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1. Introduction

We present 2 results about foliations arising as stable and unstable foli-
ations for a contact Anosov flow. The first gives Lagrangian foliations on
3-manifolds that can not be smoothed in the following sense: They are
preserved by a contact Anosov flow and there is no topologically equivalent
contact Anosov flow with C2 stable and unstable foliations. The second, in
early development, gives a representation of Godbillon–Vey classes for the
invariant foliations of a contact Anosov flow and has promise for alternate
proofs of pertinent results.

2. Nonsmooth foliations

There are contact Anosov flows on 3-manifolds whose Anosov splitting is
not C2 and such that the same holds for any topologically equivalent contact
Anosov flow. In this sense, then, the invariant (and necessarily Lagragian)
foliations cannot be smoothed out. These Anosov flows turn out to have a
remarkable range of unconventional properties.

For a contact Anosov flow on a 3-manifold, the invariant (stable and un-
stable) foliations are C1+Zygmund, i.e., differentiable with Zygmund-regular
derivative. Indeed, this holds for the weak-stable and weak-unstable foli-
ations of volume-preserving Anosov flows on 3-manifolds [10].

Definition 2.1. A continuous function f : U → L on an open set U ⊂ L′

in a normed linear space to a normed linear space is said to be Zygmund-
regular if there is Z > 0 such that ‖f(x+h)+f(x−h)−2f(x)‖ ≤ Z‖h‖ for
all x ∈ U and sufficiently small ‖h‖. It is said to be “little Zygmund” (or
“zygmund”) if ‖f(x+ h) + f(x− h)− 2f(x)‖ = o(‖h‖). For maps between
manifolds these definitions are applied in smooth local coordinates.

The “nonsmooth” in the section title actually refers to “not C1+zygmund,”
i.e., no more regular than is always known to be the case. For our purposes
the following rigidity result by Hurder and others is central.
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Theorem 2.2 ([10, 8]). If a volume-preserving Anosov flow on a 3-
manifold has C1+zygmund Anosov splitting, then it is smoothly conjugate to
a geodesic flow (or a suspension).

To produce examples of contact Anosov flows whose invariant foliations are
not C1+zygmund and such that the same holds for any topologically equivalent
contact Anosov flow, it thus suffices to construct contact Anosov flows that
are not topologically equivalent to any geodesic flow.

The novelty is that these are contact flows, and the novelty of the
method (due to Foulon) is to refine previous surgery methods to preserve
the existence of a contact structure. The surgery is a Dehn surgery in a knot
neighborhood, and in our context the knot should be of the following type.

Definition 2.3. A Legendrian curve in a contact manifold is a curve tan-
gent to the contact structure at every point. In the presence of a contact
Anosov flow, a Legendrian curve (which is by construction transverse to the
flow) is said to be E-transverse if it is also transverse to both the strong
stable and strong unstable subbundles E− and E+ of the flow.

Our main result has a rather long statement because these flows have a
host of interesting properties, as do the manifolds we obtain.

Theorem 2.4. A contact Anosov flow ϕ on a 3-manifold M with an E-
transverse Legendrian knot K admits smooth Dehn surgeries that produce
new contact Anosov flows. If ϕ is the geodesic flow on the unit tangent bun-
dle of a negatively curved surface, then these surgeries include the Handel–
Thurston surgery [9], in which case the resulting flow has the following prop-
erties:

1. It acts on a manifold that is not a unit tangent bundle.

2. It is not topologically orbit equivalent to an algebraic flow.

3. Its weak stable foliation is not transversely projective [1, Théorème A].

4. Its Anosov splitting TM = Eϕ ⊕ E+ ⊕ E− does not have “little Zyg-
mund” (hence not Lipschitz-continuous) derivative (Theorem 2.2).

5. Its topological and volume entropies differ, or, equivalently, the mea-
sure of maximal entropy is always singular (otherwise it would be up to

finite covers smoothly conjugate to a geodesic flow of constant curvature [7]).

Moreover, there are contact Anosov flows on hyperbolic manifolds: If MrK
is a hyperbolic manifold, then all but finitely many of our Dehn surgeries
produce a hyperbolic manifold. The resulting contact Anosov flow (and any
contact Anosov flow topologically orbit equivalent to it) has the following
additional properties.
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6. It is associated with a new example of a quasigeodesic pseudo-Anosov
flow (see Definition 2.5, [6], [12, Section 5]).

7. It is not quasigeodesic (Definition 2.5).

8. Its orbits are geodesics for suitable Riemannian metrics on M .

9. Each closed orbit is isotopic to infinitely many others1 [4, Theorem A],
[2, Remark 5.1.16, Theorem 5.3.3], [3].

10. Only finitely many pairs of closed orbits bound an embedded cylin-
der2 [3].

Definition 2.5. A quasigeodesic curve is one that is efficient, up to a
bounded multiplicative distortion, in measuring distances in relative ho-
motopy classes, and a flow is said to be quasigeodesic if all flow lines are
quasigeodesics [5].

