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1. Introduction

Background. For a Lie group G, a G-Lie foliation is a foliation trans-
versely modeled on the G-action on G by left translation. Such foliations
have been investigated being motivated by the classification of Riemannian
foliations (see [6, 8]). The first example of Lie foliations is the following
one, which is called homogeneous :

Example 1.1. Let G and H be connected Lie groups. Let K be a closed
Lie subgroup of H, and Γ a torsion-free cocompact lattice of H ×G. Then
we have a G-Lie foliation on K\H×G/Γ induced from the product foliation
K\H ×G = tg∈GK\H × {g}.

A number of examples of nonhomogeneous Lie foliations were constructed
in [15, 16, 9]. On the other hand, under various conditions, minimal Lie
foliations tend to be homogeneous or have rigidity which is quite useful for
the classification: Caron-Carrière [3] showed that 1-dimensional Lie folia-
tion is diffeomorphic to a linear flow on a torus. Matsumoto-Tsuchiya [14]
proved that any 2-dimensional affine Lie foliation on closed 4-manifolds are
homogeneous. Zimmer [24] proved that if a minimal G-Lie foliation ad-
mits a Riemannian metric such that each leaf is isometric to a product of
symmetric space of noncompact type of rank greater than one, then the
holonomy group is arithmetic.

Motivation. This work was motivated by the following two questions on
rigid aspects of Lie foliations mentioned in the last paragraph.

Question 1.2. Classify minimal SL(2;R)-Lie foliations whose leaves are
hyperbolic plane.

By a theorem of Carrière [4], for a G-Lie foliation on a compact mani-
fold, G is solvable if and only if each leaf admits a Følner sequence. Thus Lie
foliations in Question 1.2 are of the lowest dimension among Lie foliations
with hyperbolic leaves.
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Question 1.3. Classify 3-dimensional minimal Lie foliations which ad-
mits leafwise geometrization in the sense of Thurston.

One may conjecture that any 3-dimensional minimal Lie foliations may
admits leafwise geometrization. Thus Question 1.3 may be considered as a
step for the classification of 3-dimensional minimal Lie foliations.

Main results. This talk is based on work in progress. The main result
is the following:

Theorem 1.4. Let (M,F) be a compact manifold with a minimal G-Lie
foliation. Assume that M admits a Riemannian metric such that every
leaf of F is isometric to a symmetric space X =

∏
Xi, where Xi is an

irreducible Riemannian symmetric space of noncompact type of dimension
greater than two. Then (M,F) is homogeneous.

This result gives a complete answer for Question 1.3 in the case where the
leaves are H3. We describe the proof in detail in Section 3. The key step of
the proof is to show that the geodesic boundary of hyperbolic leaves admits
a π1M -invariant conformal structure thanks to ergodicity of the π1M -action
or the leafwise geodesic flow. This phenomenon can be regarded as a certain
family version of strong Mostow rigidity for locally symmetric spaces [19].
Our proof is not sufficient to solve Question 1.2 in the same reason why
Mostow strong rigidity fails to hold for Riemann surfaces.

We deduce two consequences of Theorem 1.4. We need the following
result, which will be proved in Section 4.

Proposition 1.5. If a homogeneous Lie foliation (K\H×G/Γ,F) in Ex-
ample 1.1 satisfies the assumption of Theorem 1.4, then G is semisimple
and the projection of Γ to any connected normal subgroup of H×G is dense.

A lattice Γ of a connected Lie group G is called superrigid if, for any
real algebraic group H containing no connected simple compact normal
subgroups, any homomorphism Γ → H with Zariski dense image virtually
extends to a continuous homomorphism G→ H. Combining Theorem 1.4,
Proposition 1.5 with an extension of Margulis’ superrigidity theorem due
to Starkov [23, Theorem 4.6], we get the following.

Corollary 1.6. Under the assumption of Theorem 1.4, π1M is isomorphic
to a superrigid cocompact lattice in H ×G.

Combining with Theorem 1.4 and Proposition 1.5 with Margulis’ arith-
meticity theorem [12, Theorem A in p. 298], we get the following conse-
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quence, which implies a generalization of a theorem of Zimmer [24, Theo-
rem A-3], which says that the holonomy group of Lie foliation whose leaves
are isometric to a product of symmetric space of noncompact type of rank
greater than one is arithmetic.

