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On codimension two contact embeddings

Naouiko KASUYA

1. Introduction and the statements of the results

We study codimension two contact embeddings in the odd dimensional Eu-
clidean space. Let (M?"~! &) be a closed contact manifold and (N?™~1 )
be a co-oriented contact manifold. An embedding f : M**~1 — N?m~1 g
said to be a contact embedding if f.(TM>"")Nn|pazn—1y = f.&. Note that
¢ must be co-orientable since f*( is a global defining 1-form of &, where
/3 is a global defining 1-form of 5. For given (M?*"~1 ¢), we would like to
know whether there exists a contact embedding of (M?*~1 &) in (R?*"1, 1),
where 1), is the standard contact structure on R?"*!. It is equivalent to the
existence of contact embeddings of (M?"~! ¢) in the (2n + 1)-sphere with
the standard contact structure. We see that the first Chern class is an
obstruction for the existence of such an embedding.

Theorem 1.1. If a closed contact manifold (M?*"~1,£) is a contact sub-
manifold of a co-oriented contact manifold (N?" 1. n) satisfying the condi-
tion H?*(N?"*1;Z) = 0, then the first Chern class c1(€) vanishes.

In particular, there are infinitely many contact 3-manifolds which can-
not be embedded in (R® 1y) as contact submanifolds. We note that any
3-manifold can be embedded in R®> by Wall’s theorem[16]. We also note
that A.Mori[10] constructed a contact immersion of any closed co-orientable
contact 3-manifold in (R”,7y) and D.Martinez[9] proved that any closed co-
orientable contact (2n + 1)-manifold can be embedded in (R¥3, 17,) as a
contact submanifold. For the existence of contact embeddings of contact
3-manifolds in (R® 1), there are several known examples. Some of them
are links of isolated complex surface singularities in C3. The canonical
contact structure on a link is given by the complex tangency, and it is a
contact submanifold of (S°, 1,4), Where 744 is the standard contact struc-
ture on S°. Though it is difficult to determine the structure on a link in
general, it is done in the cases of the quasi-homogeneous singularities[13]
and the cusp singularities[4],[11],[13]. In these cases, the link is the quo-
tient of a cocompact lattice of a Lie group G and the contact structure is
invariant under the action of G. Another example is given by A.Mori[12]
and Niederkriiger-Presas[14]. They independently constructed a contact
embedding of the overtwisted contact structure on S® associated to the

(© 2013 Naohiko Kasuya

95



96

negative Hopf band in (S°,ny4). In spite of these examples, we do not
know whether every contact 3-manifold with ¢;(§) = 0 can be embedded in
(R5,19) as a contact submanifold. By Gromov’s h-principle, however, we
can show the following result.

Theorem 1.2. If ¢;(£) = 0, we can embed (M?>,£) in R® as a contact
submanifold for some contact structure on R>.

2. Preliminary

2.1. The Chern classes of a co-oriented contact structure

Let (M?"~! ¢ = ker o) be a co-oriented contact structure. Since the 2-form
da induces a symplectic structure on &, (€, dal¢) is a symplectic vector
bundle over M?"~!. Since the conformal class of the symplectic bundle
structure does not depend on the choice of «, we define the Chern classes
of € as the Chern classes of this symplectic vector bundle.

2.2. The conformal symplectic normal bundle of a contact sub-
manifold

Let (M,na) C (N,n = ker B) be a contact submanifold. The vector bundle
n splits along M into the Whitney sum of the two subbundles

nlar = nar & (nar) ™,

where 1), is the contact plane bundle on M given by 1y, = TM N |y
and (ny7)* is the symplectic orthogonal of ny; in 5|y, with respect to the
form dB. We can identify (1) with the normal bundle vM. Moreover,
df3 induces a conformal symplectic structure on (ny;)t. We call (ny,)* the
conformal symplectic normal bundle of M in N.

2.3. The Euler class of the normal bundle of an embedding

Let K* be a closed orientable k-manifold, L! an orientable {-manifold and
f: K* — L' an embedding.

Theorem 2.1. [If H"*(L}Z) = 0, the Euler class of the normal bundle
of f vanishes.

Proof. By Theorem 11.3 of [7], the Euler class of the normal bundle of
f is the image of the dual cohomology class of K* by the homomorphism
f* HMLL7Z) — HH(KF,Z). Thus, if H7F(LYZ) = 0, it vanishes. [
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In particular, when [ = k 4 2, the normal bundle is a 2-dimensional trivial
vector bundle.

