Geometry and Foliations 2013 Komaba, Tokyo, Japan

A cocycle rigidity lemma for Baumslag-Solitar actions and its applications

MASAYUKI ASAOKA

1. A cocycle rigidity lemma

Let $\text{Diff}(\mathbf{R}^n, 0)$ be the group of local diffeomorphisms of \mathbf{R}^n at the origin. In many situations in study of foliations, we encounter with $\text{Diff}(\mathbf{R}^n, 0)$ -valued cocycles over a group action. A typical case is the following. Consider an action of simply connected Lie group whose orbits form a smooth codimension-*n* foliation with trivial normal bundle. Then, the holonomy map of the foliation with respect to a fixed family of transverse coordinates defines a $\text{Diff}(\mathbf{R}^n, 0)$ -valued cocycle. In this case, the existence of a transverse geometric structure is equivalent to the condition that the cocycle can be reduced to a subgroup of $\text{Diff}(\mathbf{R}^n, 0)$ which preserves the geometric structure.

In this talk, we show a rigidity lemma for $\text{Diff}(\mathbf{R}^n, 0)$ -valued cocycle over actions of the Baumslag-Solitar group BS(1, k). We also apply it to rigidity problem of several group actions.

For integers $k \ge 2$, the Baumslag-Solitar group BS(1,k) is the group presented as

$$\langle a, b \mid aba^{-1} = b^k \rangle.$$

There are many copies of BS(1, k) is contained in the group $CAff(\mathbf{R}^n)$ of conformal affine transformations of \mathbf{R}^n . In fact, let f_k and g_v be elements of $CAff(\mathbf{R}^n)$ given by $f_k(x) = kx$ and $g_v(b) = x + v$. Then, the correspondence $a \mapsto f_k$ and $b \mapsto g_v$ gives an inclusion from BS(1, k) to $CAff(\mathbf{R}^n)$.

Let Γ and H be topological groups and X a topological space. For a given action $\rho: \Gamma \times X \to X$, a map $\alpha: \Gamma \times X \to H$ is called a **cocycle** over ρ if $\alpha(1_{\Gamma}, x) = x$ and $\alpha(\gamma\gamma', x) = \alpha(\gamma, \gamma'x) \cdot \alpha(\gamma', x)$ for any $\gamma, \gamma' \in G$ and $x \in X$ (1_{Γ} is the unit element of Γ). The space of H-valued cocycle over ρ admits a topology as a subspace of $C^0(\Gamma \times X, H)$. Let H' be a subgroup of H. Two H-valued cocycles α and β over ρ are H'-equivalent if there exists $h \in H'$ such that $\beta(\gamma, x) = h \cdot \alpha(\gamma, x) \cdot h^{-1}$ for any $\gamma \in \Gamma$ and $x \in X$.

For an element F of $\text{Diff}(\mathbf{R}^n 0)$, we denote the r-jet of F at the origin by $j_0^r F$. Let $j^r \text{Diff}(\mathbf{R}^n, 0)$ is the group of r-jets of elements of $\text{Diff}(\mathbf{R}^n, 0)$ at the origin. The group $\text{Diff}(\mathbf{R}^n, 0)$ is endowed with the weakest topology such that the projection to $j^r \text{Diff}(\mathbf{R}^n, 0)$ is continuous for any $r \ge 1$ (it is

^{© 2013} Masayuki Asaoka

not Hausdorff). We denote the identity map of \mathbf{R}^n by Id. For $r \geq 1$, let $G^{(r)}$ be the subgroup of $\text{Diff}(\mathbf{R}^n, 0)$ consisting of elements with trivial r-jet.

Cocycle Rigidity Lemma There exists a universal constant $\epsilon_k > 0$ such that the following assertion holds: Let X be a topological space, ρ : $BS(1,k) \times X \to X$ a continuous BS(1,k)-action. If continuous cocycles $\alpha, \beta: BS(1,k) \times X \to \text{Diff}(\mathbf{R}^n, 0)$ over ρ satisfies that

- 1. $j_0^2(\alpha(\gamma, x)) = j_0^2(\beta(\gamma, x))$ for any $\gamma \in BS(1, k)$ and $x \in X$, and
- 2. $\|j_0^1(\alpha(a,x)) (1/k) \operatorname{Id}\| < \epsilon_k \text{ and } \|j_0^1(\alpha(b,x)) \operatorname{Id}\| < \epsilon_k, \text{ where Id}$ is the identity map on \mathbf{R}^n ,

then two cocycles α and β are $G^{(2)}$ -equivalent. If $\alpha(a, \cdot) = \beta(a, \cdot)$ in addition then α and β coincide as cocycles.