Corollary 1.7. In addition to the assumption of Theorem 1.4, we assume
that X is of rank greater than one. Then π1M is isomorphic to an S-
arithmetic subgroup of H ×G.

The advantage of arithmeticity is that arithmetic subgroups can be listed
up in a sense. Thus Lie foliations in Corollary 1.7 are classified in a sense.

2. Questions

The following is related to Question 1.2.

Question 2.1. Does there exist a non-homogeneous minimal Lie foliation
on a closed manifold whose leaves are isometric to hyperbolic planes?

The following is a question concerning the possibility of generalizations
of a theorem of Matsumoto-Tsuchiya [14] on homogeneity of solvable Lie
foliations.

Question 2.2. Find a good condition which implies the rigidity of mini-
mal G-Lie foliations when G is solvable.

Tits buildings are arithmetic analog of symmetric spaces which have
similar rigidity theoretic properties.

Question 2.3. Construct minimal Lie foliations whose leaves are quasi-
isometric to Tits buildings of rank greater than one. Do they have rigidity?

Question 2.4. The leaves of the example [9, Section 6] of a minimal
SL(2;R)-Lie foliation are quasi-isometric to a Tits building of rank one.
Does it have rigidity?

3. Outline of the proof of Theorem 1.4

Step I. The leafwise boundary of foliations. First we explain the
proof of Theorem 1.4 in the case where X = Hn

R (n ≥ 3).
Let (M,F) be a minimal G-Lie foliation on a compact manifold. As-

sume that M admits a Riemannian metric such that each leaf of F̃ is iso-
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metric to X. Let (M̃, F̃) be the universal cover of (M,F). Let G(F̃) = {γ |
γ is a geodesic in a leaf of F̃}. We define the leafwise geodesic boundary

∂F̃ of (M̃, F̃) by

∂F̃ = G(F̃)/ ∼ ,

where γ ∼ γ′ if and only if γ and γ′ are contained in a leaf of F̃ and
asymptotic to each other. By the structure theory of Lie foliations (see [17,

Section 4.2]), we have an X-bundle dev : M̃ → G whose fibers are the

leaves of F̃ . We also have a homomorphism hol : π1M → G, which makes

dev a π1M -equivariant X-bundle. Then ∂F̃ is the total space of a π1M -

equivariant ∂X-bundle ∂ dev : ∂F̃ → G, where ∂X is the geodesic bound-
ary of X.

Step II. Ergodicity of the π1M-action on the leafwise boundary.
Let H = IsomX = PSO(n, 1) and K the isotropy group of a point on X so
that X = K\H. Since each leaf of F is isometric to X, we have a canonical
K-principal bundle N → M over M with an isometric H-action. Here we

have ∂F̃ = Ñ/P for a parabolic subgroup P . Thus ∂F̃ has a Lebesgue
measure. The following is the key step in the case where X = Hn

R.

Proposition 3.1. The π1M-action on ∂F̃ constructed in Step I is ergodic
with respect to the Lebesgue measure.

In the sequel, we consider Lebesgue measures on smooth manifolds.
We will use the following results.

Lemma 3.2 (A modification of [18, Proposition 4]). Let Γ1 and Γ2 be two
groups. Let Z be a smooth manifold with a (Γ1×Γ2)-action such that Z/Γ1

and Z/Γ2 are smooth manifolds. Then the Γ1-action on Z/Γ2 is ergodic if
and only if the Γ2-action on Z/Γ1 is ergodic.

Theorem 3.3 (A part of [18, Theorem 1]). Let H be a semisimple Lie
group with no compact connected subgroup. Let P be a subgroup of H.
Then the following are equivalent:

1. The image of P under the projection from H to each connected simple
normal subgroup of H is noncompact.

2. For any unitary H-representation π in the Hilbert space V and any
vector v ∈ V , if π(P )v = v, then π(H)v = v.

Proof of Proposition 3.1. By Lemma 3.2, the π1M -action on ∂F̃ is er-
godic if and only if the P -action on N is ergodic. By Theorem 3.3 for
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Hilbert space L2(N), any P -invariant L2-function on N is H-invariant.
Thus the latter condition is equivalent to the ergodicity of the H-action on
N . Lemma 3.2 implies that the H-action on N is ergodic if and only if the

Γ-action on Ñ/H = G is ergodic. Since Γ is a dense subgroup of G, the
Γ-action on G is ergodic (see the proof of [18, Proposition 4]).