3. Proof of Theorem 1.1
Proof. Let f: M?"1 — N?"*! be an embedding such that

f*(TM2n71) M n’f(MQn—l) = f*g

Since H?(N?"*1:7Z) = 0 and the normal bundle of f is 2-dimensional, it is
topologically trivial by Theorem 2.1. Since the conformal symplectic struc-
ture on 2-dimensional trivial vector bundle is unique, the normal bundle of
f(M?*~1) is also trivial as a conformal symplectic vector bundle. That is,
the vector bundle 7 splits along f(M?"~!) such that

77|f(M2"*1) = T]f(M2n—1) @ (T]f(MQn—l))L7

where 7yaz-1) = fif and (npae-1))* is a trivial symplectic bundle. By
the naturality of the first Chern class and the condition H*(N?*"*1;7Z) = 0,
it follows that cy(n|f2n-1y) = f*ci(n) = 0. On the other hand, taking
the Whitney sum with a trivial symplectic bundle does not change the first
Chern class. Thus, ¢;(n]sa2n-1)) = ¢1(§) holds. It follws that ¢ (§) = 0. [J

4. Proof of Theorem 1.2

4.1. h-principle

We review Gromov’s h-principle and prove Propositon 4.4 as a preliminary
for the proof of Theorem 1.2.

DEFINITION 4.1. Let N?"*! be an oriented manifold. An almost contact
structure on N*"*1 is a pair (f;, 82) consisting of a global 1-form 3; and a
global 2-form [, satisfying the condition £ A S # 0.

REMARK 4.2. There is another definition. We can define an almost con-
tact structure on N2"*! as a reduction of the structure group of T'N?*+!
from SO(2n+1) to U(n). Since a pair (51, f2) satisfying £y A 85 # 0 can be
seen as the cooriented hyperplane field ker 8 with an almost complex struc-
ture compatible with the symplectic structure fBa|ker g, , the two definitions
are equivalent up to homotopy.

Theorem 4.3 (Gromov[2], Eliashberg-Mishachev[1]).  Suppose N?"*1 is
an open manifold. If there ewxists an almost contact structure over N*"!,
then there exists a contact structure on N?"! in the same homotopy class
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of almost contact structures. Moreover if the almost contact structure is
already a contact structure on a neighborhood of a compact submanifold
M™ C N2t with m < 2n, then we can get a contact structure on N*"+1
which coincides with the original one on a small neighborhood of M™.

Let (M?"~1 ¢ = ker a) be a closed cooriented contact manifold and A?"~!
be embedded in R?"*1. By Theorem 2.1, there exists an embedding

F- M2n71 % D2 N RQnJrl.

The form a + r2df induces a contact form 3 on U = F(M*~1 x D?).
By Theorem 4.3, in order to extend given contact structure, it is enough
to extend it as an almost contact structure. Almost contact structures
on N?"*1 correspond to sections of the principal SO(2n + 1)/U(n) bundle
associated with the tangent bundle TN?"*!. In particular, almost contact
structures on R?"*! correspond to smooth maps

R — SO(2n +1)/U(n).
Thus we get the following proposition.

Proposition 4.4.  We can embed (M1 £) in R*" ™! as a contact sub-
manifold for some contact structure, if and only if there exists an embedding
F: M?1 x D? — R?*"*L such that the map g : M*"' — SO(2n+1)/U(n)
induced by the underlying almost contact structure of (M*"~*x D?, a+r2df)
is contractible.

Proof. The underlying almost contact structure of (U, 3) C R*"*! is iden-
tified with the map g : U — SO(2n+1)/U(n) whose restriction to M?*~1 ig
g. We can take an extension of § over R?"*1 if and only if ¢ is contractible.

[

4.2. Proof of Theorem 1.2

Proof. There exists an embedding f: M? — R® [16], and the normal
bundle of f is trivial. Thus we can take an embedding F': M? x D? — R5.
By Proposition 4.4, it is enough to prove that if ¢;(§) = 0, then there
exists an embedding F such that the map g: M? — SO(5)/U(2) induced
by F is contractible. Let us take a triangulation of M? and M® be its
dimensional skeleton, i.e.,

MO c MDD c M@ c MO = M3,

The condition ¢;(£) = 0 is equivalent to that £ is a trivial plane bundle over
M?3. Hence a trivialization 7 of £ and the Reeb vector field R of o give a
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trivialization of TM?3. This trivialization of TM? and a trivialization v of
the normal bundle vM? form a map

h: M? — SO(5).

