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1. Introduction

A Fatou-Julia decomposition for transversely holomorphic, complex co-
dimension-one foliations is introduced by Ghys, Gomez-Mont and Saludes
[4] (and in [6]) in terms of deformations of holomorphic structures. Another
decomposition is introduced in [2] in terms of normal families. These de-
compositions enjoy some properties similar to those of classical Fatou-Julia
decomposition and also to the decomposition of the sphere into the domains
of discontinuity and the limit sets (of Kleinian groups). In [3], a Fatou-Julia
decomposition is introduced for pseudosemigroups. The decomposition is
still difficult to study, however, it provides a natural unification of the no-
tions of Fatou-Julia decomposition of mapping iterations, foliations and the
decomposition of sphere with respect to the action of Kleinian groups. In
this article, we will introduce pseudosemigroups and the Fatou-Julia de-
composition, and explain how decompositions are unified (Theorem 2.16)
after [2] and [3].

2. Pseudosemigroups and Fatou-Julia decompositions

We first introduce notions of pseudosemigroups and their Fatou-Julia de-
compositions. The notion of pseudosemigroups has already appeared (cf. [8],
[11] and [7]). We will make use of a similar but different one.

In what follows, we consider holomorphic mappings unless otherwise
mentioned, although pseudosemigroups can be considered in much more
generalities.

In short, a pseudosemigroup is a pseudogroup but the inverse is not
necessarily defined.

Definition 2.1. Let T be an open subset (not necessarily connected) of
Cn and Γ be a family of mappings from open subsets of T into T (we
call such mappings local mappings). Then, Γ is a (holomorphic) pseudo-
semigroup (psg for short) if the following conditions are satisfied.

1) idT ∈ Γ , where idT denotes the identity map of T .
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2) If γ ∈ Γ , then γ|U ∈ Γ for any open subset U of dom γ.

3) If γ1, γ2 ∈ Γ and range γ1 ⊂ dom γ2, then γ2 ◦ γ1 ∈ Γ , where dom γ
and range γ denotes the domain and the range of γ, respectively.

4) Let U be an open subset of T and γ continuous mapping defined on
U . If for each x ∈ U , there is an open neighborhood, say Ux, of x
such that γ|Ux belongs to Γ , then γ ∈ Γ .

If in addition Γ consists of local homeomorphisms, namely, homeomor-
phisms from domains to ranges, then Γ is a pseudogroup (pg for short) if
Γ satisfies 1), 2), 3) and the following conditions.

4′) Let U be an open subset of T and γ a homeomorphism from U to
γ(U). If for each x ∈ U , there is an open neighborhood, say Ux, of x
such that γ|Ux belongs to Γ , then γ ∈ Γ .

5) If γ ∈ Γ , then γ−1 ∈ Γ .

If Γ is either a psg or pg, then we set for x ∈ T

Γx = {γx |x ∈ dom γ}.

By abuse of notation, an element of Γx is considered as an element of Γ
defined on a neighborhood of x.

One might expect that a pg is a psg but it is not always the case.

Example 2.2. Let T = CP 1 = C ∪ {∞} and define an automorphism f
of CP 1 by f(z) = −z. We denote by Γ the pg generated by f , that is, the
smallest pg which contains f . Let U = {z ∈ C | |z − 2| < 1} and V = f(U).
If we set γ = f |V , then γ ∪ id : V ∪U → U is not an element of Γ , because
γ ∪ id is not a homeomorphism. If Γ were a psg, then γ ∪ id ∈ Γ by the
condition 4).

Definition 2.3. We denote by Γ×0 the subset of Γ which consists of in-
vertible elements, namely,

Γ×0 = {γ ∈ Γ | γ−1 ∈ Γ}.

We denote by Γ× the subset of Γ which consists of locally invertible elem-
ents, namely,

Γ× =

{
γ ∈ Γ ∃ an open covering {Uλ}λ∈Λ of dom f

such that (γ|Uλ)−1 ∈ Γ

}
.

Note that Γ×0 is a pseudogroup.

Definition 2.4. Let (Γ, T ) be a psg. We denote by T the family of
relatively compact open subsets of T . If T ′ ∈ T , then the restriction of Γ
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to T ′ is defined by

ΓT ′ = {γ ∈ Γ | dom γ ⊂ T ′ and range γ ⊂ T ′}.

The notion of compact generation [6] is also significant for psg’s. The
notions of morphisms and equivalences are given as follows.

Definition 2.5. Let (Γ, T ) and (∆,S) be psg’s. A (holomorphic) mor-
phism Φ: Γ → ∆ is a collection Φ of local mappings from T to S with the
following properties.

1) {domφ |φ ∈ Φ} is an open covering of T .