Step III. Construction of a homomorphism π1M → H. We con-

struct a trivialization of ∂F̃ as a ∂X-bundle over G based on the construc-
tion [9, Section 3]. For g ∈ G, denote the leaf of F̃ which is the fiber of dev

over g by L(g). Take a π1M -invariant metric on (M̃, F̃). Any left invariant

vector field ξ on G can be horizontally lifted to M̃ along dev : M̃ → G so

that the lift ξ̃ is tangent to (T F̃)⊥. Since dev is π1M -equivariant and M is

compact, the flow on M̃ generated by ξ̃ is bi-Lipschitz. For each g ∈ G, take

the left invariant vector field ξ on G such that exp ξ = g. By the flow on M̃

generated by ξ̃, we have a map Φ(g) : M̃ → M̃ whose restriction to L(h)

is bi-Lipschitz for any h ∈ G. Here Φ(g) induces a map ∂Φ(g) : ∂F̃ → ∂F̃
whose restriction to ∂L(h) is a quasi-conformal homeomorphism (see [19,
Section 21]). Clearly we have ∂Φ(g1) ◦ ∂Φ(g2) = ∂Φ(g1g2). Then we get a

trivialization ∂F̃ ∼= ∂L(e)×G. Let eG be the unit element of G. we obtain
a π1M -action on ∂L(eG) given by

(3.4)
π1M × ∂L(eG) −→ ∂L(eG)

(c, [γ]) 7−→ ∂Φ(hol(c)−1)([c · γ]) ,

where · denotes the π1M -action on the space G(F̃) of geodesics.
Since a quasi-conformal homeomorphism is absolutely continuous, the

trivialization preserves the Lebesgue measure class. Thus, by Proposi-
tion 3.1, we have ergodicity of (3.4). Here we apply the following.

Proposition 3.5 ([19, Section 22]). Let n ≥ 2 and q : Sn → Sn be a
quasi-conformal homeomorphism. If q is equivariant with respect to an
ergodic group action, then q is conformal.

Then we conclude that the π1M -action (3.4) on ∂L(eG) is conformal. We
get a homomorphism π1M → Conf(∂X) ∼= IsomX = H.

Step IV. Construction of a homogeneous Lie foliation (M0,F0).
Let ρ : π1M → H be the homomorphism constructed in Step III. Consider
the direct product ρ× hol : π1M −→ H ×G. Let Γ = (ρ× hol)(π1M).

We show that Γ is discrete in H × G. Assume that Γ is not dis-
crete. Then there exists a sequence {ck} in π1M such that ρ(ck)→ eH and
hol(ck) → eG. Let ψk : L(eG) → L(eG) be the isometry which induces a
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conformal transformation ρ(ck) on ∂L(eG). Take a point x in L(eG) and
consider a sequence {ak} in L(eG) defined by

ak = ψ−1
k

(
Φ(hol(ck)

−1)(ck · x)
)
,

where Φ(hol(ck)
−1) : L(hol(ck)) → L(eG) is the bi-Lipschitz map con-

structed in Step III and · denotes the π1M -action on M̃ . By construction,
the map

χk : L(eG) −→ L(eG)
y 7−→ ψ−1

k

(
Φ(hol(ck)

−1)(ck · y)
)

is a bi-Lipschitz map which induces the identity on ∂L(eG). Since {hol(ck)}
converges to eG, there exists a positive number C such that, for any k,
Φ(hol(ck)

−1)|L(hol(ck)) is bi-Lipschitz with Lipschitz constant C. Then, χk
is a bi-Lipschitz with Lipschitz constant C for any k. By the Morse
lemma (see, for example, [2, 8.4.20]), there exists r > 0 such that χk maps
any geodesic τ in L(eG) into an r-neighborhood of τ . This implies that
d(y, χk(y)) < r, where d is the distance on L(eG). Then {χk(x)} admits a
converging subsequence. By construction, this implies that {ck · x} admits
a converging subsequence. This contradicts with the properly discontinuity

of the π1M -action on M̃ . Thus Γ is discrete in H ×G.
We show that Γ is cocompact in H × G. We denote the real cohomo-

logical dimension of manifolds and groups by rcd. First we compute rcd Γ.