In other words, h is a trivialization of TR® |y consisting of R, 7 and v.
Composing with the projection 7: SO(5) — SO(5)/U(2), it induces the
map g =7moh: M> — SO(5)/U(2). Thus h is a lift of g. Now we consider
whether A is null-homotopic over M. In other words, we consider the
difference between the spin structures on TR® |3 induced by h and the
constant map I5. Then the obstruction is the Wu invariant c(f) € Ty(M?),
where Ty(M?) = {C € H*(M?;Z) | 2C = 0}. The following explanation
of the Wu invariant is due to [15]. The Wu invariant is defined for an
immersion of the parallelized 3-manifold with trivial normal bundle. A
normal trivialization v of f and the tangent trivialization define a map
m1(M?) = m(SO(5)), namely an element ¢; in H'(M?;Z,). If we change
v by an element z € [M?3, SO(2)] = H'(M?;Z), then the class ¢; changes
by p(z), where p is the mod 2 reduction map HY(M3;Z) — HY(M?3;Z,).
Hence the coset of ¢; in H'(M?;Zy)/p(H"(M?;Z)) does not depend on v.
The cokernel of p is identified with T'y(M?) by the canonical map induce
by the Bockstein homomorphism. Under this identification, the coset of ¢;
corresponds to the Wu invariant ¢(f) € To(M?). Now we fix the trivial-
ization of TM? formed by 7 and R. By Theorem 3.8 of [15], there exists
an embedding f : M?® — R® such that ¢(f) = 0. Moreover, there exists
a normal trivialization v of f such that ¢; = 0 € H'(M?;Z,). With the
embedding f and the normal trivialization v, the map h is null-homotopic
over M. Since m,(SO(5)) = 0, it is also null-homotopic over M) and so
is the map g = wmo h : M?® — SO(5)/U(2). Since m3(SO(5)/U(2)) =0, g is
contractible. This completes the proof of Theorem 1.2. []

5. Examples of codimension 2 contact submanifolds

5.1. Singularity links

Let X be a complex algebraic surface in C* with an isolated singularity
at the origin 0. The intersection L? of X and a sufficiently small sphere
S® is called the link of (X,0). The canonical contact structure & on L3
is given by ¢ = TL?> N JTL?, where J is the standard complex structure
on C3. Tt is obviously a contact submanifold of (S® ny4). In the case of
quasi-homogeneous singularity and cusp singularity, Neumann[13] showed
that there is a one-one correspondence between geometric structures on L?
and complex analytic structures on (X, 0).

EXAMPLE 5.1 (Brieskorn singularity). Let X = {2 +y?+ 2" =0}. The
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link L3 is a quotient of the Lie group G = SU(2), Nil® or SL(2;R), accord-
ing as the rational number p~! 4+ ¢! +r~! — 1 is positive, zero or negative
[8]. Since the canonical contact structure & on L? is invariant under the
action of G, £ is determined[13].

EXAMPLE 5.2 (Cusp singularity). Let X = {2 + y? + 2" + xyz = 0} with
p~t+q¢ ' +r~!t < 1. This singularity is analytically equivalent to a Hilbert
modular cusp associated with a quadratic field over Q [3],[5],[6]. Thus the
link L3 is a hyperbolic mapping torus and has a geometry of the Lie group
G = Sol?. £ is the positive contact structure associated with the Anosov
flow on L? [4],[11],[13].

5.2. Other examples

Let (71, 01,72, 02,73, 03) be the polar coordinates on S° C C?, where
(21,22, 23) = (r1€®™%", ree®™ r3e®™) € C*, S° = {ri + 13 +1; = 1}.

The standard contact form on S® is ag = ridf; + ridf; + r3dfs. Let
¢: S° — R3 be the projection, where ¢(ry,01,79,04,73,05) = (r? r3, r3).
Then the image ¢(S°) = {z1 + 22 + 23 = 1,21 > 0,25 > 0,23 > 0} is a reg-
ular triangle in R3. It is called the moment polytope A. Note that 7 is a
T3-fibration over Int/\ and is a T?-fibration over A except on the three
vertices. Choosing a curve ¢ on /A and a section over ¢ appropriately, one
can get an embedding of a 3-manifold in S°.

EXAMPLE 5.3 (Mori’s example). Let (S?, n,.,) be the negative overtwisted
contact structure associated with the negative Hopf link. Using the mo-
ment polytope, A.Mori constructed a deformation of embedded standard
contact 3-sphere to (S?, ne,) in (S?, &sa), via the Reeb foliation on S? fo-
liated by immersed Legendrian submanifolds of S® [12]. Slightly changing
this example, we can also see that tight contact structures on the 3-torus
can be embedded in (S5°,7y4) as contact submanifolds.

EXAMPLE 5.4 (Furukawa’s example). In a similar way, R.Furukawa con-
structed the contact embeddings of universally tight contact structures on
some T2 bundles over S'. His examples cover the link of cusp singularities
and Brieskorn Nil singularities.
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