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1. Introduction

Let L be an arbitrary connected surface, compact or noncompact, with or
without boundary and orientable or nonorientable. Let f : L → L be a
homeomorphism. We discuss two topics which are related but perhaps, at
first, not obviously so.

The first topic is the Handel-Miller theory of endperiodic maps of sur-
faces, never published even as an announcement, although it has been used
by various authors in the study of foliated 3-manifolds. The second topic
concerns the Epstein-Baer theorem that homotopic homeomorphisms of
surfaces are isotopic. Both of these topics will be studied via a suitable
hyperbolic metric on L (Definition 1.1).

For endperiodic maps, we will sketch the main points of the theory and
announce new results. For homotopic homeomorphisms, we will outline a
new line of proof of Epstein-Baer using hyperbolic geometry. This involves
extending classical results about complete hyperbolic surfaces with finite
area to complete hyperbolic surfaces with geodesic boundary and infinite
Euler characteristic.

The Handel-Miller theory determines an endperiodic map h : L → L,
in the same isotopy class as f , which preserves a pair of transverse geodesic
laminations and has, in a certain sense, the “tightest” dynamics in its
isotopy class. This has obvious analogies with the Nielsen-Thurston theory
of automorphisms of compact surfaces, but there are remarkable differences
also. In proving that h is in the isotopy class of f , one is led to the second
topic of this talk.

Definition 1.1. A hyperbolic metric on a surface L is “standard” if it
is complete, makes ∂L geodesic and admits no isometrically imbedded hy-
perbolic half planes. A surface equipped with such a metric is called a
standard hyperbolic surface. A surface which is homeomorphic to a stan-
dard hyperbolic surface will simply be called standard.

This is not a serious restriction topologically. Up to homeomorphism,
there are exactly 13 nonstandard surfaces, none of them interesting for
Handel-Miller theory.
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2. Endperiodic Homeomorphisms

Let E(L) denote the set of ends of L, a compact, totally disconnected,
metrizable space which compactifies L.

Definition 2.1. An end e ∈ E(L) is an attracting end if it admits a
neighborhood Ue ⊂ L such that, for a least integer pe ≥ 0,

Ue ⊃ fpe(Ue) ⊃ · · · ⊃ fnpe(Ue) ⊃ · · ·

and
⋂∞
n=0 f

npe(Ue) = ∅. Repelling ends are defined similarly, using iterates
of f−1. The integer pe is called the period of e.

Definition 2.2. A homeomorphism f : L → L is endperiodic if E(L) is
finite and each end is either attracting or repelling..

Examples will be pictured in the talk. The definition of “endperiodic”
can be extended to surfaces with infinite endset, even a Cantor set of ends,
and this has important applications to foliations. But in this generalization,
there will only be finitely many attracting and repelling ends, and one passes
to the “soul” of L, an f -invariant subsurface with finitely many ends on
which all of the interesting dynamics takes place. This effectively reduces
us to the case considered by Handel and Miller.

Definition 2.3. An end e is simple if it is isolated and either annular or
simply connected. Standard hyperbolic surfaces without simple ends are
called “admissible” surfaces.

In the rest of this section we consider admissible surfaces L with finitely
many ends and endperiodic homeomorphisms f : L→ L.

An attracting end e of period pe has compact fundamental domains Bi

such that Ue = B0 ∪ B1 ∪ · · · and fpe(Bi) = Bi+1, 0 ≤ i < ∞. There is a
similar notion of fundamental domain for repelling ends. The intersection
Bi ∩ Bi+1 is called a positive juncture. It is a compact 1-manifold. The
negative junctures are defined similarly in neighborhoods of repelling ends.
Each juncture is the union of finitely many 2-sided, essential closed curves
and/or properly imbedded arcs.

