Geometry and Foliations 2013 Komaba, Tokyo, Japan

Rotation number and actions of the modular group on the circle

YOSHIFUMI MATSUDA

1. Introduction

Let Σ be a connected and oriented two dimensional orbifold with empty boundary and negative Euler characteristic $\chi(\Sigma) < 0$. We consider the space Hom $(\pi_1(\Sigma), \text{Homeo}_+(S^1))$ of homomorphisms from $\pi_1(\Sigma)$ to Homeo₊ (S^1) with the compact-open topology. Let $\phi \in \text{Hom}(\pi_1(\Sigma), \text{Homeo}_+(S^1))$.

When Σ is a closed surface, we have the Euler number $eu(\phi) \in \mathbb{Z}$ of ϕ and Milnor-Wood inequality ([7], [10])

$$|\operatorname{eu}(\phi)| \le |\chi(\Sigma)|$$

holds. Matsumoto [6] showed that $|\operatorname{eu}(\phi)| = |\chi(\Sigma)|$ if and only if ϕ is semi-conjugate to an injective homomorphism onto a discrete subgroup of $\operatorname{PSL}(2,\mathbb{R}) \subset \operatorname{Homeo}_+(S^1)$, which is the holonomy representation of a hyperbolic structure on Σ (we call such a homomorphism a hyperbolization of Σ).

When Minakawa [8] dealt with the case where Σ is compact and has cone points. He defined the Euler number $eu(\phi) \in \mathbb{Q}$ of ϕ by

$$\operatorname{eu}(\phi) = \frac{\operatorname{eu}(\phi|_{\Gamma})}{[\pi_1(\Sigma) \colon \Gamma]},$$

where Γ is a torsion-free subgroup of $\pi_1(\Sigma)$ of finite index, and generalized the above results.

For the case where Σ is a noncompact surface of finite type. Burger, Iozzi and Wienhard [1] introduced the bounded Euler number $eu^b(\phi) \in \mathbb{R}$ of ϕ by using bounded cohomology and generalized Milnor-Wood inequality and the above result of Matsumoto.

In this talk we deal with the case where Σ is noncompact and has cone points. In particular, we consider Milnor-Wood type inequality on each connected component of Hom $(\pi_1(\Sigma), \text{Homeo}_+(S^1))$.

Partly supported by Grant-in-Aid for Scientific Researches for Young Scientists (B) (No. 25800036), Japan Society of Promotion of Science.

 $[\]bigodot$ 2013 Yoshifumi Matsuda

2. Bounded Euler number

Let Σ be a noncompact, connected and oriented two dimensional orbifold with cone points. For $\phi \in \text{Hom}(\pi_1(\Sigma), \text{Homeo}_+(S^1))$, we define the bounded Euler number $\text{eu}^b(\phi) \in \mathbb{R}$ of ϕ by

$$\operatorname{eu}^{b}(\phi) = \frac{\operatorname{eu}^{b}(\phi|_{\Gamma})}{[\pi_{1}(\Sigma) \colon \Gamma]},$$

where Γ is a torsion-free subgroup of $\pi_1(\Sigma)$ of finite index. The bounded Euler number has the following properties.

Proposition 2.1. (1) We have

(2.2)
$$\chi(\Sigma) \le \mathrm{eu}^b(\phi) \le -\chi(\Sigma).$$

Furthermore $eu^{b}(\phi) = \pm \chi(\Sigma)$ if and only if ϕ is semi-conjugate to a hyperbolization of Σ .

(2) Suppose that $\Sigma = \Sigma_{g,n}(q_1 \dots, q_m)$, an orbifold whose underlying space is a surface of genus g with p punctures with m cone points of order q_1, \dots, q_m . Then under the presentation

$$\pi_1(\Sigma) = \langle a_1, b_1, \dots, a_g, b_g, c_1, \dots, c_n, d_1, \dots, d_m : \\ d_k^{q_k}, k = 1, \dots, m, \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^n c_j \prod_{k=1}^m d_k \rangle,$$

we have

$$eu^{b}(\phi) = \widetilde{rot}(\prod_{i=1}^{g} [\widetilde{\phi(a_{i})}, \widetilde{\phi(b_{i})}] \prod_{j=1}^{n} \widetilde{\phi(c_{j})} \prod_{k=1}^{m} \widetilde{\phi(d_{k})})$$
$$-\sum_{j=1}^{n} \widetilde{rot}(\widetilde{\phi(c_{j})}) - \sum_{k=1}^{m} \widetilde{rot}(\widetilde{\phi(d_{k})}),$$

where $\tilde{g} \in \widetilde{\text{Homeo}_+}(S^1)$ is a lift of $g \in \text{Homeo}_+(S^1)$ and $\widetilde{\text{rot}} \colon \widetilde{\text{Homeo}_+}(S^1) \to \mathbb{R}$ is the translation number.

REMARK 2.3. We make several remarks on the case where $\Sigma = \Sigma_{0,1}(q_1, q_2)$ with $\frac{1}{q_1} + \frac{1}{q_2} < 1$.

(1) The equality $\operatorname{eu}^{b}(\phi) = \pm \chi(\Sigma_{0,1}(q_1, q_2))$ can be characterized by rotation numbers without translation numbers. Indeed $\operatorname{eu}^{b}(\phi) = \pm \chi(\Sigma_{0,1}(q_1, q_2))$ if and only if $(\operatorname{rot}(\phi(c_1)), \operatorname{rot}(\phi(d_1)), \operatorname{rot}(\phi(d_2))) = \left(0, \pm \frac{1}{q_1}, \pm \frac{1}{q_2}\right)$.

