Geometry and Foliations 2013 Komaba, Tokyo, Japan

On codimension two contact embeddings

NAOHIKO KASUYA

1. Introduction and the statements of the results

We study codimension two contact embeddings in the odd dimensional Euclidean space. Let (M^{2n-1}, ξ) be a closed contact manifold and (N^{2m-1}, η) be a co-oriented contact manifold. An embedding $f: M^{2n-1} \to N^{2m-1}$ is said to be a contact embedding if $f_*(TM^{2n-1}) \cap \eta|_{f(M^{2n-1})} = f_*\xi$. Note that ξ must be co-orientable since $f^*\beta$ is a global defining 1-form of ξ , where β is a global defining 1-form of η . For given (M^{2n-1}, ξ) , we would like to know whether there exists a contact embedding of (M^{2n-1}, ξ) in $(\mathbb{R}^{2n+1}, \eta_0)$, where η_0 is the standard contact structure on \mathbb{R}^{2n+1} . It is equivalent to the existence of contact structure. We see that the first Chern class is an obstruction for the existence of such an embedding.

Theorem 1.1. If a closed contact manifold (M^{2n-1},ξ) is a contact submanifold of a co-oriented contact manifold (N^{2n+1},η) satisfying the condition $H^2(N^{2n+1};\mathbb{Z}) = 0$, then the first Chern class $c_1(\xi)$ vanishes.

In particular, there are infinitely many contact 3-manifolds which cannot be embedded in (\mathbb{R}^5, η_0) as contact submanifolds. We note that any 3-manifold can be embedded in \mathbb{R}^5 by Wall's theorem [16]. We also note that A.Mori[10] constructed a contact immersion of any closed co-orientable contact 3-manifold in (\mathbb{R}^5, η_0) and D.Martinez[9] proved that any closed coorientable contact (2n+1)-manifold can be embedded in $(\mathbb{R}^{4n+3}, \eta_0)$ as a contact submanifold. For the existence of contact embeddings of contact 3-manifolds in (\mathbb{R}^5, η_0) , there are several known examples. Some of them are links of isolated complex surface singularities in \mathbb{C}^3 . The canonical contact structure on a link is given by the complex tangency, and it is a contact submanifold of (S^5, η_{std}) , where η_{std} is the standard contact structure on S^5 . Though it is difficult to determine the structure on a link in general, it is done in the cases of the quasi-homogeneous singularities [13] and the cusp singularities [4], [11], [13]. In these cases, the link is the quotient of a cocompact lattice of a Lie group G and the contact structure is invariant under the action of G. Another example is given by A.Mori[12] and Niederkrüger-Presas[14]. They independently constructed a contact embedding of the overtwisted contact structure on S^3 associated to the

^{© 2013} Naohiko Kasuya

negative Hopf band in (S^5, η_{std}) . In spite of these examples, we do not know whether every contact 3-manifold with $c_1(\xi) = 0$ can be embedded in (\mathbb{R}^5, η_0) as a contact submanifold. By Gromov's h-principle, however, we can show the following result.

Theorem 1.2. If $c_1(\xi) = 0$, we can embed (M^3, ξ) in \mathbb{R}^5 as a contact submanifold for some contact structure on \mathbb{R}^5 .

2. Preliminary

2.1. The Chern classes of a co-oriented contact structure

Let $(M^{2n-1}, \xi = \ker \alpha)$ be a co-oriented contact structure. Since the 2-form $d\alpha$ induces a symplectic structure on ξ , $(\xi, d\alpha|_{\xi})$ is a symplectic vector bundle over M^{2n-1} . Since the conformal class of the symplectic bundle structure does not depend on the choice of α , we define the Chern classes of ξ as the Chern classes of this symplectic vector bundle.