The Handel-Miller construction. Start applying powers of f−1 to pos-
itive junctures. The result is an infinite family of ultimately “distorted”
junctures. Generally the distortions get enormous and the distorted junc-
tures wrap around in L in increasingly complex ways. (In the talk, exam-
ples will be pictured to illustrate this.) It will be convenient also to call
a distorted juncture by the name “juncture”. In the homotopy class of
each component of a juncture (endpoint preserving homotopy for properly
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imbedded arcs) there is a unique geodesic. This infinite family of geodesics
accumulates exactly on a closed geodesic lamination Λ− with complete,
noncompact leaves (the absence of half planes is critical here). Every leaf
of this lamination penetrates arbitrarily deeply into the neighborhoods of
repelling ends, but the lamination is uniformly bounded away from the at-
tracting ends. Using the junctures of negative ends, one similarly defines
the geodesic lamination Λ+, transverse to Λ−, which penetrates arbitrarily
deeply into the attracting ends but is uniformly bounded away from the
repelling ends. The final step is to define an endperiodic homeomorphism
h : L→ L which preserves these laminations and is isotopic to f . The dy-
namics of h is “tightest possible” in its isotopy class, in the sense that h has
the smallest possible invariant set I and the dynamics of h|I is Markov.

Definition 2.4. A pseudo-geodesic σ in L is a continuous, imbedded

curve, any lift of which to the universal cover L̃ (viewed as a surface in
the Poincaré disk) has well defined endpoints on the circle at infinity.

We have axiomatized the Handel-Miller theory to allow the laminations
to be pseudo-geodesic. Again the endperiodic homeomorphism preserving
the laminations is isotopic to f . This generalization is quite useful in ap-
plications to foliation theory. We have developed an extensive structure
theory for the laminations, based on the axioms, which reveals many sur-
prising features.

Here are two new results.

Theorem 2.5. The pseudo-geodesic laminations of the axiomatized Handel-
Miller theory are simultaneously ambient isotopic to the geodesic lamina-
tions described above.

Generally, h is not smooth, even in the case that the laminations are
geodesic. One advantage to relaxing the geodesic condition is the following.

Theorem 2.6. There is a choice of Handel-Miller map h, corresponding
to pseudo-geodesic laminations, which is a diffeomorphism except, perhaps,
at finitely many p-pronged singularities.

3. Homotopic Homeomorphisms

The fact that the Handel-Miller endperiodic map h is isotopic to the original
endperiodic map f from which it is derived needs to be proven using the
ideas in this section.

The surface L is now any standard one. Give it a standard hyperbolic
metric. Denote by ∆ the open unit disk with the Poincaré metric. Then
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either ∂L = ∅ and the universal covering space is L̃ = ∆, or L̃ ( ∆. The

completion L̂ is the closure of L̃ in the closed disk ∆. We denote by E the

“ideal boundary” of L̃, namely E = S1 ∩ L̂. The following is well known
for complete hyperbolic surfaces of finite area. For standard hyperbolic
surfaces, we can find no proof in the literature.

Theorem 3.1. Any lift h̃ : L̃→ L̃ of a homeomorphism h : L→ L extends

canonically to a homeomorphism ĥ : L̂→ L̂.

The following is also known for compact hyperbolic surfaces.

Theorem 3.2. If h : L → L is a homeomorphism having a lift such that

ĥ|E = idE, then h is isotopic to idL.

In particular, if f, g are two homeomorphisms of L with lifts such that

f̂ |E = ĝ|E, then f and g are isotopic. In the Handel-Miller theory, one
easily verifies this condition for f and h, hence h represents the isotopy
class of f .

The following is an easy corollary of Theorem 3.2.

Theorem 3.3 (Epstein-Baer). If L is a standard surface, then homotopic
homeomorphisms of L are isotopic.

In proving this, Epstein put no restriction on L, but required the homo-
topy to respect ∂L and, if there were noncompact boundary components,
required the homotopy to be proper. The first requirement is only needed
for 4 of the 13 nonstandard surfaces. The second requirement is inconve-
nient in applications and is not needed at all in our proof.
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