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1. Introduction

In this talk we shall describe the recent results on the uniformly perfectness
of diffeomorphism groups of smooth manifolds preserving a submanifold.

Let M be a smooth connected manifold without boundary. Let D∞(M)
denote the group of C∞-diffeomorphisms of M with compact support which
are isotopic to the identity through C∞-diffeomorphisms with compact sup-
port. It is known that M.Herman [5] and W.Thurston [6] proved D∞(M)
is perfect.

Let (M,N) be a manifold pair and D∞(M,N) be the group of C∞-
diffeomorphisms of M preserving N which are isotopic to the identity
through compactly supported C∞-diffeomorphisms preserving N . In [1],
we proved that the group D∞(M,N) is perfect if the dimension of N is
positive. In this talk we consider the conditions for D∞(M,N) to be uni-
formly perfect. A group G is said to be uniformly perfect if each element
of G is represented as a product of a bounded number of commutators of
elements in G.

In [7], [8] T.Tsuboi obtained an excellent results on the uniform per-
fectness of the group Dr(M). He proved that it is uniformly perfect 1 ≤
r ≤ ∞ (r 6= dimM + 1) when M is an odd dimensional manifold or an
even dimensional manifold with the appropriate conditions.

In [1], [2] we studied the conditions for D∞(M,N) to be uniformly
perfect when M is a compact manifold. If the group D∞(M,N) is uniformly
perfect, then both D∞(N) and D∞(M−N) are uniformly perfect. We need
the another conditions for the converse. Let p : D∞(M,N) → D∞(N) be
the map given by the restriction. If the connected components of ker p are
finite, then D∞(M,N) is a uniformly perfect group for n ≥ 1. There exist
many examples satisfying this condition.

If N is the union of circles in M and the connected components of ker p
are infinite, then we can prove that D∞(M,N) is not a uniformly perfect
group. We can apply the result for various cases. If M is an oriented surface
and N a disjoint union of circles in M , we can determine the uniformly
perfectness of the group D∞(M,N) ([2]). Finally we consider the case
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when M = S3 and N is a knot in S3, Then we prove that D∞(S3, N) is
uniformly perfect if and only if N is a torus knot.

2. Statement of the main results

Let (M,N) be a manifold pair. Then D∞(M,N) is perfect only if dimN ≥
1 ([1], Theorem 1.1). Thus we assume that dimN ≥ 1 and investigate the
conditions that D∞(M,N) is uniformly perfect.

Theorem 2.1 ([1], [2]). Let M be an m-dimensional compact manifold
without boundary and N an n-dimensional C∞-submanifold such that both
groups D∞(M − N) and D∞(N) are uniformly perfect. If the connected
components of ker p are finite, then D∞(M,N) is a uniformly perfect group
for n ≥ 1.

The converse of Theorem 2.1 is valid when N is a disjoint union of
circles in M .

Theorem 2.2 ([2]). Let M be an m-dimensional compact manifold with-
out boundary and N be a disjoint union of circles in M . If the connected
components of ker p are infinite, then D∞(M,N) is not a uniformly perfect
group.

Now we apply Theorem 2.1 and Theorem 2.2 for studying the uniformly
perfectness of the group D∞(M,N) when M is an orientable surface and
N is a disjoint union of circles.

Theorem 2.3 ([3]). D∞(M,N) is uniformly perfect if and only if
(1) M = S2 and k = 1 and,
(2) M = T 2, k = 1 and N represents a non-trivial element of π1(T 2).

Finally we consider the case where K is a knot in S3. Using the result
by G. Burde and H. Zieschang [4], we have the following.

Theorem 2.4. D∞(S3, K) is uniformly perfect if and only if K is a torus
knot.
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