2.2. The conformal symplectic normal bundle of a contact submanifold

Let $(M, \eta_M) \subset (N, \eta = \ker \beta)$ be a contact submanifold. The vector bundle η splits along M into the Whitney sum of the two subbundles

$$\eta|_M = \eta_M \oplus (\eta_M)^{\perp},$$

where η_M is the contact plane bundle on M given by $\eta_M = TM \cap \eta|_M$ and $(\eta_M)^{\perp}$ is the symplectic orthogonal of η_M in $\eta|_M$ with respect to the form $d\beta$. We can identify $(\eta_M)^{\perp}$ with the normal bundle νM . Moreover, $d\beta$ induces a conformal symplectic structure on $(\eta_M)^{\perp}$. We call $(\eta_M)^{\perp}$ the conformal symplectic normal bundle of M in N.

2.3. The Euler class of the normal bundle of an embedding

Let K^k be a closed orientable k-manifold, L^l an orientable *l*-manifold and $f: K^k \to L^l$ an embedding.

Theorem 2.1. If $H^{l-k}(L^l; \mathbb{Z}) = 0$, the Euler class of the normal bundle of f vanishes.

Proof. By Theorem 11.3 of [7], the Euler class of the normal bundle of f is the image of the dual cohomology class of K^k by the homomorphism $f^*: H^{l-k}(L^l;\mathbb{Z}) \to H^{l-k}(K^k;\mathbb{Z})$. Thus, if $H^{l-k}(L^l;\mathbb{Z}) = 0$, it vanishes. \Box

In particular, when l = k + 2, the normal bundle is a 2-dimensional trivial vector bundle.

3. Proof of Theorem 1.1

Proof. Let $f: M^{2n-1} \to N^{2n+1}$ be an embedding such that

$$f_*(TM^{2n-1}) \cap \eta|_{f(M^{2n-1})} = f_*\xi.$$

Since $H^2(N^{2n+1}; \mathbb{Z}) = 0$ and the normal bundle of f is 2-dimensional, it is topologically trivial by Theorem 2.1. Since the conformal symplectic structure on 2-dimensional trivial vector bundle is unique, the normal bundle of $f(M^{2n-1})$ is also trivial as a conformal symplectic vector bundle. That is, the vector bundle η splits along $f(M^{2n-1})$ such that

$$\eta|_{f(M^{2n-1})} = \eta_{f(M^{2n-1})} \oplus (\eta_{f(M^{2n-1})})^{\perp},$$

where $\eta_{f(M^{2n-1})} = f_*\xi$ and $(\eta_{f(M^{2n-1})})^{\perp}$ is a trivial symplectic bundle. By the naturality of the first Chern class and the condition $H^2(N^{2n+1};\mathbb{Z}) = 0$, it follows that $c_1(\eta|_{f(M^{2n-1})}) = f^*c_1(\eta) = 0$. On the other hand, taking the Whitney sum with a trivial symplectic bundle does not change the first Chern class. Thus, $c_1(\eta|_{f(M^{2n-1})}) = c_1(\xi)$ holds. It follows that $c_1(\xi) = 0$. \Box

4. Proof of Theorem 1.2

4.1. h-principle

We review Gromov's h-principle and prove Propositon 4.4 as a preliminary for the proof of Theorem 1.2.

DEFINITION 4.1. Let N^{2n+1} be an oriented manifold. An almost contact structure on N^{2n+1} is a pair (β_1, β_2) consisting of a global 1-form β_1 and a global 2-form β_2 satisfying the condition $\beta_1 \wedge \beta_2^n \neq 0$.

REMARK 4.2. There is another definition. We can define an almost contact structure on N^{2n+1} as a reduction of the structure group of TN^{2n+1} from SO(2n+1) to U(n). Since a pair (β_1, β_2) satisfying $\beta_1 \wedge \beta_2^n \neq 0$ can be seen as the cooriented hyperplane field ker β_1 with an almost complex structure compatible with the symplectic structure $\beta_2|_{\ker\beta_1}$, the two definitions are equivalent up to homotopy.

