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1. Introduction

Throughout last 2-3 decades, there was great interest in extrinsic geometry
of foliated Riemannian manifolds (see [As], [B-L-R] and [Ze]).

One approach is to build examples of foliations with reasonably simple
singularities with leaves admitting some very restrictive geometric condi-
tion. After considering foliations of S3 by totally geodesic of totally umbili-
cal leaves with isolated singularities, totally geodesic foliations of H2 or H3,
[La-Si] provide families of foliations of S3 by Dupin cyclides with only one
smooth curve of singularities. Quadrics and other families of cyclides like
Darboux cyclides provide other examples. In all cases the results are ob-
tained considering an auxiliary space associated to the geometry imposed
to our leaves, the space of spheres, of lines, of circles for the examples
mentioned above.

Another motivation for our construction is the use of cyclides in com-
puter graphics, see for example [Po-Li-Sko].

The results mentioned in this conference come from a joint work with
Jean-Claude Sifre.

2. The spaces of lines, spheres, and circles

2.1. The space of lines

The set of affine lines of R3 is a vector bundle of base P2 and fiber R2 of
dimension 6. The projective space RP3 completes R3. The set of projective
lines of RP3 is isomorphic to the Grassmann manifold G(4, 2) of planes
of R4.

Let us first show how, using Plücker coordinates, G(4, 2) can be seen
as a quadric Π ⊂ RP5.

The condition that a vector U of
∧2(R4) is pure, that is of the form

u ∧ v, u ∈ R4, v ∈ R4 writes U ∧ U = 0; this provides a quadratic form,
called the Plücker form which defines the Plücker cone.

The incidence relation of two lines corresponding to the 2-vectors U
and V obtained checking that the corresponding 2-planes of R4 generate a
subspace of dimension at most 3; it writes U ∧ V = 0.
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A pencil of lines ` is the projective image of a totally isotropic plane of∧2(R4) for the Plücker form; it is of index (3, 3). We call the corresponding
projective line a projective light-ray.

Geometrically, a pencil of lines of P3 correspond to a contact condition,
that is a pair (m,P ), m ∈ P ⊂ P3.

2.2. The space of spheres

It will be convenient for us to realize both our ambient space S3 and the
set of oriented spheres as subsets of the Lorentz space R5

1, that is R5

endowed with the Lorentz quadratic form L(x) = L(x0, x1, x2, x3, x4) =
−x2

0 +
∑4

i=1 x
2
i .

The light-cone Li is the set L(x) = 0. Its generatrices are called light-
rays. We also call affine lines parallel to a generatrix of the light-cone
light-rays.

The light-cone separates vectors of R5 \ Li in two types: space-like
vectors, such that L(v) > 0 and time-like vectors, such that L(v) < 0.
A plane will be called space-like if it contains only space-like (non-zero)
vectors. It is called time-like if it contains non zero time-like vectors (then
it contains vectors of the three types). It is called light-like is it contains
non-zero light-like vectors but no time-like vector.

The space of oriented 2-dimensional spheres in S3 may be parame-
terized by the de Sitter quadric Λ4 ⊂ R5

1 defined as the set of points
σ = (x0, x1, x2, x3, x4) such that L(σ) = 1, in the following way. The hyper-
plane σ⊥ orthogonal to σ (for the Lorentz quadratic form L) cuts the affine
hyperplane H0 = {x0 = 1} along a 3-dimensional oriented affine hyper-
plane, which cuts the unit sphere S3 ⊂ H0 along a 2-dimensional sphere Σ.
Let us orient the sphere Σ as boundary of the ball Bσ = S3∩{L(x, σ) ≥ 0}.

Figure 1: The correspondence between points of Λ4 and spheres in S3.
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This correspondence between points σ of Λ4 and oriented spheres Σ ⊂
S3 ⊂ H0 is bijective.

Geometric properties of spheres have a counterpart in Λ4. For example,
two oriented spheres Σ and Σ′ in S3 are positively (i.e. respecting the orien-
tation) tangent if and only if the corresponding points σ and σ′ in Λ4 verify:
L(σ, σ′) = 1. In that case, the points σ and σ′ are joined by a segment of
light-ray contained in Λ4. In fact the oriented spheres tangent to Σ corres-
pond to the points of the 3-dimensional cone TσΛ4 ∩Λ4 which is a union of
(affine) light-rays.

The tangent space TσΛ4 is parallel to the hyperplane (R · σ)⊥. It is
therefore of index (3, 1). This means it contains space-like, time like and
light-like vectors.

A contact element (or simply a contact) in S3 is a pair (m,h), where
m ∈ S3 and h is a vector plane h ⊂ TmS3. The set of contact conditions
is of dimension 5. To each contact element (m,h) corresponds a pencil of
spheres tangent to h at m. Orienting h ⊂ TmS3 allows to orient the spheres
of the pencil, and distinguishes one of the light-rays of Λ4 corresponding to
spheres of the pencil.