In other words, a cocycle whose linear part is close to the linear representation given by $a \mapsto (1/k)I$ and $b \mapsto I$ is determined by its 2-jet up to $G^{(2)}$ -equivalence.

2. Applications

The first application of the above cocycle rigidity lemma is rigidity of certain conformal local action of a Baumslag-Solitar-like group. For $k \geq 2$ and $n \geq 1$, let $\Gamma_{n,k}$ be the discrete group presented as

$$\langle a, b_1, \dots, b_n \mid ab_i a^{-1} = b_i^k, b_i b_j = b_j b_i \ (i, j = 1, \dots, n) \rangle$$

Each subgroup generated by a and b_i is isomorphic to BS(1, k). Let f_k and g_v be conformal affine maps on \mathbb{R}^n given in the previous section. They naturally extends to the sphere $S^n = \mathbb{R}^n \cup \{\infty\}$. For a basis $B = (v_1, \ldots, v_n)$ of \mathbb{R}^n , we define a smooth $\Gamma_{n,k}$ -action ρ_B on S^n (*i.e.* a homomorphism from $\Gamma_{n,k}$ to $\text{Diff}(S^n)$) by $\rho_B(a) = f_k$ and $\rho_B(b_i) = g_{v_i}$. Let $\phi : S^n \setminus \{0\} \to \mathbb{R}^n$ be a coordinate at ∞ given by $\phi(x) = x/||x||^2$. We define a local $\Gamma_{n,k}$ -action P_B (*i.e.* a homomorphism from $\Gamma_{n,k}$ to $\text{Diff}(\mathbb{R}^n, 0)$) by $P_B(\gamma) = \phi \cdot \rho_B(\gamma) \cdot \phi^{-1}$. Remark that the local action P_B preserves the standard conformal structure on \mathbb{R}^n .

Theorem 2.1 ([1]). If a local action $P : \Gamma_{n,k} \to \text{Diff}(\mathbf{R}^n, 0)$ is sufficiently close to P_B , then there exists a basis B' of \mathbf{R}^n and a local diffeomorphism $H \in \text{Diff}(\mathbf{R}^n, 0)$ such that $P(\gamma) = H \cdot P_{B'}(\gamma) \cdot H^{-1}$ for any $\gamma \in \Gamma_{n,k}$. In particular, the local $\Gamma_{n,k}$ -action P preserves a smooth conformal structure on \mathbf{R}^n .

Outline of Proof. Notice that a local action is a $\text{Diff}(\mathbf{R}^n, 0)$ -cocycle over the trivial action on a point. We can check that the sub-action generated

by a and b_i satisfies the assumptions of the rigidity lemma. So, it is sufficient to show that P coincides with a conjugate of some $P_{B'}$ up to 2-jet. Finding the basis B' can be done using a variant of Weil's rigidity theorem of homomorphisms between Lie groups [5].

Using the persistence of global fixed point ∞ , we can derive a global rigidity theorem from the above theorem.

Theorem 2.2 ([1]). If a smooth $\Gamma_{n,k}$ -action ρ is sufficiently close to ρ_B , then there exists a basis B' of \mathbf{R}^n and a diffeomorphism h of S^n such that $\rho(\gamma) = h \cdot \rho_{B'}(\gamma) \cdot h^{-1}$.

A similar local or global rigidity theorem can be shown for a $\Gamma_{n,k}$ -action on the *n*-dimensional torus \mathbf{T}^n . We identify \mathbf{T}^n with $(\mathbf{R} \cup \{\infty\})^n$. For a basis $B = (v_1, \ldots, v_n)$ of \mathbf{R}^n , we define a $\Gamma_{n,k}$ -action σ_B on \mathbf{T}^n by

$$\sigma_B(a)(x_1, \dots, x_n) = (kx_1, \dots, kx_n)$$

$$\sigma_B(b_i)(x_1, \dots, x_n) = (x_1, \dots, x_{i-1}, x_i + v_i, x_{i+1}, \dots, x_n)$$

By the same way as above, we can show a rigidity result for this action.