Theorem 4.3 (Gromov[2], Eliashberg-Mishachev[1]). Suppose N^{2n+1} is an open manifold. If there exists an almost contact structure over N^{2n+1} , then there exists a contact structure on N^{2n+1} in the same homotopy class of almost contact structures. Moreover if the almost contact structure is already a contact structure on a neighborhood of a compact submanifold $M^m \subset N^{2n+1}$ with m < 2n, then we can get a contact structure on N^{2n+1} which coincides with the original one on a small neighborhood of M^m .

Let $(M^{2n-1}, \xi = \ker \alpha)$ be a closed cooriented contact manifold and M^{2n-1} be embedded in \mathbb{R}^{2n+1} . By Theorem 2.1, there exists an embedding

$$F: M^{2n-1} \times D^2 \to \mathbb{R}^{2n+1}.$$

The form $\alpha + r^2 d\theta$ induces a contact form β on $U = F(M^{2n-1} \times D^2)$. By Theorem 4.3, in order to extend given contact structure, it is enough to extend it as an almost contact structure. Almost contact structures on N^{2n+1} correspond to sections of the principal SO(2n+1)/U(n) bundle associated with the tangent bundle TN^{2n+1} . In particular, almost contact structures on \mathbb{R}^{2n+1} correspond to smooth maps

$$\mathbb{R}^{2n+1} \to SO(2n+1)/U(n).$$

Thus we get the following proposition.

Proposition 4.4. We can embed (M^{2n-1},ξ) in \mathbb{R}^{2n+1} as a contact submanifold for some contact structure, if and only if there exists an embedding $F: M^{2n-1} \times D^2 \to \mathbb{R}^{2n+1}$ such that the map $g: M^{2n-1} \to SO(2n+1)/U(n)$ induced by the underlying almost contact structure of $(M^{2n-1} \times D^2, \alpha + r^2 d\theta)$ is contractible.

Proof. The underlying almost contact structure of $(U, \beta) \subset \mathbb{R}^{2n+1}$ is identified with the map $\tilde{g}: U \to SO(2n+1)/U(n)$ whose restriction to M^{2n-1} is g. We can take an extension of \tilde{g} over \mathbb{R}^{2n+1} if and only if g is contractible.

4.2. Proof of Theorem 1.2

Proof. There exists an embedding $f: M^3 \to \mathbb{R}^5$ [16], and the normal bundle of f is trivial. Thus we can take an embedding $F: M^3 \times D^2 \to \mathbb{R}^5$. By Proposition 4.4, it is enough to prove that if $c_1(\xi) = 0$, then there exists an embedding F such that the map $g: M^3 \to SO(5)/U(2)$ induced by F is contractible. Let us take a triangulation of M^3 and $M^{(l)}$ be its l dimensional skeleton, i.e.,

$$M^{(0)} \subset M^{(1)} \subset M^{(2)} \subset M^{(3)} = M^3.$$

The condition $c_1(\xi) = 0$ is equivalent to that ξ is a trivial plane bundle over M^3 . Hence a trivialization τ of ξ and the Reeb vector field R of α give a

trivialization of TM^3 . This trivialization of TM^3 and a trivialization ν of the normal bundle νM^3 form a map