Reciprocally, each light-ray contained in Λ4 defines a contact element
in S3. Precisely, the intersection of the direction of the light-ray ` with H0

is a point m` of S3 and the spheres Σ associated to the points σ ∈ ` are the
spheres having a common oriented contact h ⊂ m` at the point m`. We
can now observe that the quadric Λ4 is ruled by a 5-dimensional family of
(affine) light-rays.

Pencils of spheres can be of the types: pencils of tangent spheres,
pencils of spheres with a base circle and pencils of spheres with limit points.
The corresponding points of Λ4 are respectively two parallel light-rays, the
intersection of Λ4 with a space-like vectorial plane and the intersection of
Λ4 with a time-like plane.

2.3. The space of circles

A circle Γ ⊂ S3 is the axis of a pencil of spheres. This pencil corresponds to
the points of intersection of the quadric Λ4 ⊂ R5

1 and a space-like vectorial
plane. Therefore the space of circles C can be seen as a subset of the set of
lines of the cone P ⊂

∧2(R5) given by the Plücker relations defining pure
2-vectors.

The wedge product defines a bilinear form QC :
∧2(R5) ×

∧2(R5) →∧4(R5). The condition QC(U,U) = 0 gives 5 quadratic equations. They are
not independent. One can prove that the equality QC(U,U) = 0 defines a
7-dimensional cone P . We will soon see that the set of lines corresponding
to circles is open in P(P). We could have checked directly that the set of
oriented circles C is a 6-dimensional space.



112

Let now UΓ1 and UΓ2 be two pure vectors corresponding to the two
circles Γ1 and Γ2. The condition 0 = QC(UΓ1 , UΓ2 = UΓ1 ∧ UΓ2 is equiva-
lent to dim(pΓ1 + pΓ2) ≤ 3, that is to say ∃σ ∈ pγ1 ∩ pγ2 ∩ Λ4. In other
terms, the two circles Γ1 and Γ2 belong to the same sphere Σ if and only if
corresponding 2-vector UΓ1 and UΓ2 satisfy Uγ1 ∧ UGamma2 = 0.

The condition is satisfied in particular when the two circles intersect
at two distinct points or are tangent.

2.3.1. Plücker and Lorentz quadratic forms

It is natural to consider on
∧2(R5) a quadratic form coming from the

Lorentz quadratic form L on R5 defined by L(x) = −x2
0+x2

1+· · ·+x2
4. Con-

sider on R5 the basis e0, e1, · · · e4; the 10 2-vectors ei∧ej, i < j form a basis

of
∧2(R5). the quadratic form L on

∧2(R5) is defined by L(e1 ∧ ej) = +1
if i ≥ 1, L(e1 ∧ ej) = −1 if i = 0. The signature of L is therefore (6, 4).

The light-cone of L contains the lines generated by wedge of vectors of
R5 contained in a 2-plane tangent to the light-cone of L.

One may visualize the set of “true” oriented circles of S3 as the inter-
section C of the Plücker cone of “pure” 2-vectors, defined by the equations
u ∧ u = 0, and the quadric of equation L(x) = 1.

Using on C the pseudo-metric induced from L, we get a pseudo metric
of signature (4, 2) . We admit that this pseudo-metric does not depend
on the choice of the orthonormal basis (for L) of R5. A way to visualize
orthogonal directions for L in TγC is explained in [La-O’H].

3. The d’Alembert property

Cyclides are surfaces of S3 which are, at least in two different ways, union
of one-parameter families of circles. We will here accept lines are particular
circles. Many interesting examples are proposed in [Po-Li-Sko].

Definition 3.0.1. Two one-parameter families of circles C1 and C2 satisfy
the d’Alembert property if any two circles Γ1 ∈ C1 and Γ2 ∈ C2 are contained
in a sphere Σ1,2. We will call a cyclide, union of the circles of two families
satisfying the d’Alembert property a d’Alembert cyclide.

Remark. – d’Alembert observed that ellipsoids admit two families of
circles which are the intersection of the ellipsoid with planes parallel
to the tangent planes at the umbilics (see [d’A] and Figure 2). Two
circles, one in each family are always contained in a common sphere
(this is clear, from topological reasons, when the two circles intersect).
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Figure 2: Two families of circles on an ellipsoid.

– Whereas a quadric can be described as the zero-set of second order
polynomial in Cartesian coordinates (x1, x2, x3), a large family of cy-
clide, called the Darboux cyclides, is given by the zero-set of a second
order polynomial in (x1, x2, x3, r

2), where r2 = x2
1 + x2

2 + x2
3. Thus

they are quartic surfaces in Cartesian coordinates, with an equation
of the form:

Ar4 + 2r2

3∑
i=1

Bixi +
3∑

i,j=1

Qijxixj + 2
3∑
i=1

Cixi + a

where Q is a 3× 3 matrix, Bi are a 3-dimensional vectors, and A and
a are constants [Ta].

