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1. Introduction

The theory of characteristic classes of foliations was initiated by discovery
of the Godbillon-Vey class of codimension 1 foliations [14] and a ground-
breaking work of Thurston [35] proving that it can vary continuously. Soon
after this, Bott and Haefliger [5], and also Bernstein and Rozenfeld [3]
presented a general framework for this theory and during the 1970’s, it
has been developed extensively by many people including Heitsch [17] and
Hurder [19]. There also appeared closely related theory of Gelfand and
Fuks [11] and that of Chern and Simons [8]. The notions of Γ-structures
and their classifying spaces due to Haefliger [18] played a crucial role in
this theory and Mather [26] and Thurston [36] obtained many fundamental
results by using them.

However there remain many important problems to be solved in future.
In this talk, we would like to focus on the following two major problems
both of which turn out to be extremely difficult. One is the determination of
the homotopy type of the classifying space BΓ1 of Γ1-structures in the C∞-
category. The other is development of characteristic classes of transversely
symplectic foliations.

2. Homotopy type of BΓ1

The following is one of the major open problems in foliation theory.

Problem 2.1. Determine the homotopy type of BΓ1. More precisely, de-
termine whether the classifying map

GV : BΓ1 → K(R, 3)

induced by the Godbillon-Vey class, is a homotopy equivalence or not.
Here BΓ1 denotes the homotopy fiber of the natural map w1 : BΓ1 →
BGL(1,R) = K(Z/2, 1).

In [28], we introduced the concept of discontinuous invariants of foliations.
One possible approach to the above problem would be the following.
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Problem 2.2. Determine whether the homomorphism

GVk : H3k(BΓ1,Z)→ ∧kZR (∼= Hk(Rδ;Z))

induced by the discontinuous invariants associated with the Godbillon-Vey
class is non-trivial or not.

Let BΓ
ω

1 denote the classifying space of transversely oriented real analytic
Γ1-structures. Haefliger [18] proved that BΓ

ω

1 is a K(π, 1) space for certain
perfect group π.

Problem 2.3. Determine whether the natural map

(BΓ
ω

1 )+ → BΓ1

is a homotopy equivalence or not, where + denotes Quillen’s plus construc-
tion.

Recall here that Thurston constructed a family of real analytic codimension
1 foliations on a certain 3-manifold by making use of the group

SL(2,R) ∗SO(2) S̃L(2,R)n ⊂ Diffω+S
1

thereby proving that the homomorphism

GV : H3(BΓ
ω

1 ;Z)→ R

is surjective. Here S̃L(2,R)n denotes the n-fold covering group of SL(2,R).
In the case of piecewise linear (PL for short) category, Greenberg [15]

showed that there is a weak homotopy equivalence

BΓ
PL

1 ∼ BRδ ∗ BRδ

where the right hand side represents the join of two copies of BRδ. It follows

that BΓ
PL

1 is 2-connected and he described the integral homology group of

BΓ
PL

1 completely. It also follows that the higher homotopy groups of this
space is highly non-trivial.

By making use of this result, Tsuboi [33] showed that all the discon-

tinuous invariants of BΓ
PL

1 associated with the discrete Godbillon-Vey class

∈ H3(BΓ
PL

1 ,R), defined by Ghys and Sergiescu [13], vanishes.
On the other hand, in a certain case of low differentiability (Lipschitz

with bounded variation of derivatives), Tsuboi [34] proved that the second
discontinuous invariant

GV2 : H6(BΓ
Lip,bdd

1 ,Z)→ ∧2
ZR
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is highly non-trivial (in fact its cockernel is a torsion group) where GV is
the one he extended to this case.

The Godbillon-Vey class can be defined for transversely holomorphic
foliations with trivialized normal bundles and Bott [4] proved that the ho-
momorphism

GVC : π3(BΓ
C
1 )→ C

is surjective.

Problem 2.4. Determine the homotopy type of BΓC1 . More precisely, de-
termine whether the classifying map

GVC : BΓ
C
1 → K(C, 3)

induced by the complex Godbillon-Vey class, is a homotopy equivalence or
not.

We refer to a book [1] by Asuke for a recent study of GVC.
Finally we recall a closely related problem. LetMh(3) denote the set of

orientation preserving diffeomorphism classes of closed oriented hyperbolic
3-manifolds. For any such manifold M , we have its volume vol(M) and the
η-invariant η(M) of Atiyah-Patodi-Singer [2]. The combination η + i vol
gives rise to a mapping

η + i vol :Mh(3)→ C.

Problem 2.5 (Thurston ([37], Questions 22, 23). Study the above map.
In particular, determine whether the dimension over Q of the Q-subspace
of iR generated by the second component of the image of the above map is
infinite or not.

Recall that any such M defines a homology class [M ] ∈ H3(PSL(2,C)δ;Z)
and we have the following closely related problem.

Problem 2.6. Determine the image of the map

Mh(3)→ H3(PSL(2,C)δ;Z)
(CS,ivol)−→ C/Z.

Problem 2.7. Study the discontinuous invariants of the group PSL(2,C)δ

associated with the above classes. In particular, determine the value of the
total Chern Simons invariant introduced in Dupont [9].



148

3. Characteristic classes of transversely symplectic
foliations

One surprising feature of the Gelfand-Fuks cohomology theory was that

dimH∗c (an) <∞

where an denotes the Lie algebra consisting of all the formal vector fields
on Rn. The associated characteristic homomorphism

Φ : H∗c (an)→ H∗(BΓn;R)

is now very well understood. In contrast with this, the case of all the volume
preserving formal vector fields vn ⊂ an and that of all the Hamiltonian
formal vector fields ham2n ⊂ a2n are both far from being understood.

