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On codimension two contact embeddings
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1. Introduction and the statements of the results

We study codimension two contact embeddings in the odd dimensional Eu-
clidean space. Let (M2n−1, ξ) be a closed contact manifold and (N2m−1, η)
be a co-oriented contact manifold. An embedding f : M2n−1 → N2m−1 is
said to be a contact embedding if f∗(TM

2n−1)∩η|f(M2n−1) = f∗ξ. Note that
ξ must be co-orientable since f ∗β is a global defining 1-form of ξ, where
β is a global defining 1-form of η. For given (M2n−1, ξ), we would like to
know whether there exists a contact embedding of (M2n−1, ξ) in (R2n+1, η0),
where η0 is the standard contact structure on R2n+1. It is equivalent to the
existence of contact embeddings of (M2n−1, ξ) in the (2n + 1)-sphere with
the standard contact structure. We see that the first Chern class is an
obstruction for the existence of such an embedding.

Theorem 1.1. If a closed contact manifold (M2n−1, ξ) is a contact sub-
manifold of a co-oriented contact manifold (N2n+1, η) satisfying the condi-
tion H2(N2n+1;Z) = 0, then the first Chern class c1(ξ) vanishes.

In particular, there are infinitely many contact 3-manifolds which can-
not be embedded in (R5, η0) as contact submanifolds. We note that any
3-manifold can be embedded in R5 by Wall’s theorem[16]. We also note
that A.Mori[10] constructed a contact immersion of any closed co-orientable
contact 3-manifold in (R5, η0) and D.Martinez[9] proved that any closed co-
orientable contact (2n + 1)-manifold can be embedded in (R4n+3, η0) as a
contact submanifold. For the existence of contact embeddings of contact
3-manifolds in (R5, η0), there are several known examples. Some of them
are links of isolated complex surface singularities in C3. The canonical
contact structure on a link is given by the complex tangency, and it is a
contact submanifold of (S5, ηstd), where ηstd is the standard contact struc-
ture on S5. Though it is difficult to determine the structure on a link in
general, it is done in the cases of the quasi-homogeneous singularities[13]
and the cusp singularities[4],[11],[13]. In these cases, the link is the quo-
tient of a cocompact lattice of a Lie group G and the contact structure is
invariant under the action of G. Another example is given by A.Mori[12]
and Niederkrüger-Presas[14]. They independently constructed a contact
embedding of the overtwisted contact structure on S3 associated to the
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negative Hopf band in (S5, ηstd). In spite of these examples, we do not
know whether every contact 3-manifold with c1(ξ) = 0 can be embedded in
(R5, η0) as a contact submanifold. By Gromov’s h-principle, however, we
can show the following result.

Theorem 1.2. If c1(ξ) = 0, we can embed (M3, ξ) in R5 as a contact
submanifold for some contact structure on R5.

2. Preliminary

2.1. The Chern classes of a co-oriented contact structure

Let (M2n−1, ξ = kerα) be a co-oriented contact structure. Since the 2-form
dα induces a symplectic structure on ξ, (ξ, dα|ξ) is a symplectic vector
bundle over M2n−1. Since the conformal class of the symplectic bundle
structure does not depend on the choice of α, we define the Chern classes
of ξ as the Chern classes of this symplectic vector bundle.

2.2. The conformal symplectic normal bundle of a contact sub-
manifold

Let (M, ηM) ⊂ (N, η = ker β) be a contact submanifold. The vector bundle
η splits along M into the Whitney sum of the two subbundles

η|M = ηM ⊕ (ηM)⊥,

where ηM is the contact plane bundle on M given by ηM = TM ∩ η|M
and (ηM)⊥ is the symplectic orthogonal of ηM in η|M with respect to the
form dβ. We can identify (ηM)⊥ with the normal bundle νM . Moreover,
dβ induces a conformal symplectic structure on (ηM)⊥. We call (ηM)⊥ the
conformal symplectic normal bundle of M in N .

2.3. The Euler class of the normal bundle of an embedding

Let Kk be a closed orientable k-manifold, Ll an orientable l-manifold and
f : Kk → Ll an embedding.

Theorem 2.1. If H l−k(Ll;Z) = 0, the Euler class of the normal bundle
of f vanishes.

Proof. By Theorem 11.3 of [7], the Euler class of the normal bundle of
f is the image of the dual cohomology class of Kk by the homomorphism
f ∗ : H l−k(Ll;Z)→ H l−k(Kk;Z). Thus, if H l−k(Ll;Z) = 0, it vanishes.
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In particular, when l = k + 2, the normal bundle is a 2-dimensional trivial
vector bundle.

3. Proof of Theorem 1.1

Proof. Let f : M2n−1 → N2n+1 be an embedding such that

f∗(TM
2n−1) ∩ η|f(M2n−1) = f∗ξ.

