Rotation number and actions of the modular group on the circle

Yoshifumi MATSUDA

1. Introduction

Let Σ be a connected and oriented two dimensional orbifold with empty boundary and negative Euler characteristic $\chi(\Sigma)<0$. We consider the space $\operatorname{Hom}\left(\pi_{1}(\Sigma)\right.$, Homeo $\left.\left(\mathrm{S}^{1}\right)\right)$ of homomorphisms from $\pi_{1}(\Sigma)$ to Homeo ${ }_{+}\left(\mathrm{S}^{1}\right)$ with the compact-open topology. Let $\phi \in \operatorname{Hom}\left(\pi_{1}(\Sigma)\right.$, $\left.\operatorname{Homeo}_{+}\left(\mathrm{S}^{1}\right)\right)$.

When Σ is a closed surface, we have the Euler number $\operatorname{eu}(\phi) \in \mathbb{Z}$ of ϕ and Milnor-Wood inequality ([7], [10])

$$
|\mathrm{eu}(\phi)| \leq|\chi(\Sigma)|
$$

holds. Matsumoto [6] showed that $|\mathrm{eu}(\phi)|=|\chi(\Sigma)|$ if and only if ϕ is semi-conjugate to an injective homomorphism onto a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R}) \subset$ Homeo $_{+}\left(\mathrm{S}^{1}\right)$, which is the holonomy representation of a hyperbolic structure on Σ (we call such a homomorphism a hyperbolization of Σ).

When Minakawa [8] dealt with the case where Σ is compact and has cone points. He defined the Euler number $\mathrm{eu}(\phi) \in \mathbb{Q}$ of ϕ by

$$
\mathrm{eu}(\phi)=\frac{\mathrm{eu}\left(\left.\phi\right|_{\Gamma}\right)}{\left[\pi_{1}(\Sigma): \Gamma\right]}
$$

where Γ is a torsion-free subgroup of $\pi_{1}(\Sigma)$ of finite index, and generalized the above results.

For the case where Σ is a noncompact surface of finite type. Burger, Iozzi and Wienhard [1] introduced the bounded Euler number eu ${ }^{b}(\phi) \in \mathbb{R}$ of ϕ by using bounded cohomology and generalized Milnor-Wood inequality and the above result of Matsumoto.

In this talk we deal with the case where Σ is noncompact and has cone points. In particular, we consider Milnor-Wood type inequality on each connected component of $\operatorname{Hom}\left(\pi_{1}(\Sigma)\right.$, Homeo $\left._{+}\left(\mathrm{S}^{1}\right)\right)$.

[^0]
2. Bounded Euler number

Let Σ be a noncompact, connected and oriented two dimensional orbifold with cone points. For $\phi \in \operatorname{Hom}\left(\pi_{1}(\Sigma)\right.$, Homeo $\left.\left(\mathrm{S}^{1}\right)\right)$, we define the bounded Euler number $\mathrm{eu}^{b}(\phi) \in \mathbb{R}$ of ϕ by

$$
\mathrm{eu}^{b}(\phi)=\frac{\mathrm{eu}^{b}\left(\left.\phi\right|_{\Gamma}\right)}{\left[\pi_{1}(\Sigma): \Gamma\right]},
$$

where Γ is a torsion-free subgroup of $\pi_{1}(\Sigma)$ of finite index. The bounded Euler number has the following properties.

Proposition 2.1. (1) We have

$$
\begin{equation*}
\chi(\Sigma) \leq \mathrm{eu}^{b}(\phi) \leq-\chi(\Sigma) \tag{2.2}
\end{equation*}
$$

Furthermore $\mathrm{eu}^{b}(\phi)= \pm \chi(\Sigma)$ if and only if ϕ is semi-conjugate to a hyperbolization of Σ.
(2) Suppose that $\Sigma=\Sigma_{g, n}\left(q_{1} \ldots, q_{m}\right)$, an orbifold whose underlying space is a surface of genus g with p punctures with m cone points of order q_{1}, \ldots, q_{m}. Then under the presentation

$$
\begin{aligned}
\pi_{1}(\Sigma)= & \left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{m}:\right. \\
& \left.d_{k}^{q_{k}}, k=1, \ldots, m, \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \prod_{j=1}^{n} c_{j} \prod_{k=1}^{m} d_{k}\right\rangle
\end{aligned}
$$

