ3g−3).

We observe that the value 4 for the squared trace is irrelevant here. As
the proof will show, the result holds a.s. when γ1, . . . , γk are independent
random closed geodesics of length tending to infinity.
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