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1. Introduction

Let M be a closed C2 manifold, and let F be a continuous leafwise C2 foli-
ation on M . This means that M is covered by a finite union of continuous
foliation charts and the transition functions are continuous, together with
their leafwise partial derivatives up to order 2. Let g be a continuous leaf-
wise1 C2 leafwise Riemannian metric. In this talk, such a triplet (M,F , g)
is simply refered to as a leafwise C2 foliations. For simplicity, we assume
throughout that the manifold M and the foliation F are oriented. For a
continuous leafwise2 C2 real valued function h on M , the leafwise Laplacian
∆h is defined by ∆h = ∗d ∗ d h, where ∗ is the leafwise Hodge operator
induced by the leafwise metric g.

Definition 1.1. A continuous leafwise C2 function h is called leafwise
harmonic if ∆h = 0.

Definition 1.2. A leafwise C2 foliation (M,F , g) is called Liouville if any
continuous leafwise harmonic function is leafwise constant.

As an example, if F is a foliation by compact leaves, then (M,F , g) is
Liouville. Moreover there is an easy observation:

Proposition 1.3. If F admits a unique minimal set, then (M,F , g) is
Liouville.

This can be seen as follows. Let m1 (resp. m2) be the maximum (resp.
minimum) value of the continuous leafwise harmonic function h on M .
Assume h takes the maximum value m1 at x ∈M . Then by the maximum
principle, h = m1 on the leaf Fx which passes through x. Now the closure
of Fx contains the unique minimal set X. Therefore h = m1 on X. The
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1This means that the leafwise partial derivatives up to order 2 of the components of g in
each foliation chart are continuous in the chart.

2The leafwise partial derivatives of h up to order 2 in each foliation chart are continuous in
the chart.
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same argument shows that h = m2 on X. That is, m1 = m2, showing that
h is constant on M .

A first example of non-Liouville foliations is obtained by R. Feres and
A. Zeghib in a simple and beautiful construction [FZ]. It is a foliated S2-
bundle over a hyperbolic surface, with two compact leaves. There are also
examples in codimension one. B. Deroin and V. Kleptsyn [DK] have shown
that a codimension one foliation F is non-Louville if F is transversely
C1, admits no transverse invariant measure and possesses more than one
minimal sets, and they have constructed such a foliation.

A codimension one foliation F is called R-covered if the leaf space of
its lift to the universal covering space is homeomorphic to R. See [F] or
[FFP]. It is shown in [F] and [DKNP] that an R-covered foliation without
compact leaves admits a unique minimal set. Therefore the above example
of a codimension one non-Liouville foliation is not R-covered. This led the
authors of [FFP] to the study of Liouville property for R-covered foliations.
The main purpose of the present talk is to generalize a result of [FFP].

Definition 1.4. A codimension one leafwise C2 foliation (M,F , g) is called
transversely isometric if there is a continuous dimension one foliation φ
transverse to F such that the holonomy map of φ sending a (part of a) leaf
of F to another leaf is C2 and preserves the leafwise metric g.

Notice that a transversely isometric foliation is R-covered. Our main
result is the following.

Theorem 1.5. A leafwise C2 transversely isometric codimension one fo-
liation is Liouville.

In [FFP], the above theorem is proved in the case where the leafwise
Riemannian metric is negatively curved. Undoubtedly this is the most
important case. But the general case may equally be of interest.

If a transversely isometric foliation F does not admit a compact leaf,
then, being R-covered, it admits a unique minimal set, and Theorem 1.5
holds true by Proposition 1.3. Therefore we only consider the case where
F admits a compact leaf. In this case the union X of compact leaves is
closed. Let U be a connected component of M \ X, and let N be the
metric completion of U . Then N is a foliated interval bundle, since the one
dimensional transverse foliation φ is Riemannian.

Therefore we are led to consider the following situation. Let K be
a closed C2 manifold of dimension ≥ 2, equipped with a C2 Riemannian
metric gK . Let N = K × I, where I is the interval [0, 1]. Denote by
π : N → K the canonical projection. Consider a continuous foliation L
which is transverse to the fibers π−1(y), ∀y ∈ K. Although L is only
continuous, its leaf has a C2 differentiable structure as a covering space of
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K by the restriction of π. Also L admits a leafwise Riemannian metric g
obtained as the lift of gK to each leaf by π. Such a triplet (N,L, g) is called
a leafwise C2 foliated I-bundle in this talk. Now Theorem 1.5 reduces to
the following theorem.

Theorem 1.6. Assume a leafwise C2 foliated I-bundle (N,L, g) does not
admit a compact leaf in the interior Int(N). Then any continuous leafwise
harmonic function is constant on N .

An analogous result for random discrete group actions on the interval
was obtained in [FR].

2. Outline of the proof of Theorem 1.6

The proof is by absurdity. Let (N,L, g) be a leafwise C2 foliated I-bundle
without interior compact leaves, and we assume that there is a continuous
leafwise harmonic function f such that f(K × {i}) = i, i = 0, 1.

A probability measure µ on N is called stationary if 〈µ,∆h〉 = 0 for
any continuous leafwise C2 function h.

Proposition 2.1. There does not exist a stationary measure µ such that

µ(Int(N)) > 0.

This can be shown as follows. Denote by X the union of leaves on which
f is constant. The subset X is closed in N . L. Garnett [G] has shown that
µ(X) = 1 for any stationary measure µ. Therefore if µ(Int(N)) > 0, there
is a leaf L in Int(N) on which f is constant. But since we are assuming
that there is no interior compact leaves, the closure of L must contain both
boundary components of N . A contradiction to the continuity of f .

The proof of Theorem 1.6 is obtained by studying leafwise Brownian
motions. Let us denote by Ω the space of continuous leafwise paths ω :
[0,∞) → N . For any t ≥ 0, a random variable Xt : Ω → N is defined by
Xt(ω) = ω(t). For any point x ∈ N , the Wiener probability measure P x

is defined using the leafwise Riemannian metric g. Notice that P x{X0 =
x} = 1.

Given 0 < α < 1, let V = K × (α, 1], and define a subset ΩV of Ω by

ΩV = {Xti ∈ V, ∃ti →∞}.

Clearly ΩV is invariant by the shift map. Then, as is well known, the
function p : M → [0, 1] defined by p(x) = P x(ΩV ) is leafwise harmonic.
Another important feature of the function p is that p is nondecreasing
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along the fiber π−1(y), ∀y ∈ K, since our leafwise Brownian motion is
synchronized, i. e, it is the lift of the Brownian motion on K. The key fact
for the proof is the following:

The function p is constant on Int(N).

This follows from Proposition 2.1. That is, if we assume p nonconstant,
then we can construct a stationary measure µ such that µ(Int(N)) > 0.
Next an easy observation shows the following:

The function p is 1 on Int(N).

This implies that lim supt→∞ f(Xt) = 1, P x-almost surely, since the
neighbourhood V can be arbitrary. Likewise considering neighbourhoods
of K × {0}, we have lim inft→∞ f(Xt) = 0.

But since f is leafwise harmonic, the family {f(Xt)} is a P x-martingale,
and the martingale convergence theorem asserts that there exist limt→∞ f(Xt),
P x-almost surely. The contradiction shows Theorem 1.6.
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