Theorem 2.3. If a smooth $\Gamma_{n,k}$ -action σ is sufficiently close to σ_B , then there exists a basis B' of \mathbb{R}^n and a diffeomorphism h of \mathbb{T}^n such that $\sigma(\gamma) = h \cdot \sigma_{B'}(\gamma) \cdot h^{-1}$.

The second application is another proof of Ghys's local rigidity theorem on Fuchsian action on $\mathbb{R}P^1$. Let Γ be a cocompact lattice of $\mathrm{PSL}(2, \mathbb{R})$ Since $\mathrm{PSL}(2, \mathbb{R})$ acts on $\mathbb{R}P^1$ naturally, Γ acts on $\mathbb{R}P^1$ as a subgroup of $\mathrm{PSL}(2, \mathbb{R})$. We denote this action by ρ_{Γ} . More generally, when a homomorphism $\pi : \Gamma \to \mathrm{PSL}(2, \mathbb{R})$ is given, we can define a Γ -action ρ_{π} on $\mathbb{R}P^1$ by $\rho_{\pi}(\gamma)(x) = \pi(\gamma) \cdot x$.

Theorem 2.4 (Ghys [2]). If a Γ -action ρ on $\mathbb{R}P^1$ is sufficiently close to ρ_{Γ} , then there exists an homomorphism $\pi : \Gamma \to \mathrm{PSL}(2, \mathbb{R})$ and a diffeomorphism h of S^1 such that $\rho(\gamma) = h \cdot \rho_{\pi}(\rho) \cdot h^{-1}$ for any $\gamma \in \Gamma$.

All known proofs ([2, 3, 4]) use the Schwarzian derivative, but our proof does not. We use that fact that any $j^2 \operatorname{Diff}(\mathbf{R}, 0)$ -cocycle can be extended to a cocycle valued in projective transformations of ($\mathbf{R}, 0$)

Outline of our proof. Let P be the subgroup of $PSL(2, \mathbf{R})$ that consists of lower triangular elements. It is generated by one-parameter subgroups $A = (a^t)_{t \in \mathbf{R}}$ and $N = (b^s)_{s \in \mathbf{R}}$ with a relation $a^t b^s a^{-t} = b^{s \exp t}$. Define a smooth right P-action ρ_P on $\Gamma \setminus PSL(2, \mathbf{R})$ by $\rho_P(\Gamma g, p) = \Gamma(gp)$, and denote the orbit foliation of ρ_P by \mathcal{F}_P . As Ghys proved, it is sufficient to show that any foliation \mathcal{F} sufficiently close to \mathcal{F}_P admits a smooth transversely projective structure. Since the restriction of ρ_P to A is an Anosov flow and \mathcal{F}_P is its unstable foliation, we can find a homeomorphism of Mwhich sends each leaf of \mathcal{F}_P to that of \mathcal{F} . This homeomorphism induces a continuous P-action ρ whose orbit foliation is \mathcal{F} . The holonomy map of \mathcal{F} gives a Diff($\mathbf{R}, 0$)-valued cocycle $\bar{\alpha}$ over ρ .

The group P naturally contains BS(1,k) as a subgroup. Let α be the restriction of the cocycle $\bar{\alpha}$ to BS(1,k). To show that \mathcal{F} is transversely projective, it is enough to see that $\bar{\alpha}$ is Diff($\mathbf{R}, 0$)-equivalent to a cocycle whose values are projective transformation. But, it is an easy consequence of the rigidity lemma. In fact, as mentioned above. any $j^2 \operatorname{Diff}(\mathbf{R}, 0)$ -valued cocycle can be extended to a cocycle whose values are projective transformation (it is not true for higher dimension). So, the rigidity lemma implies that α is $G^{(2)}$ -equivalent to such a cocycle.

References

- M.Asaoka, Rigidity of certain solvable actions on the sphere, *Geom. and Topology* 16 (2013), no. 3, 1835–1857.
- [2] É. Ghys, Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1–2, 209–247.
- [3] É. Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 163–185.
- [4] A. Kononenko and C. B. Yue, Cohomology and rigidity of Fuchsian groups, Israel J. Math. 97 (1997), 51–59.
- [5] A.Weil, Remarks on the cohomology of groups, Ann. Math. (2) 80 (1964), 149–157.

Department of Mathematics, Kyoto University Kita-shirakawa Oiwakecho, 606-8502 Sakyo, Kyoto, Japan E-mail: asaoka-001@math.kyoto-u.ac.jp