Since H2(N2n+1;Z) = 0 and the normal bundle of f is 2-dimensional, it is
topologically trivial by Theorem 2.1. Since the conformal symplectic struc-
ture on 2-dimensional trivial vector bundle is unique, the normal bundle of
f(M2n−1) is also trivial as a conformal symplectic vector bundle. That is,
the vector bundle η splits along f(M2n−1) such that

η|f(M2n−1) = ηf(M2n−1) ⊕ (ηf(M2n−1))
⊥,

where ηf(M2n−1) = f∗ξ and (ηf(M2n−1))
⊥ is a trivial symplectic bundle. By

the naturality of the first Chern class and the condition H2(N2n+1;Z) = 0,
it follows that c1(η|f(M2n−1)) = f ∗c1(η) = 0. On the other hand, taking
the Whitney sum with a trivial symplectic bundle does not change the first
Chern class. Thus, c1(η|f(M2n−1)) = c1(ξ) holds. It follws that c1(ξ) = 0.

4. Proof of Theorem 1.2

4.1. h-principle

We review Gromov’s h-principle and prove Propositon 4.4 as a preliminary
for the proof of Theorem 1.2.

Definition 4.1. Let N2n+1 be an oriented manifold. An almost contact
structure on N2n+1 is a pair (β1, β2) consisting of a global 1-form β1 and a
global 2-form β2 satisfying the condition β1 ∧ βn2 6= 0.

Remark 4.2. There is another definition. We can define an almost con-
tact structure on N2n+1 as a reduction of the structure group of TN2n+1

from SO(2n+1) to U(n). Since a pair (β1, β2) satisfying β1∧βn2 6= 0 can be
seen as the cooriented hyperplane field ker β1 with an almost complex struc-
ture compatible with the symplectic structure β2|kerβ1 , the two definitions
are equivalent up to homotopy.

Theorem 4.3 (Gromov[2], Eliashberg-Mishachev[1]). Suppose N2n+1 is
an open manifold. If there exists an almost contact structure over N2n+1,
then there exists a contact structure on N2n+1 in the same homotopy class
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of almost contact structures. Moreover if the almost contact structure is
already a contact structure on a neighborhood of a compact submanifold
Mm ⊂ N2n+1 with m < 2n, then we can get a contact structure on N2n+1

which coincides with the original one on a small neighborhood of Mm.

Let (M2n−1, ξ = kerα) be a closed cooriented contact manifold and M2n−1

be embedded in R2n+1. By Theorem 2.1, there exists an embedding

F : M2n−1 ×D2 → R2n+1.

The form α + r2dθ induces a contact form β on U = F (M2n−1 × D2).
By Theorem 4.3, in order to extend given contact structure, it is enough
to extend it as an almost contact structure. Almost contact structures
on N2n+1 correspond to sections of the principal SO(2n+ 1)/U(n) bundle
associated with the tangent bundle TN2n+1. In particular, almost contact
structures on R2n+1 correspond to smooth maps

R2n+1 → SO(2n+ 1)/U(n).

Thus we get the following proposition.

Proposition 4.4. We can embed (M2n−1, ξ) in R2n+1 as a contact sub-
manifold for some contact structure, if and only if there exists an embedding
F : M2n−1×D2 → R2n+1 such that the map g : M2n−1 → SO(2n+ 1)/U(n)
induced by the underlying almost contact structure of (M2n−1×D2, α+r2dθ)
is contractible.

Proof. The underlying almost contact structure of (U, β) ⊂ R2n+1 is iden-
tified with the map g̃ : U → SO(2n+1)/U(n) whose restriction to M2n−1 is
g. We can take an extension of g̃ over R2n+1 if and only if g is contractible.

4.2. Proof of Theorem 1.2

Proof. There exists an embedding f : M3 → R5 [16], and the normal
bundle of f is trivial. Thus we can take an embedding F : M3 ×D2 → R5.
By Proposition 4.4, it is enough to prove that if c1(ξ) = 0, then there
exists an embedding F such that the map g : M3 → SO(5)/U(2) induced
by F is contractible. Let us take a triangulation of M3 and M (l) be its l
dimensional skeleton, i.e.,

M (0) ⊂M (1) ⊂M (2) ⊂M (3) = M3.

The condition c1(ξ) = 0 is equivalent to that ξ is a trivial plane bundle over
M3. Hence a trivialization τ of ξ and the Reeb vector field R of α give a
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trivialization of TM3. This trivialization of TM3 and a trivialization ν of
the normal bundle νM3 form a map

h : M3 → SO(5).