$$h: M^3 \to SO(5).$$

In other words, h is a trivialization of $T\mathbb{R}^5 \mid_{M^3}$ consisting of R, τ and ν . Composing with the projection $\pi: SO(5) \to SO(5)/U(2)$, it induces the map $q = \pi \circ h \colon M^3 \to SO(5)/U(2)$. Thus h is a lift of q. Now we consider whether h is null-homotopic over $M^{(1)}$. In other words, we consider the difference between the spin structures on $T\mathbb{R}^5|_{M^3}$ induced by h and the constant map I_5 . Then the obstruction is the Wu invariant $c(f) \in \Gamma_2(M^3)$, where $\Gamma_2(M^3) = \{C \in H^2(M^3; \mathbb{Z}) \mid 2C = 0\}$. The following explanation of the Wu invariant is due to [15]. The Wu invariant is defined for an immersion of the parallelized 3-manifold with trivial normal bundle. A normal trivialization ν of f and the tangent trivialization define a map $\pi_1(M^3) \to \pi_1(SO(5))$, namely an element \tilde{c}_f in $H^1(M^3; \mathbb{Z}_2)$. If we change ν by an element $z \in [M^3, SO(2)] = H^1(M^3; \mathbb{Z})$, then the class \tilde{c}_f changes by $\rho(z)$, where ρ is the mod 2 reduction map $H^1(M^3; \mathbb{Z}) \to H^1(M^3; \mathbb{Z}_2)$. Hence the coset of \tilde{c}_f in $H^1(M^3; \mathbb{Z}_2)/\rho(H^1(M^3; \mathbb{Z}))$ does not depend on ν . The cokernel of ρ is identified with $\Gamma_2(M^3)$ by the canonical map induce by the Bockstein homomorphism. Under this identification, the coset of \tilde{c}_f corresponds to the Wu invariant $c(f) \in \Gamma_2(M^3)$. Now we fix the trivialization of TM^3 formed by τ and R. By Theorem 3.8 of [15], there exists an embedding $f: M^3 \to \mathbb{R}^5$ such that c(f) = 0. Moreover, there exists a normal trivialization ν of f such that $\tilde{c}_f = 0 \in H^1(M^3; \mathbb{Z}_2)$. With the embedding f and the normal trivialization ν , the map h is null-homotopic over $M^{(1)}$. Since $\pi_2(SO(5)) = 0$, it is also null-homotopic over $M^{(2)}$ and so is the map $q = \pi \circ h : M^3 \to SO(5)/U(2)$. Since $\pi_3(SO(5)/U(2)) = 0$, g is contractible. This completes the proof of Theorem 1.2.

5. Examples of codimension 2 contact submanifolds

5.1. Singularity links

Let X be a complex algebraic surface in \mathbb{C}^3 with an isolated singularity at the origin 0. The intersection L^3 of X and a sufficiently small sphere S_{ε}^5 is called the link of (X, 0). The canonical contact structure ξ on L^3 is given by $\xi = TL^3 \cap JTL^3$, where J is the standard complex structure on \mathbb{C}^3 . It is obviously a contact submanifold of (S^5, η_{std}) . In the case of quasi-homogeneous singularity and cusp singularity, Neumann[13] showed that there is a one-one correspondence between geometric structures on L^3 and complex analytic structures on (X, 0).

EXAMPLE 5.1 (Brieskorn singularity). Let $X = \{x^p + y^q + z^r = 0\}$. The

link L^3 is a quotient of the Lie group G = SU(2), Nil^3 or $\widetilde{SL}(2; \mathbb{R})$, according as the rational number $p^{-1} + q^{-1} + r^{-1} - 1$ is positive, zero or negative [8]. Since the canonical contact structure ξ on L^3 is invariant under the action of G, ξ is determined[13].

EXAMPLE 5.2 (Cusp singularity). Let $X = \{x^p + y^q + z^r + xyz = 0\}$ with $p^{-1} + q^{-1} + r^{-1} < 1$. This singularity is analytically equivalent to a Hilbert modular cusp associated with a quadratic field over \mathbb{Q} [3],[5],[6]. Thus the link L^3 is a hyperbolic mapping torus and has a geometry of the Lie group $G = Sol^3$. ξ is the positive contact structure associated with the Anosov flow on L^3 [4],[11],[13].

5.2. Other examples

Let $(r_1, \theta_1, r_2, \theta_2, r_3, \theta_3)$ be the polar coordinates on $S^5 \subset \mathbb{C}^3$, where

$$(z_1, z_2, z_3) = (r_1 e^{2\pi i \theta_1}, r_2 e^{2\pi i \theta_2}, r_3 e^{2\pi i \theta_3}) \in \mathbb{C}^3, \ S^5 = \left\{ r_1^2 + r_2^2 + r_3^2 = 1 \right\}.$$