2) If φ ∈ Φ, then any restriction of φ to an open set of domφ also belongs
to Φ.

3) Let U be an open subset of T and φ a mapping from U to S. If
for any x ∈ U , there exists an open neighborhood Ux of x such that
φ|Ux ∈ Φ, then φ ∈ Φ.

4) If φ ∈ Φ, γ ∈ Γ× and δ ∈ ∆×, then δ ◦ φ ◦ γ ∈ Φ.

5) Suppose that γ ∈ Γ and x ∈ dom γ. If x ∈ domφ and γ(x) ∈ domφ′,
where φ, φ′ ∈ Φ, then there is an element δ ∈ ∆ such that φ(x) ∈
dom δ, and δ ◦ φ = φ′ ◦ γ on a neighborhood of x.

A morphism from (Γ, T ) to itself is called an endomorphism of (Γ, T ).

Definition 2.6. Let (Γ, T ) and (∆,S) be psg’s and Φ a morphism from
Γ to ∆.

1) Φ is called an étale morphism if Φ consists of étale mappings, namely,
mappings of which the restriction to sufficiently small open sets are
homeomorphisms.

2) Suppose that Γ and ∆ are psg’s on complex one-dimensional mani-
folds. A morphism is said to be ramified if φ ∈ Φ and x ∈ domφ,
then there exists an open neighborhood Ux of x such that φ|Ux is the
restriction of the composite of ramified coverings and holomorphic
étale mappings.

Definition 2.7. Let (Γ, T ) and (∆,S) be psg’s. A collection Φ of local
homeomorphisms from T to S is an étale morphism of pg’s if Φ satisfies
the conditions in Definition 2.5 but ‘a continuous map from U to S’ in 3)
is replaced by ‘a local homeomorphism from T to S’.

Definition 2.8. Let A be a set which consists of local mappings on T . A
psg Γ is said to be generated by A if Γ contains A and is the smallest with
respect to inclusions. The psg generated by A is denoted by 〈A〉. Similarly,
we consider morphisms generated by local mappings from T to S.
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Definition 2.9. If Φ1 : Γ1 → Γ2 and Φ2 : Γ2 → Γ3 are morphisms of psg’s,
then the composite Φ2 ◦ Φ1 is defined by

Φ2 ◦ Φ1 = 〈φ2 ◦ φ1 |φ1 ∈ Φ1, φ2 ∈ Φ2, rangeφ1 ⊂ domφ2〉.

Definition 2.10. An étale morphism Φ: Γ → ∆ is an equivalence if there
is an étale morphism Ψ: ∆ → Γ such that Ψ ◦ Φ = Γ× and Φ ◦ Ψ = ∆×.
Such a Ψ is unique so that it is denoted by Φ−1. We call Φ−1 the inverse
morphism of Φ. An equivalence from (Γ, T ) to itself is called automorphism.

If Φ1 and Φ2 are equivalences, then Φ2 ◦ Φ1 is also an equivalence.

Definition 2.11. A psg (Γ, T ) is compactly generated if there is a rela-
tively compact open set T ′ in T , and a finite subset {γ1, . . . , γr} of Γ such
that the domains and the ranges are contained in T ′ and that

1) if we denote by ΓT ′ the restriction of Γ to T ′, then ΓT ′ is generated
by {γ1, . . . , γr},

2) for each γi, there exists an element γ̃i of Γ such that dom γ̃i con-
tains the closure of dom γi, γ̃i|dom γi = γi and that γ̃i is étale on a
neighborhood of dom γ̃i \ dom γi,

3) the inclusion of T ′ into T induces an equivalence from ΓT ′ to Γ .

Such a (ΓT ′ , T
′) is called a reduction of (Γ, T ).

Remark 2.12. If Γ is a compactly generated psg on a one-dimensional
complex manifold, then Γ is étale or ramified. In addition, the last condi-
tion in 2) is equivalent to Sing γ̃i = Sing γi.

For example, if (Γ, T ) is generated by a holonomy pseudogroup of a fo-
liation of a closed manifold, then (Γ, T ) is compactly generated. We need to
choose a complete transversal in order to define a holonomy pseudogroup. If
we change the choice of complete transversals, then we obtain pseudogroups
which are equivalent. Another source of compactly generated psg’s are ra-
tional mappings on CP 1. (Γ, T ) is also compactly generated if T = CP 1

and Γ is generated by a rational semigroup [10] which acts on CP 1. See [3]
for details.

Assumption 2.13. We assume that Γ is generated by local biholomorphic
diffeomorphism of Cq, q > 1, or by local biholomorphic diffeomorphisms of
C or ramified coverings, where a holomorphic map, say f , from an open
set of C to C is said to be ramified covering if there exist biholomorphic
diffeomorphisms ϕ from dom f to a domain in C and ψ from range f to a
domain in C such that ψ ◦ f ◦ ϕ−1(z) = zn holds for some positive integer
n, where z ∈ rangeϕ.
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Note that under our assumption, Γ consists of holomorphic open mappings.