3. Godbillon–Vey classes for Legendrian foliations

Consider a contact Anosov flow ϕt on a 2m+1-dimensional manifold (M,A)
with invariant splitting RX ⊕ E+ ⊕ E−. We can take A(X) ≡ 1, and
A �E+⊕E−= 0. Then iXdA = 0 on E− ∪ E+ and dA �RX⊕E−= 0. E+ has
dimension m and has an unstable volume a. The normal n-bundle of a
subbundle F of TM is

Nn(F ) := {ω ∈
∧n

(T ∗M) | ω(u1, . . . , un) = 0 whenever ui ∈ F for any i}.

For an unstable volume a : M →
∧m(E+) define α ∈ Nm(RX ⊕ E−) by

α �E+= a.

Proposition 3.1. If α is C1, then there is a 1-form β such that dα = β∧α.

β is as regular as the foliations. If β = 0 on E+, then iXdα = β(X)α,
i.e., β(X) is the infinitesimal relative change of the unstable volume under
the flow.

Definition 3.2 (Godbillon–Vey classes). Suppose (M,A) is a contact
manifold of dimension 2m+ 1. For an A-preserving Anosov flow ϕt : M →

1For algebraic flows, free homotopy (hence isotopy) classes of closed orbits have cardinality
at most 2.

2This relation is neither transitive nor reflexive. For comparison, isotopy is the equivalence
relation of being the boundary components of an immersed cylinder.
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M with C2 Anosov splitting, we define the Godbillon–Vey classes by GV0 =∫
M

A ∧ dAm,

GV1 =

∫
M

β ∧ dAm

GV2 =

∫
M

β ∧ dβ ∧ dAm−1

...

GVm+1 =

∫
M

β ∧ dβm

Remark 3.3. We will show that the C2 assumption is not needed.

Lemma 3.4. The Godbillon–Vey classes are well-defined, independently of
the choices of a and β.

Theorem 3.5. GV0 is the contact (or Liouville) volume. GV1 is the Li-
ouville entropy (β(X) measures the relative rate of change of unstable volume, and

the time average (hence by ergodicity, the space average) of this is the sum of the posi-

tive Lyapunov exponents, which by the Pesin Entropy Formula is the Liouville entropy),
and for geodesic flows of surfaces, GV2 is the usual Godbillon–Vey class (we

derive the Mitsumatsu formula).

We can apply these classes to geometric rigidity of geodesic flows on sur-
faces. Analogously to a result of Mitsumatsu [11] we have:

Proposition 3.6.
GV0GV2

(GV1)2
≥ 1 with equality iff M has constant curvature.

Proof. We have dimE− = dimE+ = 1. Denote the standard vertical
vector field by Y and the standard horizontal vector field by h to get

[X, Y ] = −h, [Y, h] = −X, [X, h] = RY,

where R is the curvature. We write the unstable and stable vector fields as
ξ± = u±Y ±h, where u̇±+u±

2
+R = 0 (Riccati equation). With u := −u−

we have

GV0 =

∫
M

A∧ dA, GV1 =

∫
M

uA∧ dA, GV2 =

∫
M

u2 + 3(LY u)2A∧ dA,

so the Cauchy–Schwarz inequality∫
M

uA ∧ dA ≤
(∫

M

u2A ∧ dA
)1/2(∫

M

A ∧ dA
)1/2
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gives
GV1 ≤ (GV2)1/2(GV0)1/2

with equality only if u ≡ const (and, redundantly, LY u ≡ 0), which in turn
happens iff M has constant curvature.

This easily recovers a rigidity result of Hurder and Katok.

Theorem 3.7. Suppose ϕt and ψt are geodesic flows for Riemannian sur-
faces M and S, respectively, and S has constant curvature −1. If F is a
conjugacy that sends the contact form A for ϕt to that for ψt, and if the
Godbillon–Vey classes match up, i.e., GVi = GV ′i for i = 0, 1, 2, then M
and S are isometric.

Proof. For the constantly curved manifold we have GV ′0 = GV ′1 = GV ′2 =

vol(S), so
GV0GV2

(GV1)2
= 1, and Theorem 3.6 implies that M has constant

curvature.
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Études Scientifiques 72 (1990), 5–61



88

[11] Yoshihiko Mitsumatsu: A relation between the topological invariance of the
Godbillon–Vey invariant and the differentiability of Anosov foliations. Foliations
(Tokyo, 1983), 159–167, Adv. Stud. Pure Math., 5, North-Holland, Amsterdam,
1985.

[12] William P. Thurston: Three-manifolds, foliations and circles, I. Preliminary ver-
sion. arXiv 9712268v1

Patrick Foulon
Institut de Recherche Mathematique Avancée
UMR 7501 du Centre National de la Recherche Scientifique
7 Rue René Descartes
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