we have

$$
\begin{aligned}
\mathrm{eu}^{b}(\phi)= & \widetilde{\operatorname{rot}}\left(\prod_{i=1}^{g}\left[\widetilde{\phi\left(a_{i}\right)}, \widetilde{\phi\left(b_{i}\right)}\right] \prod_{j=1}^{n} \widetilde{\phi\left(c_{j}\right)} \prod_{k=1}^{m} \widetilde{\left.\phi\left(d_{k}\right)\right)}\right. \\
& -\sum_{j=1}^{n} \widetilde{\operatorname{rot}}\left(\widetilde{\phi\left(c_{j}\right)}\right)-\sum_{k=1}^{m} \widetilde{\operatorname{rot}\left(\widetilde{\phi\left(d_{k}\right)}\right)},
\end{aligned}
$$

where $\tilde{g} \in$ Homeo $_{+}\left(\mathrm{S}^{1}\right)$ is a lift of $g \in \mathrm{Homeo}_{+}\left(\mathrm{S}^{1}\right)$ and $\widetilde{\text { rot }}: \widetilde{\mathrm{Homeo}_{+}}\left(\mathrm{S}^{1}\right) \rightarrow$ \mathbb{R} is the translation number.

REmark 2.3. We make several remarks on the case where $\Sigma=\Sigma_{0,1}\left(q_{1}, q_{2}\right)$ with $\frac{1}{q_{1}}+\frac{1}{q_{2}}<1$.
(1) The equality $\mathrm{eu}^{b}(\phi)= \pm \chi\left(\Sigma_{0,1}\left(q_{1}, q_{2}\right)\right)$ can be characterized by rotation numbers without translation numbers. Indeed $\mathrm{eu}^{b}(\phi)= \pm \chi\left(\Sigma_{0,1}\left(q_{1}, q_{2}\right)\right)$ if and only if $\left(\operatorname{rot}\left(\phi\left(c_{1}\right)\right), \operatorname{rot}\left(\phi\left(d_{1}\right)\right), \operatorname{rot}\left(\phi\left(d_{2}\right)\right)\right)=\left(0, \pm \frac{1}{q_{1}}, \pm \frac{1}{q_{2}}\right)$.
(2) There exists $\phi \in \operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0,1}\left(q_{1}, q_{2}\right)\right)\right.$, $\left.\operatorname{Diff}_{+}^{\omega}\left(\mathrm{S}^{1}\right)\right)$ such that $\phi(c)$ is topologically conjugate to a parabolic Möbius transformation and ϕ has an exceptional minimal set. This makes a contrast to the case of closed surface groups [3]. Such a homomorphism is obtained by taking ϕ so that $\phi([a, b])$ has more than two fixed points. If ϕ were minimal, then it is topologically conjugate to a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area and hence for every $g \in \pi_{1}\left(\Sigma_{0,1}(2,3)\right), \phi(g)$ has at most two fixed points.
(3) There exists $\phi \in \operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0,1}(2,3)\right)\right.$, $\left.\operatorname{Diff}_{+}^{\omega}\left(\mathrm{S}^{1}\right)\right)$ such that ϕ is topologically conjugate to a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area but they are not C^{1}-conjugate. Note that a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area is unique up to conjugate in $\operatorname{PSL}(2, \mathbb{R})$. This also makes a contrast to the case of closed surface groups [4]. Existence of such a homomorphism is established by checking that we can deform $\phi \in \operatorname{Hom}\left(\pi_{1}\left(\Sigma_{0,1}(2,3)\right)\right.$, $\left.\operatorname{Diff}_{+}^{\omega}\left(\mathrm{S}^{1}\right)\right)$ so that ϕ is kept topologically conjugate to a hyperbolization of $\Sigma_{0,1}(2,3)$ of finite area and the derivative of $\phi([a, b])$ at the attracting fixed point varies.