124

(2) There exists $\phi \in \text{Hom}(\pi_1(\Sigma_{0,1}(q_1, q_2)), \text{Diff}^{\omega}_+(S^1))$ such that $\phi(c)$ is topologically conjugate to a parabolic Möbius transformation and ϕ has an exceptional minimal set. This makes a contrast to the case of closed surface groups [3]. Such a homomorphism is obtained by taking ϕ so that $\phi([a, b])$ has more than two fixed points. If ϕ were minimal, then it is topologically conjugate to a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area and hence for every $g \in \pi_1(\Sigma_{0,1}(2,3)), \phi(g)$ has at most two fixed points.

(3) There exists $\phi \in \text{Hom}(\pi_1(\Sigma_{0,1}(2,3)), \text{Diff}^{\omega}_+(S^1))$ such that ϕ is topologically conjugate to a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area but they are not C^1 -conjugate. Note that a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area is unique up to conjugate in PSL $(2, \mathbb{R})$. This also makes a contrast to the case of closed surface groups [4]. Existence of such a homomorphism is established by checking that we can deform $\phi \in \text{Hom}(\pi_1(\Sigma_{0,1}(2,3)), \text{Diff}^{\omega}_+(S^1))$ so that ϕ is kept topologically conjugate to a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area and the derivative of $\phi([a, b])$ at the attracting fixed point varies.

3. Extremals on connected components

Let $m, n \geq 1$ and $\Sigma = \Sigma_{g,n}(q_1, \ldots, q_m)$. For integers p_1, \ldots, p_m , we put

$$H_{g,n}\left(\frac{p_1}{q_1},\ldots,\frac{p_m}{q_m}\right)$$

= $\left\{\phi \in \operatorname{Hom}(\pi_1(\Sigma),\operatorname{Homeo}_+(S^1)): \operatorname{rot}(\phi(d_k)) = \frac{p_k}{q_k}, k = 1,\ldots,m\right\}.$

Since $n \geq 1$, the subset $H_{g,n}(\frac{p_1}{q_1}, \ldots, \frac{p_m}{q_m})$ is a connected component of $\operatorname{Hom}(\pi_1(\Sigma), \operatorname{Homeo}_+(S^1))$. The inequality (2.2) is not optimal on each connected component $H_{g,n}\left(\frac{p_1}{q_1}, \ldots, \frac{p_m}{q_m}\right)$. We can obtain the optimal inequality by Proposition 2.1 (2) and results of Jankins, Neumann [5] and Naimi [9] (see also [2] for more general study). For example, when $\Sigma = \Sigma_{0,1}(2,3)$, we have

$$\frac{1}{5}\chi(\Sigma) \le \mathrm{eu}^b(\phi) \le -\chi(\Sigma)$$

on $H_{0,1}\left(\frac{1}{2}, \frac{1}{3}\right)$ and

$$\chi(\Sigma) \le \mathrm{eu}^b(\phi) \le -\frac{1}{5}\chi(\Sigma)$$

on
$$H_{0,1}\left(\frac{1}{2},-\frac{1}{3}\right)$$
. Note that $\phi \in H\left(\frac{1}{2},\pm\frac{1}{3}\right)$ satisfies $eu^b(\phi) = \pm\frac{1}{5}\chi(\Sigma)$ if

and only if $rot(c_1) = \pm \frac{1}{5}$. In this case, we have the following result.

Theorem 3.1. If $\Sigma = \Sigma_{0,1}(2,3)$ and $\phi \in H_{0,1}\left(\frac{1}{2},\pm\frac{1}{3}\right)$ satisfies $eu^b(\phi) = \pm \frac{1}{5}\chi(\Sigma)$, then ϕ is semi-conjugate to a 5-fold covering of a hyperbolization of Σ .

REMARK 3.2. Theorem 3.1 cannot be generalized straightforward when we change Σ and (p_1, \ldots, p_m) . For example, when $\Sigma = \Sigma_{0,1}(2,7)$, we have

$$\chi(\Sigma) \le \mathrm{eu}^b(\phi) \le -\frac{3}{25}\chi(\Sigma)$$

on $H_{0,1}(\frac{1}{2},\frac{1}{7})$ and $\phi \in H_{0,1}(\frac{1}{2},\frac{1}{7})$ with $eu^b(\phi) = -\frac{3}{25}\chi(\Sigma)$ is not semiconjugate to a finite covering of a hyperbolization of Σ .

References

- M. Burger, A. Iozzi and A. Wienhard, Higher Teichmüller spaces: From SL(2,ℝ) to other Lie groups, to appear in the Handbook of Teichmüller theory, volume 4, arXiv:1004.2894.
- [2] D. Calegari and A. Walker, Ziggurats and rotation numbers, J. Mod. Dyn. 5 (2011), no. 4, 711–746.
- [3] E. Ghys, Classe d'Euler et minimal exceptionnel, *Topology* **26** (1987), no. 1, 93–105.
- [4] E. Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. No. 78 (1993), 163–185.
- [5] M. Jankins and W. Neumann, Rotation numbers of products of circle homeomorphisms, *Math. Ann.* 271 (1985), 381–400.
- [6] S. Matsumoto, Some remarks on foliated S¹ bundles, *Invent. Math.* 90 (1987), no. 2, 343–358.
- [7] J. Milnor, On the existence of a connection of curvature zero, Comment. Math. Helv. 32 (1958), 215–223.
- [8] H. Minakawa, Milnor-wood inequality for crystallographic groups, Séminaire de théorie spectrale et géométrie, 13 Année 1994-1995. 167–170, 1995.
- [9] R. Naimi, Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv. 69 (1994), 155–162.
- [10] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257–273.

126

Department of Mathematics, Kyoto University Kita-shirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan E-mail: ymatsuda@math.kyoto-u.ac.jp