Definition 2.14. Let T ′ ∈ T .

1) A connected open subset U of T ′ is a wF-open set (weak ‘Fatou’-open
set) if the following conditions are satisfied:

i) If γx is the germ of an element of ΓT ′ at x, γ is defined on U as
an element of Γ , where (ΓT ′ , T

′) is the restriction of Γ to T ′.

ii) Let ΓU be the subset of Γ which consists of elements of Γ
obtained as in (a). Then ΓU is a normal family.

2) A connected open subset V of T ′ is an F-open set (‘Fatou’-open set)
if γ ∈ Γ ′ and if dom γ ⊂ V , then range γ is a union of wF-open sets.

Definition 2.15. Let (Γ, T ) be a psg which fulfills Assumption 2.13. If
T ′ ∈ T , then let F (ΓT ′) be the union of F-open subsets of T ′. Let J(ΓT ′) =
T ′ \ F (ΓT ′), and J0(Γ ) =

⋃
T ′∈T

J(ΓT ′). Let J(Γ ) be the closure of J0(Γ )

and F (Γ ) = T \ J(Γ ). We call F (Γ ) and J(Γ ) the Fatou set and the Julia
set of (Γ, T ), respectively.

Roughly speaking, J(Γ ) is defined as follows. We regard (ΓT ′ , T
′) as

an approximation of (Γ, T ), and define J(ΓT ′). Indeed, it can be shown
that if (Γ, T ) is compactly generated, then J(ΓT ′) = J(Γ ) ∩ T ′ holds for
sufficiently large T ′. If T ′ ⊂ T ′′, then J(ΓT ′) ⊂ J(ΓT ′′)∩T ′ so that we take
the union. Finally by taking the closure, we will obtain a set which consists
of points where some ‘complicated dynamics’ occur in every neighborhood
of that point.

Thus defined Julia sets have the following properties.

Theorem 2.16. If Γ is a psg, then we denote by Jpsg(Γ ) its Julia set in
the sense of Definition 2.15. Then we have the following.

1) If f is a rational mapping on CP 1, then J(f) = Jpsg(〈f〉), where
〈f〉 denotes the pseudosemigroup generated by f . More generally,
if f1, . . . , fr are rational mappings on CP 1 and if G is the semi-
group generated by f1, . . . , fr, then J(G) = Jpsg(〈f1, . . . , fr〉), where
〈f1, . . . , fr〉 denotes the pseudosemigroup generated by f1, . . . , fr (or
by G).

2) If f is an entire function, then let 〈f〉 be the pseudosemigroup gen-
erated by f which acts on CP 1, where dom f is considered to be C.
Then, J(f) ∪ {∞} = Jpsg(〈f〉).

3) If G is a finitely generated Kleinian group, then Λ(G) = Jpsg(Γ ),
where Γ is the pseudosemigroup generated by G and Λ(G) denotes
the limit set of G.
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4) If Γ is the holonomy pseudogroup of a complex codimension-one fo-
liation of a closed manifold with respect to a complete transversal (it
suffices to assume that Γ is a compactly generated pseudogroup of lo-
cal biholomorphic diffeomorphisms on C). If we denote by Γpsg the
smallest pseudosemigroup which contains Γ , then J(Γ ) = Jpsg(Γpsg),
where J(Γ ) is the Julia set of compactly generated pseudogroup in the
sense of [2].

Theorem 2.16 can be seen as a partial refinement of Sullivan’s dictionary [9].
In the 4) of Theorem 2.16 the Julia set in the sense of Ghys, Gomez-

Mont and Saludes is also defined [4]. The following is known.

Theorem 2.17. Let Γ be a compactly generated pseudogroup of local bi-
holomorphic diffeomorphisms on C. If we denote by JGGS(Γ ) the Julia set
of Γ in the sense of Ghys, Gomez-Mont and Saludes, then J(Γ ) ⊂ JGGS(Γ ).

There are examples where the inclusion is strict.

Remark 2.18. If we denote by FGGS(Γ ) the Fatou set of Γ in the sense
of [4], there is a classification of the connected components of FGGS(Γ ). We
have also a classification of F (Γ )(⊃ FGGS(Γ )) of the same kind. We refer
[2] and [1] for more properties of Fatou-Julia decompositions of compactly
generated pg’s.