3. Extremals on connected components

Let $m, n \geq 1$ and $\Sigma=\Sigma_{g, n}\left(q_{1}, \ldots, q_{m}\right)$. For integers p_{1}, \ldots, p_{m}, we put

$$
\begin{aligned}
& H_{g, n}\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{m}}{q_{m}}\right) \\
= & \left\{\phi \in \operatorname{Hom}\left(\pi_{1}(\Sigma), \operatorname{Homeo}_{+}\left(\mathrm{S}^{1}\right)\right): \operatorname{rot}\left(\phi\left(d_{k}\right)\right)=\frac{p_{k}}{q_{k}}, k=1, \ldots, m\right\} .
\end{aligned}
$$

Since $n \geq 1$, the subset $H_{g, n}\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{m}}{q_{m}}\right)$ is a connected component of $\operatorname{Hom}\left(\pi_{1}(\Sigma)\right.$, Homeo $\left._{+}\left(\mathrm{S}^{1}\right)\right)$. The inequality (2.2) is not optimal on each connected component $H_{g, n}\left(\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{m}}{q_{m}}\right)$. We can obtain the optimal inequality by Proposition 2.1 (2) and results of Jankins, Neumann [5] and Naimi [9] (see also [2] for more general study). For example, when $\Sigma=\Sigma_{0,1}(2,3)$, we have

$$
\frac{1}{5} \chi(\Sigma) \leq \mathrm{eu}^{b}(\phi) \leq-\chi(\Sigma)
$$

on $H_{0,1}\left(\frac{1}{2}, \frac{1}{3}\right)$ and

$$
\chi(\Sigma) \leq \mathrm{eu}^{b}(\phi) \leq-\frac{1}{5} \chi(\Sigma)
$$

on $H_{0,1}\left(\frac{1}{2},-\frac{1}{3}\right)$. Note that $\phi \in H\left(\frac{1}{2}, \pm \frac{1}{3}\right)$ satisfies $\mathrm{eu}^{b}(\phi)= \pm \frac{1}{5} \chi(\Sigma)$ if and only if $\operatorname{rot}\left(c_{1}\right)= \pm \frac{1}{5}$. In this case, we have the following result.

Theorem 3.1. If $\Sigma=\Sigma_{0,1}(2,3)$ and $\phi \in H_{0,1}\left(\frac{1}{2}, \pm \frac{1}{3}\right)$ satisfies $\mathrm{eu}^{b}(\phi)=$ $\pm \frac{1}{5} \chi(\Sigma)$, then ϕ is semi-conjugate to a 5 -fold covering of a hyperbolization of Σ.

Remark 3.2. Theorem 3.1 cannot be generalized straightforward when we change Σ and $\left(p_{1}, \ldots, p_{m}\right)$. For example, when $\Sigma=\Sigma_{0,1}(2,7)$, we have

$$
\chi(\Sigma) \leq \mathrm{eu}^{b}(\phi) \leq-\frac{3}{25} \chi(\Sigma)
$$

on $H_{0,1}\left(\frac{1}{2}, \frac{1}{7}\right)$ and $\phi \in H_{0,1}\left(\frac{1}{2}, \frac{1}{7}\right)$ with $\mathrm{eu}^{b}(\phi)=-\frac{3}{25} \chi(\Sigma)$ is not semiconjugate to a finite covering of a hyperbolization of Σ.

References

[1] M. Burger, A. Iozzi and A. Wienhard, Higher Teichmüller spaces: From SL(2,R) to other Lie groups, to appear in the Handbook of Teichmüller theory, volume 4, arXiv:1004.2894.
[2] D. Calegari and A. Walker, Ziggurats and rotation numbers, J. Mod. Dyn. 5 (2011), no. 4, 711-746.
[3] E. Ghys, Classe d'Euler et minimal exceptionnel, Topology 26 (1987), no. 1, 93-105.
[4] E. Ghys, Rigidité différentiable des groupes fuchsiens, Inst. Hautes Études Sci. Publ. Math. No. 78 (1993), 163-185.
[5] M. Jankins and W. Neumann, Rotation numbers of products of circle homeomorphisms, Math. Ann. 271 (1985), 381-400.
[6] S. Matsumoto, Some remarks on foliated S^{1} bundles, Invent. Math. 90 (1987), no. 2, 343-358.
[7] J. Milnor, On the existence of a connection of curvature zero, Comment. Math. Helv. 32 (1958), 215-223.
[8] H. Minakawa, Milnor-wood inequality for crystallographic groups, Séminaire de théorie spectrale et géométrie, 13 Année 1994-1995. 167-170, 1995.
[9] R. Naimi, Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv. 69 (1994), 155-162.
[10] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257-273.

Department of Mathematics, Kyoto University
Kita-shirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
E-mail: ymatsuda@math.kyoto-u.ac.jp

[^0]: Partly supported by Grant-in-Aid for Scientific Researches for Young Scientists (B) (No. 25800036), Japan Society of Promotion of Science.
 (c) 2013 Yoshifumi Matsuda