Problem 3.1. Compute

H∗c (vn), H∗c (vn,O(n)), H∗c (ham2n), H∗c (ham2n,U(n)).

In particular, prove (or disprove) that

dimH∗c (vn) =∞, dimH∗c (ham2n) =∞.

Recall here that there are very few known results concerning this problem.
First, Gelfand, Kalinin and Fuks [12] found an exotic class

GKF class ∈ H7
c (ham2, Sp(2,R))8

and later Metoki [27] found another exotic class

Metoki class ∈ H9
c (ham2, Sp(2,R))14.

On the other hand, Perchik [32] obtained a formula for the Euler charac-
teristic and computed it up to certain degree. It suggests strongly that the
cohomology would be infinite dimensional.

Let BΓsymp
2n denote the Haefliger classifying space of transversely sym-

plectic foliations of codimension 2n.

Problem 3.2. Prove that, under the homomorphism

Φ : H∗c (ham2, Sp(2,R))→ H∗(BΓsymp
2 ;R)

the GKF class and the Metoki class survive as non-trivial characteristic
classes.

Kontsevich [22] introduced a new viewpoint in this situation. He con-
sidered two Lie subalgebras

ham1
2g ⊂ ham0

2g ⊂ ham2g
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consisting of Hamiltonian formal vector fields without constant terms and
without constant as well as linear terms, respectively. Then he constructed
a homomorphism

Φ : H∗c (ham0
2g, Sp(2g,R)) ∼= H∗c (ham1

2g)
Sp → H∗F(M)

for any transversely symplectic foliation F on a smooth manifold M of
codimension 2n, where H∗F(M) denotes the foliated cohomology group. By
using this viewpoint, in a joint work with Kotschick [24] we decomposed
the Gelfand-Kalinin-Fuks class as a product

GKF class = η ∧ ω
where η ∈ H5

c (ham0
2, Sp(2,R))10 is a certain leaf cohomology class and ω

denotes the transverse symplectic form.

Conjecture 3.3 (Kotschick-M. [24]). The Metoki class can also be decom-
posed as a product η′ ∧ ω for a certain class η′ ∈ H7

c (ham0
2, Sp(2,R))16.

On the other hand, ham0
2g, ham

1
2g can be described as

ham0
2n = ĉn ⊗ R, ham1

2n = ĉ+
n ⊗ R

where cn denotes one of the three Lie algebras (commutative one) in Kont-
sevich’s theory [20][21] of graph homology and ĉn denotes its completion.
Thus the above homomorphim Φ can be written as

Φ : H∗c (̂c+
n )Sp ⊗ R ∼= H∗c (ham1

2n)Sp → H∗F(M).

Besides the theory of transversely symplectic foliations as above, the graph
homology of cn has another deep connection with the theory of finite type
invariants for homology 3-spheres initiated by Ohtsuki [31] which we briefly
recall. Let A(φ) denote the commutative algebra generated by vertex ori-
ented connected trivalent graphs modulo the (AS) relation together with
the (IHX) relation. This algebra plays a fundamental role in this theory. In

fact, the completion Â(φ) of A(φ) with respect to its gradings is the target
of the LMO invariant [25].

By using a result of Garoufalidis and Nakamura [10], in a joint work
with Sakasai and Suzuki [30] we constructed an injection

A(φ)→ H∗(c
+
∞)Sp

and defined the “complementary” algebra E so as to obtain an isomorphism

H∗(c
+
∞)Sp ∼= A(φ)⊗ E

of bigraded algebras. E can be interpreted as the dual of the space of all the
exotic stable leaf cohomology classes for transversely symplectic foliations.

Problem 3.4 (cf. Sakasai-Suzuki-M. [30]). Study the structure of E .
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4. Homology of DiffδM and Sympδ(M,ω)

In general, homology group of the diffeomorphism group DiffδM of a closed
C∞ manifold M , considered as a discrete group, or that of the symplec-
tomorphism group Sympδ(M,ω) of a closed symplectic manifold (M,ω),
again with the discrete topology, is a widely open research area. One can
also consider the real analytic case. Here we present a few problems in the
cases of the circle S1 and closed surfaces.

It was proved in [29] that the natural homomorphism

Φ : H∗c (X (S1), SO(2))) ∼= R[α, χ]/(αχ)→ H∗(BDiffδ+S
1;R)

from the Gelfand-Fuks cohomology of S1, relative to SO(2) ⊂ Diff+S
1,

to the cohomology of Diffδ+S
1, is injective. Also there were given certain

non-triviality results for the associated discontinuous invariants.

Problem 4.1. Prove (or disprove) that the homomorphism

Φ : H∗c (X (S1), SO(2)) ∼= R[α, χ]/(αχ)→ H∗(BDiffω,δ+ S1;R)

is injective, where Diffω,δ+ S1 denotes the real analytic diffeomorphism group
of S1 equipped with the discrete topology.

Problem 4.2. Determine whether the natural inclusion

Diffω,δ+ S1 → Diffδ+S
1

induces an isomorphism in homology or not.

Of course one can consider the above problem for any closed manifold M .
Let Σg denote a closed oriented surface of genus g. Harer stability

theorem [16] states that the homology group Hk(BDiff+Σg) is independent
of g in a certain stable range k � g (see a survey paper [38] by Wahl for
more details).

By applying a general method, we can define certain characteristic
classes for foliated Σg-bundles. Also, in [23] certain characteristic classes for
foliated Σg-bundles with area-preserving holonomy were defined by making
use of the notion of the flux homomorphism. These classes are all stable
with respect to the genus g and it seems reasonable to present the following.

Problem 4.3. Determine whether certain analogue of Harer stability the-
orem holds for the group DiffδΣg and/or SympδΣg.

Bowden [6][7] obtained some interesting results related to this problem.
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