Pseudosemigroups in Theorem 2.16 are compactly generated except the
case 3). Other psg’s which are not necessarily compactly generated are ob-
tained by studying (transversely) holomorphic foliations of open manifolds,
or singular holomorphic foliations. A Fatou–Julia decomposition of these
foliations can be introduced by using the decomposition in the sense of
Definition 2.15. In [3], some properties of such decompositions are studied.

Some of common properties of the Julia sets and the limit sets can be re-
garded as properties of Julia sets of compactly generated pseudosemigroups.
For example, we have the following.

Lemma 2.19. Let Γ be a compactly generated pseudosemigroup. If we
denote by F (Γ ) and J(Γ ) Fatou and Julia sets of Γ , then we have the
following.

1) F (Γ ) is forward Γ -invariant, i.e., Γ (F (Γ )) = Γ , where Γ (F (Γ )) =
{x ∈ T | ∃ γ ∈ Γ, ∃ y ∈ F (Γ ) s.t. x = γ(y)}.

2) J(Γ ) is backward Γ -invariant, i.e., Γ−1(J(Γ )) = J(Γ ) = {x ∈
T | ∃ γ ∈ Γ s.t. γ(x) ∈ J(Γ )}.

If (Γ, T ) is a compactly generated pg, then there is a Hermitian metric
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on F (Γ ) invariant under Γ [2]. In this sense, the action of Γ is not quite
wild on F (Γ ). If (Γ, T ) is a psg, then invariant metrics need not exist in
general. Indeed, if z ∈ F (Γ ), γ ∈ Γ and γ′z = 0, then (γ∗g)z = 0 so that
there is no Γ -invariant metric on F (Γ ), where γ′z denotes the derivative of
γ at z. For example, let T = C and define f : T → T by f(z) = z2. Then,
the open unit disc is a connected component of the Fatou set, however, f
cannot be an isometry for any metric.

Inspired by the Schwarz lemma on the Poincaré disc, we introduce the
notion of semi-invariant metrics as follows.

Definition 2.20. Let g1 and g2 be Hermitian metrics on F (Γ ). If z ∈
F (Γ ), then we denote by (g1)z the metric on TzF (Γ ). Suppose that we
have g1 = f 2

1 g0 and g2 = f 2
2 g0 on a neighborhood of z, where g0 denotes

the standard Hermitian metric on C. If f1(z) ≤ f2(z), then we write
(g1)z ≤ (g2)z. Note that this condition is independent of the choice of
charts about z. If (g1)z ≤ (g2)z holds on F (Γ ), then we write g1 ≤ g2.

Definition 2.21. Let g be a Hermitian metric on F (Γ ). The metric g
is said to be semi-invariant if z ∈ F (Γ ) and if γ ∈ Γ is defined on a
neighborhood of z, then γ∗g ≤ g holds on dom γ.

The following is known. See [3] and [2] for details.

Theorem 2.22. 1) Suppose that (Γ, T ) is compactly generated, then the
metric g is finite and locally Lipschitz continuous on F (Γ ).

2) If Γ× = Γ , then F (Γ ) admits a Hermitian metric which is locally
Lipschitz continuous and Γ -invariant.

3) If (Γ, T ) is generated by a compactly generated pg, then F (Γ ) admits
a Hermitian metric which is of class Cω and Γ -semiinvariant.

Example 2.23 ([3], Example 4.21). We define γ : CP 1 → CP 1 by γ(z) =
z2. Then, J(γ) = {|z| = 1}. If we set

f(z) =


1 if |z| ≤ 1

2
,

2k |z|2
k−1 if 2−

1

2k−1 ≤ |z| ≤ 2−
1

2k ,

2k |z|−2k−1 if 2
1

2k ≤ |z| ≤ 2
1

2k−1 ,
1
|z|2 if |z| ≥ 2,

then g = f 2 |dz|2 gives a Hermitian metric on CP 1 \ {|z| = 1} which is
locally Lipschitz continuous and semi-invariant under the action of Γ , where
Γ = 〈γ〉. On the other hand, if we consider the Poincaré metric on the unit
disc, then γ is contracting by the Schwarz lemma. Hence the Poincaré
metrics on the unit disc and CP 1 \{|z| ≤ 1} give rise to a Hermitian metric
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on CP 1 \{|z| = 1} which is of class Cω and semi-invariant under the action
of Γ . On the other hand, there is no Γ -invariant metric on F (Γ ). Indeed,
0 ∈ F (Γ ) but (γ∗g)0 = 0 for any metric g on F (Γ ).

Let Γ̂ be the psg generated by γ|CP 1\{0,∞} and its local inverses. Then

F (Γ̂ ) = C\(S1∪{0}). An invariant metric on F (Γ̂ ) is given by |dz|2 /(|z| log |z|)2

on {0 < |z| < 1}. We can find on {1 < |z|} a metric of the same kind.
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