The standard contact form on S^5 is $\alpha_0 = r_1^2 d\theta_1 + r_2^2 d\theta_2 + r_3^2 d\theta_3$. Let $\phi: S^5 \to \mathbb{R}^3$ be the projection, where $\phi(r_1, \theta_1, r_2, \theta_2, r_3, \theta_3) = (r_1^2, r_2^2, r_3^2)$. Then the image $\phi(S^5) = \{x_1 + x_2 + x_3 = 1, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$ is a regular triangle in \mathbb{R}^3 . It is called the moment polytope Δ . Note that π is a T^3 -fibration over Int Δ and is a T^2 -fibration over $\partial \Delta$ except on the three vertices. Choosing a curve c on Δ and a section over c appropriately, one can get an embedding of a 3-manifold in S^5 .

EXAMPLE 5.3 (Mori's example). Let (S^3, η_{neg}) be the negative overtwisted contact structure associated with the negative Hopf link. Using the moment polytope, A.Mori constructed a deformation of embedded standard contact 3-sphere to (S^3, η_{neg}) in (S^5, ξ_{std}) , via the Reeb foliation on S^3 foliated by immersed Legendrian submanifolds of S^5 [12]. Slightly changing this example, we can also see that tight contact structures on the 3-torus can be embedded in (S^5, η_{std}) as contact submanifolds.

EXAMPLE 5.4 (Furukawa's example). In a similar way, R.Furukawa constructed the contact embeddings of universally tight contact structures on some T^2 bundles over S^1 . His examples cover the link of cusp singularities and Brieskorn Nil singularities.

References

 Y.Eliashberg and N.Mishachev, Introduction to the h-Principle, Graduate Studies in Mathematics. 48, AMS, 2002.

- [2] M.Gromov, Stable mappings of foliations into manifolds, *Izv. Akad. Nauk SSSR Ser. Mat.* 33 (1969), 707–734.
- [3] F.Hirzebruch, Hilbert modular surfaces, L'Enseignement Math., 19 (1973), 183– 281.
- [4] N.Kasuya, The contact structure on the link of a cusp singularity, *preprint* (2012), arXiv:1202.2198v2.
- [5] H.B.Laufer, Two dimensional taut singularities, Math. Ann., 205 (1973), 131–164.
- [6] H.B.Laufer, Minimally elliptic singularities, Am.J.Math., 99 (1977), 1257–1295.
- [7] J.W.Milnor and J.D.Stasheff, *Characteristic classes*, Annals of Mathematics Studies. 76, Princeton Univ. Press, 1974.
- [8] J.W.Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r), Annals of Mathematics Studies. 84, Princeton Univ. Press, (1975), 175–225.
- [9] D.Martinez Torres, Contact embeddings in standard contact spheres via approximately holomorphic geometry, J. Math. Sci. Univ. Tokyo 18 (2010), 139–154.
- [10] A.Mori, Global models of contact forms, J. Math. Sci. Univ. Tokyo 11 (2004), 447–454.
- [11] A.Mori, Reeb foliations on S^5 and contact 5-manifolds violating the Thurston-Bennequin inequality, *preprint* (2009), arXiv:0906.3237v2.
- [12] A.Mori, The Reeb foliation arises as a family of Legendrian submanifolds at the end of a deformation of the standard S³ in S⁵, C. R. Acad. Sci. Paris, Ser. I **350** (2012), 67–70.
- [13] W.D.Neumann, Geometry of quasihomogeneous surface singularities, Proc. Sympos. Pure Math. 40 (1983), Part 2, AMS, 245–258.
- [14] K.Niederkrüger and F.Presas, Some remarks on the size of tubular neighborhoods in contact topology and fillability, *Geom. Topol.* 14 (2010), 719–754.
- [15] O.Saeki, A.Szücs and M.Takase, Regular homotopy classes of immersions of 3manifolds into 5-space, *Manuscripta Math.* 108 (2002), 13–32.
- [16] C.T.C.Wall, All 3-manifolds embed in 5-space, Bull. Amer. Math. Soc. 71 (1965), 564–567.

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan, E-mail: nkasuya@ms.u-tokyo.ac.jp