In other words, h is a trivialization of TR5 |M3 consisting of R, τ and ν.
Composing with the projection π : SO(5) → SO(5)/U(2), it induces the
map g = π ◦ h : M3 → SO(5)/U(2). Thus h is a lift of g. Now we consider
whether h is null-homotopic over M (1). In other words, we consider the
difference between the spin structures on TR5 |M3 induced by h and the
constant map I5. Then the obstruction is the Wu invariant c(f) ∈ Γ2(M3),
where Γ2(M3) = {C ∈ H2(M3;Z) | 2C = 0}. The following explanation
of the Wu invariant is due to [15]. The Wu invariant is defined for an
immersion of the parallelized 3-manifold with trivial normal bundle. A
normal trivialization ν of f and the tangent trivialization define a map
π1(M3) → π1(SO(5)), namely an element c̃f in H1(M3;Z2). If we change
ν by an element z ∈ [M3, SO(2)] = H1(M3;Z), then the class c̃f changes
by ρ(z), where ρ is the mod 2 reduction map H1(M3;Z) → H1(M3;Z2).
Hence the coset of c̃f in H1(M3;Z2)/ρ(H1(M3;Z)) does not depend on ν.
The cokernel of ρ is identified with Γ2(M3) by the canonical map induce
by the Bockstein homomorphism. Under this identification, the coset of c̃f
corresponds to the Wu invariant c(f) ∈ Γ2(M3). Now we fix the trivial-
ization of TM3 formed by τ and R. By Theorem 3.8 of [15], there exists
an embedding f : M3 → R5 such that c(f) = 0. Moreover, there exists
a normal trivialization ν of f such that c̃f = 0 ∈ H1(M3;Z2). With the
embedding f and the normal trivialization ν, the map h is null-homotopic
over M (1). Since π2(SO(5)) = 0, it is also null-homotopic over M (2) and so
is the map g = π ◦ h : M3 → SO(5)/U(2). Since π3(SO(5)/U(2)) = 0, g is
contractible. This completes the proof of Theorem 1.2.

5. Examples of codimension 2 contact submanifolds

5.1. Singularity links

Let X be a complex algebraic surface in C3 with an isolated singularity
at the origin 0. The intersection L3 of X and a sufficiently small sphere
S5
ε is called the link of (X, 0). The canonical contact structure ξ on L3

is given by ξ = TL3 ∩ JTL3, where J is the standard complex structure
on C3. It is obviously a contact submanifold of (S5, ηstd). In the case of
quasi-homogeneous singularity and cusp singularity, Neumann[13] showed
that there is a one-one correspondence between geometric structures on L3

and complex analytic structures on (X, 0).

Example 5.1 (Brieskorn singularity). Let X = {xp + yq + zr = 0}. The
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link L3 is a quotient of the Lie group G = SU(2), Nil3 or S̃L(2;R), accord-
ing as the rational number p−1 + q−1 + r−1 − 1 is positive, zero or negative
[8]. Since the canonical contact structure ξ on L3 is invariant under the
action of G, ξ is determined[13].

Example 5.2 (Cusp singularity). LetX = {xp + yq + zr + xyz = 0} with
p−1 + q−1 + r−1 < 1. This singularity is analytically equivalent to a Hilbert
modular cusp associated with a quadratic field over Q [3],[5],[6]. Thus the
link L3 is a hyperbolic mapping torus and has a geometry of the Lie group
G = Sol3. ξ is the positive contact structure associated with the Anosov
flow on L3 [4],[11],[13].

5.2. Other examples

Let (r1, θ1, r2, θ2, r3, θ3) be the polar coordinates on S5 ⊂ C3, where

(z1, z2, z3) = (r1e
2πiθ1 , r2e

2πiθ2 , r3e
2πiθ3) ∈ C3, S5 =

{
r2

1 + r2
2 + r2

3 = 1
}
.

The standard contact form on S5 is α0 = r2
1dθ1 + r2

2dθ2 + r2
3dθ3. Let

φ : S5 → R3 be the projection, where φ(r1, θ1, r2, θ2, r3, θ3) = (r2
1, r

2
2, r

2
3).

Then the image φ(S5) = {x1 + x2 + x3 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0} is a reg-
ular triangle in R3. It is called the moment polytope 4. Note that π is a
T 3-fibration over Int4 and is a T 2-fibration over ∂4 except on the three
vertices. Choosing a curve c on 4 and a section over c appropriately, one
can get an embedding of a 3-manifold in S5.

Example 5.3 (Mori’s example). Let (S3, ηneg) be the negative overtwisted
contact structure associated with the negative Hopf link. Using the mo-
ment polytope, A.Mori constructed a deformation of embedded standard
contact 3-sphere to (S3, ηneg) in (S5, ξstd), via the Reeb foliation on S3 fo-
liated by immersed Legendrian submanifolds of S5 [12]. Slightly changing
this example, we can also see that tight contact structures on the 3-torus
can be embedded in (S5, ηstd) as contact submanifolds.

Example 5.4 (Furukawa’s example). In a similar way, R.Furukawa con-
structed the contact embeddings of universally tight contact structures on
some T 2 bundles over S1. His examples cover the link of cusp singularities
and Brieskorn Nil singularities.
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[14] K.Niederkrüger and F.Presas, Some remarks on the size of tubular neighborhoods
in contact topology and fillability, Geom. Topol. 14 (2010), 719–754.
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