By applying [5, Lemme 2.4] to dev : M̃ → G, we have

rcd M̃ ≤ rcd L̃+ rcdG ,

rcdM ≤ rcd M̃ + rcd Γ ,

where L̃ is a leaf of F̃ . Since L̃ is contractible, rcd L̃ is zero. Since M is
compact, we have rcdM = dimM . Thus we get

rcdG+ rcd Γ ≥ dimM .

Let KG be a maximal compact subgroup of G. Let XG = KG\G. Recall
that K is a maximal compact subgroup of H such that X = K\H. Since
rcdG = dimK, dimG = dimXG + dimK and dimM = dimG + dimX.
We get

rcd Γ ≥ dimXG + dimX .

On the other hand, since a finite index subgroup of Γ acts freely on X×XG

which is contractible, we get

rcd Γ ≤ dimXG + dimX .

Thus we get rcd(Γ) = dimXG + dimX. This implies that Hn
(
(X ×

XG)/Γ;R
)

is nontrivial, where n = dim(X × XG)/Γ. Thus Γ is cocom-
pact in H ×G.
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Then M0 = K\H × G/Γ is a closed manifold. Here M0 admits a G-
Lie foliation F0 which is induced from the product foliation K\H × G =
tg∈GK\H × {g} and whose leaves are isometric to X = K\H.

Step V. Construction of a diffeomorphism. Here we will show that
(M,F) is diffeomorphic to (M0,F0). Since (M,F) and (M0,F0) are classify-
ing spaces of G-Lie foliations with the same holonomy group as explained in
the last paragraph, there exist smooth maps f : M →M0 and f0 : M0 →M

such that f ∗F0 = F , f ∗0F = F0, f0 ◦ f ' idM and f ◦ f0 ' idM0 . Let f̃ and

f̃0 be lifts of f and f0 to the universal covers. Since M and M0 are compact,

by using f̃0, we can show that f̃ is a quasi-isometry on each leaf. Thus f̃

induces a π1M -equivariant homeomorphism ∂f̃ : ∂F̃ → ∂F̃0 which is quasi-
conformal on the geodesic boundary of each leaf. The π1M -equivalence of

∂f̃ and Proposition 3.5 imply that ∂f̃ is conformal on the geodesic bound-
ary of each leaf. Since H = IsomX, for each g ∈ G, there is a unique way

to extend ∂f̃ |∂L(g) to an isometry on Lg. It is easy to see that, by this exten-

sion, we get a well-defined π1M -equivariant diffeomorphism f̃1 : M̃ → M̃0.
Thus the proof is concluded.

The case where X is an irreducible symmetric space of rank one.
Now X is one of the following: Hn

R, Hn
C, Hn

H and H2
O. In the case where

X = Hn
C (n ≥ 2), Theorem 1.4 is proved in a way similar to the real

hyperbolic case by replacing Hn
R with Hn

C and by using quasi-conformal
mappings over C (see [19, Section 21]).

If X = Hn
H or H2

O, then Theorem 1.4 is proved in a way simpler than
the above two cases thanks to the following result of Pansu.

Theorem 3.6 ([20]). For any quasi-isometry ϕ on Hn
H or H2

O, there exists

an isometry ϕ1 such that ϕ ◦ ϕ−1
1 is bounded.

By this theorem, we can skip Step II. In Step III, we get a homomorphism
π1M → H without Step II. In the last step, we do not need to show that
∂f is conformal. The rest of the proof is the same.

The case where X is an irreducible symmetric space of rank r ≥
2. We refer to [19] for facts used in this paragraph. A flat in X is a
totally geodesic flat submanifold of dimension r. Let ∂X be the Furstenberg
maximal boundary of X, which is defined as a set of asymptotic classes of
flats in X. Here ∂X has a structure of a spherical Tits building whose
automorphism group Aut(∂X) is isomorphic to H. Theorem 1.4 can be
proved in this case by replacing the geodesic boundary of hyperbolic spaces
to Tits building ∂X. The following is well known.
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Proposition 3.7 (see [19, Section 15]). Any quasi-isometry on X induces
an automorphism of Tits building ∂X.

