Geometry and Foliations 2013 Komaba, Tokyo, Japan

On the uniformly perfectness of diffeomorphism groups preserving a submanifold and its applications

Kōjun ABE and Kazuhiko FUKUI

1. Introduction

In this talk we shall describe the recent results on the uniformly perfectness of diffeomorphism groups of smooth manifolds preserving a submanifold.

Let M be a smooth connected manifold without boundary. Let $D^{\infty}(M)$ denote the group of C^{∞} -diffeomorphisms of M with compact support which are isotopic to the identity through C^{∞} -diffeomorphisms with compact support. It is known that M.Herman [5] and W.Thurston [6] proved $D^{\infty}(M)$ is perfect.

Let (M, N) be a manifold pair and $D^{\infty}(M, N)$ be the group of C^{∞} diffeomorphisms of M preserving N which are isotopic to the identity through compactly supported C^{∞} -diffeomorphisms preserving N. In [1], we proved that the group $D^{\infty}(M, N)$ is perfect if the dimension of N is positive. In this talk we consider the conditions for $D^{\infty}(M, N)$ to be uniformly perfect. A group G is said to be uniformly perfect if each element of G is represented as a product of a bounded number of commutators of elements in G.

In [7], [8] T.Tsuboi obtained an excellent results on the uniform perfectness of the group $D^r(M)$. He proved that it is uniformly perfect $1 \leq r \leq \infty$ ($r \neq \dim M + 1$) when M is an odd dimensional manifold or an even dimensional manifold with the appropriate conditions.

In [1], [2] we studied the conditions for $D^{\infty}(M, N)$ to be uniformly perfect when M is a compact manifold. If the group $D^{\infty}(M, N)$ is uniformly perfect, then both $D^{\infty}(N)$ and $D^{\infty}(M-N)$ are uniformly perfect. We need the another conditions for the converse. Let $p: D^{\infty}(M, N) \to D^{\infty}(N)$ be the map given by the restriction. If the connected components of ker p are finite, then $D^{\infty}(M, N)$ is a uniformly perfect group for $n \ge 1$. There exist many examples satisfying this condition.

If N is the union of circles in M and the connected components of ker p are infinite, then we can prove that $D^{\infty}(M, N)$ is not a uniformly perfect group. We can apply the result for various cases. If M is an oriented surface and N a disjoint union of circles in M, we can determine the uniformly perfectness of the group $D^{\infty}(M, N)$ ([2]). Finally we consider the case

^{© 2013} Kōjun Abe and Kazuhiko Fukui

when $M = S^3$ and N is a knot in S^3 , Then we prove that $D^{\infty}(S^3, N)$ is uniformly perfect if and only if N is a torus knot.

2. Statement of the main results

Let (M, N) be a manifold pair. Then $D^{\infty}(M, N)$ is perfect only if dim $N \geq 1$ ([1], Theorem 1.1). Thus we assume that dim $N \geq 1$ and investigate the conditions that $D^{\infty}(M, N)$ is uniformly perfect.

Theorem 2.1 ([1], [2]). Let M be an m-dimensional compact manifold without boundary and N an n-dimensional C^{∞} -submanifold such that both groups $D^{\infty}(M - N)$ and $D^{\infty}(N)$ are uniformly perfect. If the connected components of ker p are finite, then $D^{\infty}(M, N)$ is a uniformly perfect group for $n \ge 1$.

The converse of Theorem 2.1 is valid when N is a disjoint union of circles in M.

Theorem 2.2 ([2]). Let M be an m-dimensional compact manifold without boundary and N be a disjoint union of circles in M. If the connected components of ker p are infinite, then $D^{\infty}(M, N)$ is not a uniformly perfect group.

Now we apply Theorem 2.1 and Theorem 2.2 for studying the uniformly perfectness of the group $D^{\infty}(M, N)$ when M is an orientable surface and N is a disjoint union of circles.

Theorem 2.3 ([3]). $D^{\infty}(M, N)$ is uniformly perfect if and only if

- (1) $M = S^2$ and k = 1 and,
- (2) $M = T^2$, k = 1 and N represents a non-trivial element of $\pi_1(T^2)$.

Finally we consider the case where K is a knot in S^3 . Using the result by G. Burde and H. Zieschang [4], we have the following.

Theorem 2.4. $D^{\infty}(S^3, K)$ is uniformly perfect if and only if K is a torus knot.

References

 K. Abe and K. Fukui, Commutators of C[∞]-diffeomorphisms preserving a submanifold, J. Math. Soc. Japan 61-2 (2009), 427–436.

- [2] K. Abe and K. Fukui, Erratum and addendum to "Commutators of C^{∞} -diffeomorphisms preserving a submanifold", to appear in J. Math. Soc. Japan
- [3] K. Abe and K. Fukui, Characterization of the uniform perfectness of diffeomorphism groups preserving a submanifold, to appear in FOLIATIONS 2012. 304-307.
- [4] G. Burde and H. Zieschang, Eine Kennzeichnung der Torusknoten, Math. Ann. 167 (1966)169–176..
- [5] M. Herman, Simplicité du groupe des difféomorphismes de classe C^{∞} , isotopes à l'identité, du tore de dimension n, **273** (1971), 232–234.
- [6] W.Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. (1974), 80, 45–67.
- T.Tsuboi, On the uniform perfectness of diffeomorphism groups Advanced Studies in Pure Math. (2008), 58 (2008), 505–524.
- [8] T.Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of evendimensional manifolds Comment. Math. Helv. (2012), 87 (2008), 505–524.

Kōjun Abe Shinshu University Matsumoto, 390-8621, Japan E-mail: kojnabe@shinshu-u.ac.jp

Kazuhiko Fukui Kyoto Sangyo University Kyoto, 603-8555, Japan E-mail: fukui@cc.kyoto-su.ac.jp