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1. Introduction

In this talk, we will discuss recent results in the program to understand the
exceptional minimal sets for foliations of codimension q ≥ 1. The outline
of this program is discussed below.

Let F be a Cr-foliation of a compact connected Riemannian manifold
M , for r ≥ 0. The leaves of F are then smoothly immersed submanifolds
in M of codimension q ≥ 1, and each leaf inherits a natural quasi-isometry
class of Riemannian metrics.

A closed subset M ⊂ M is minimal for F if for each x ∈ M the
leaf Lx ⊂ M, and the closure Lx = M. Moreover, if for each transversal
Tx ⊂ M to F , the intersection Tx ∩M is a totally disconnected set, hence
is homeomorphic to a Cantor set as M is minimal, then we say that M is
an exceptional minimal set. Here is the general problem.

Problem 1.1. Classify the exceptional minimal sets for Cr-foliations, up
to homeomorphism (or possibly orbit equivalence), where q ≥ 1 and r ≥ 0.

The approach we take to this very broad problem, is to consider an
exceptional minimal set M ⊂M as a smooth foliated space in the sense of
[21], or Candel and Conlon [3, Chapter 11], with additional properties.

Definition 1.2. A matchbox manifold is a smooth foliated space M, whose
transverse models {Xi | 1 ≤ i ≤ ν} for the foliation charts are totally dis-
connected compact metric spaces. If every leaf of the foliation FM of M is
dense, we say that M is minimal, and then each transversal space Xi is a
clopen set in some Cantor set model X.

Definition 1.3. A matchbox manifold M is Lipshitz, if the holonomy
transformations defined by parallel transport along paths in the leaves of
FM are Lipshitz homeomorphisms with respect to the given metrics on the
models spaces {Xi | 1 ≤ i ≤ ν}.

With this definition, Problem 1.1 can be stated as:
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Problem 1.4. Let M be a Lipshitz minimal matchbox manifold. Given
r ≥ 0 and q ≥ 1, when does there exists a compact Riemannian manifold
M with Cr-foliation of codimension q, and a leafwise smooth embedding
ιM : M→M so that the image is a minimal set for F?

Observe that if such an embedding ιM : M → M exists, then every
leaf of FM is realized by a leaf of F in the same quasi-isometry class of
leafwise metrics. Thus, a solution to Problem 1.4 implies a solution to the
question posed by Cass in [4]. This problem can also be considered as a
generalization of the problem posed by McDuff in [20].

2. Existence results

There are a wide variety of constructions of classes of minimal matchbox
manifolds, and a vast literature on the study of these special classes. For
example, the tiling space Ω of a tiling of Rn is defined as the closure of
the space of tilings obtained via the translation action of Rn, in a suitable
metric topology. The assumption that the tiling is repetitive, aperiodic,
and has finite local complexity implies that Ω is locally homeomorphic to
a disk in Rn times a Cantor set [22], and thus is a matchbox manifold.
The Pisot Conjecture for tilings essentially asks when a particular class of
tilings embeds into a generalized Denjoy C1-foliation.

Weak solenoids were introduced by McCord in [19] and Schori in [23],
which generalize the classical case of Vietoris solenoids, which fiber over
B = S1. All weak solenoids are matchbox manifolds with leaves of dimen-
sion n. Their transverse dynamics are always equicontinuous, and for a
base manifold B of dimension n ≥ 2, there are many subtleties.

The Williams solenoids introduced in [25], which are expanding attrac-
tors for Axiom A dynamical systems, are defined as the inverse limit of an
expanding map on a branched manifold of dimension n. The leaves of the
expanding foliation defines a matchbox manifold structure for these.

The Ghys-Kenyon construction in [13, 2] yields the graph matchbox
manifolds, which have many remarkable properties as a class of examples
[17]. Lozano-Rojo and Lukina show in [18] that each generalized Bernoulli
shift yields a graph matchbox manifold with leaves of dimension 2.

Finally, Chapter 11 of the text by Candel and Conlon [3] contains many
constructions of foliated spaces, many of which have totally disconnected
transverse models, so are matchbox manifolds.