They are d’Alembert cyclides, and have been classified by Takeushi [Ta].
We hope to know soon wether all d’Alembert cyclides are Darboux or not.

Proposition 3.0.2. The points of Λ4 corresponding to spheres which con-
tain a pair of circles, one in each family, of a d’Alembert cyclide, are con-
tained in a 4 dimensional subspace of R5

1.

Proof. Let us chose two circles γ1, γ2 of the first family, they are the axis
of two pencils of spheres Pγ1 and Pγ2 . The points corresponding to the
spheres of these pencils are intersection of Λ4 with the planes p1 and p2. A
circle τ of the second family is the axis of the pencil Pτ . The definition of
a d’Alembert cyclide implies that a sphere Σ1 of Pγ1 ∩Pτ contains γ1 and τ
and that a sphere Σ2 of Pγ2 ∩ Pτ contains γ2 and τ . This implies that τ is
the pencil generated by Σ1 and Σ2. The spheres of this pencil correspond
to points of Λ4 contained in the 4-dimensional subspace p1 ⊕ p2 ⊂ R5

1. It
is now enough to use the d’Alembert condition satisfied by a circle of the
first family and to given circles of the second family to obtain a proof of
the proposition. �
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Figure 3: Villarceau circles on a torus

Remark. A regular Dupin cyclide, that is an embedded torus which is in
two different ways the envelope of a one-parameter family of spheres is also
a d’Alembert cyclide, as the two families of Villarceau circles satisfy the
d’Alembert condition. The d’Alembert property reflects on the two curves
of the space of circles corresponding to the circles of the two families.

In Proposition 3.0.3 the notions of time-like, space-like and light-like
refer to the Lorentz quadratic form L(x) = −x2

0 + x2
1 + x2

2 + x2
3 + x4

4.

Proposition 3.0.3. To each 4-dimensional subspace H ⊂ R5
1 corresponds

a 9-dimensional family of d’Alembert cyclides AH.

1) If H is space-like, there exist a metric of S3 of constant curvature 1
such that all the circles of the two families are geodesics.

2) If H is light-like, that is tangent to the light-cone along a light-ray
R ·m, then, choosing m as the point at infinity, the cyclide becomes
a ruled quadric of R3 ' S3 \m.

3) If H is time-like, then all the circles of the cyclide are orthogonal to
the sphere Σ corresponding to the two points of H⊥ ∩ Λ4.

From now on, we will use the quadratic form defined on
∧2(H) by

Plu(U,U) = U ∧ U . It is of index (3, 3). The totally isotropic sub-
spaces of

∧2(H) will be called like-like subspaces. It is convenient , instead
of dealing with planes, 3-dimensional subspaces and the Plücker cone of
R6 '

∧2(H) to work in the projective space P5 = P(
∧2(H)). The Plucker

quadric π is the image of the Plücker cone of equation (only one in
∧2(H))

Plu(U,U) = 0. A projective light-ray is the image of a totally isotropic
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plane and two orthogonal 3-dimensional subspaces provide two conjugate
projective planes.

Theorem 3.0.4. The two families of circles of a d’Alembert cyclide form
two conics, intersection of the Plücker quadric πP5 with conjugate projec-
tive planes.

The proof is quite similar to the analogous result obtained in
[La-Si-Dru-Gar-Pa] for Dupin cyclides.

4. Cyclides, contact conditions and foliations

In [La-Si-Dru-Gar-Pa] the authors studied the existence of Dupin cyclides
satisfying three contact conditions, that is tangent to three planes at three
points. The solutions, when they exist, form a foliation of S3 with a singular
locus which is a curve where all the solutions are tangent (see [La-Si].

Propositions 3.0.2 and 3.0.3 let us hope for a similar result for each
family of d’Alembert cyclide.

The proofs will use a dynamical construction using three projective
light-rays of P5 = P(

∧2(H)) corresponding to the three d’Alembert pairs,
two circles contained in a common sphere. When cyclides containing the
three d’Alembert pairs exist, they are tangent along a curve and form a
foliation of S3 in case 1) of Proposition 3.0.3, and other wise a foliation of
a simple domain of ss

3 that can be used as a building block.

Remark. Algebraic geometers would give a proof of theorem 3.0.4 us-
ing linear families. In particular, the three contact problem in case 2) of
Proposition 3.0.3 can be reduced to Brianchon theorem for conics.



116

5. Examples of foliations by d’Alembert cyclides and
tangent d’Alembert cyclides

Figure 4: Foliation of R3 by quadrics and Darboux cyclides tangent along
a curve
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