3. Non-embedding results

There are two types of non-embedding results for matchbox manifolds. Note
that an embedding of M as a minimal set for a foliation of a compact
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manifold M is a fortiori an embedding of M into M . Clark and Fokkink
prove in [5] the following:

Theorem 3.1. Suppose that M is homeomorphic to a weak solenoid with
leaves of dimension 1, and the Čech cohomology of M is not finite dimen-
sional, then M cannot be embedded in a compact manifold M of dimension
n+ 1. In particular, such M cannot be homeomorphic to a minimal set in
a codimension-one foliation.

For higher codimension, obstructions to embedding a continuum such
as M into a compact manifold M are more delicate, and do not hold in
such generality as above; see the discussion in [6]. The known obstructions
to a solution to Problem 1.4 in higher codimensions use properties of the
dynamics of M.

The work [1] by Attie and Hurder introduces the notion of the leaf
entropy for a leaf of a C0-foliation, whose definition extends naturally to
the leaves of a foliated space. The work [16] by Hurder and Lukina use
the methods of Lukina in [17] to construct examples of graph matchbox
manifolds whose leaves have infinite leaf entropy, which yields:

Theorem 3.2. There exists graph matchbox manifolds M which cannot be
embedded as a minimal set for any C1-foliation of a compact manifold.

If M is a minimal matchbox manifold which embeds as a minimal set
of a C1-foliation of a compact manifold, then there exists a metric on the
transverse models {Xi | 1 ≤ i ≤ ν} for FM such that the holonomy of FM

is Lipshitz. In the work [16] we show:

Theorem 3.3. There exists a minimal matchbox manifold M for which
there does not exist a metric on the transverse models {Xi | 1 ≤ i ≤ ν}
such that the holonomy of FM is Lipshitz. Thus, each such example cannot
be embedded as a minimal set for any C1-foliation.

Given a finitely-generated, torsion-free group Γ, and a minimal action
by homeomorphisms ϕ : ΓX → X on a Cantor set X, then the suspen-
sion construction yields a minimal matchbox manifold M whose transverse
holonomy groupoid is given by the action ϕ. The results in [5] show that
such matchbox manifolds always admit an embedding into a C0-foliation
with codimension 2.

Problem 3.4. Let ϕ : Γ × X → X be a minimal action on a Cantor set
X. Find invariants of the action which are obstructions to embedding a
matchbox manifold M obtained from a suspension of ϕ, into a Cr-foliation
of a compact manifold, for r ≥ 1.
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4. Embedding results

The problem of embedding a 1-dimensional matchbox manifold M in a
Cr-flow has two forms. If the dynamics of the flow restricted to M are
equicontinuous, or equivalently the flow is almost periodic on M, then M
must a Vietoris solenoid [24]. The realization of solenoids as minimal sets
for flows has an extensive literature (see [7] for a discussion and references).

The other possibility in the 1-dimensional case, is that the dynamics
of M are transversally expansive. In this case, M has a presentation as an
inverse limit of branched 1-manifolds, which can be used to give effective
criteria for embedding into punctured surfaces, for example as considered
in [14].

The case where M is minimal with leaf dimension n ≥ 2 is much more
difficult, and few results are known except when such an embedding is part
of the data in the construction, such as for the action of a rank-one lattice
in a Lie group, acting on its boundary when it is totally disconnected.

In the work [7], the authors’ studied the embedding problem for the
base Tn, and developed criteria for when M has a smooth embedding.

Theorem 4.1. Let M be a weak solenoid with base manifold Tn. Then
there exists a C0-foliation F of codimension-2n on a compact manifold with
minimal set M. If a mild restriction of the model of M by compact tori is
assumed, then it can be realized by a C1-foliation F of codimension-2n.

5. Classification

The study of the exceptional minimal sets for foliations also includes the
problem of classification of minimal matchbox manifolds, up to homeomor-
phism and orbit equivalence. This is work in progress [8, 9, 10, 11, 15].
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plexes, Panoramas & Synthèses, 8:49–95, 1999.
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