We define the leafwise boundary ∂F̃ like in Step I but by replacing geodesics
with flats. We skip Step II. By Proposition 3.7, we get a homomorphism
π1M → H in Step III without Step II. To show the discreteness Γ in H×G
in Step IV, we need to use the following result instead of Morse lemma:

Theorem 3.8 (A special case of [11, Theorem 1.1.3]). Let Z be an irre-
ducible symmetric space of noncompact type of rank greater than one. Then,
for any bi-Lipschitz self-map with Lipschitz constant C on Z, there exists
a homothety on Z at distance less than S, where S is a function of C.

In the last step, we do not need to show that ∂f is conformal. The rest of
the proof of Theorem 1.4 is the same as the case where X = Hn

R.

The general case. By a theorem of Kapovich-Kleiner-Leeb [10], for a

quasi-isometry φ on
∏`

i=1Xi, there exists a quasi-isometry φi for each i
such that pi ◦ φ is equal to φ ◦ pi up to a bounded error. If Xi is Hn

H, H2
O

or an irreducible symmetric space of rank greater than one for any i, then
we finish the proof by applying the above argument to each component.

Assume that Xi = Hn
R (n ≥ 3) or Hn

C (n ≥ 2) for some i. Then, in Step
II, we need to show that the π1M -action on the geodesic boundary ∂Xi is
ergodic. We consider a subfoliation Fi of F which is defined by the Xi-
factor in each leaf of F . Since the Xi-factor is determined by the holonomy
of the given smooth metric, Fi is a smooth foliation. Let Hi = Xi and take
a subgroup Ki so that Xi = Hi/Ki. Since each leaf of Fi is isometric to Xi,
we have a canonical principal Ki-bundle Wi →M . We can lift the foliation
F ′i horizontally to get an (H ′ ×G)-Lie foliation on Wi, where H ′ = H/Hi.
By the structure theorem of Lie foliations [17, Theorem 4.2], the closure of
a leaf is a submanifold Mi of M . Here (Mi,F ′i |Mi

) is a minimal Lie foliation
whose leaves are isometric to Xi. We apply the above Step II for (Mi,F ′i |Mi

)
to show the ergodicity of the π1Mi-action on the geodesic boundary of a
leaf of Fi. This implies that the π1M -action on the geodesic boundary of
a leaf of Fi is ergodic. Applying this argument for each i such that Xi is
of rank one, we can get a homomorphism π1M → Isom

∏
Xi = H in Step

III. The rest of the proof is the same.

4. Proof of Proposition 1.5.

Let G = LnR be the Levi decomposition of G, where L is semisimple with
trivial center and R is solvable and normal in G. By the assumption that
the leaves of F are simply-connected, the H-action on H × G/Γ is free.
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Then, by [24, Lemma 5.2], Γ ∩ R is discrete. Since R ∩ Γ is discrete and
normal in H × G, R ∩ Γ is central in H × G. Thus, by taking quotient of
G and Γ by R ∩ Γ, the proof of Proposition 1.5 can be reduced to the case
where R ∩ Γ is trivial. Let L = SK be the decomposition of L such that
Lie(S) is the sum of noncompact semisimple Lie algebras and Lie(K) is the
sum of compact semisimple Lie algebras. Since Γ is a cocompact lattice
of H × G, by a consequence of Auslander’s theorem [22, Theorem E.10],
R∩Γ is a cocompact lattice of KR. Thus R is compact, hence the identity
component R0 is abelian.

We will show that the projection of Γ to any connected normal simple
subgroup of H×G is dense. Let p : H×G→ H×G/KR be the projection.
Since KR is compact, p(Γ) is a lattice of H × G/KR. Then, since H ×
G/KR is a semisimple group without connected compact subgroup, by a
well known result (see [21, Theorem 5.22]), p(Γ) has a finite index subgroup
T such that T =

∏m
i=1 Ti, where Ti is an irreducible lattice of a product of

some connected normal simple subgroup of H×G/KR. Since the leaves of
F is simply-connected, the restriction of the projection H ×G→ G to Γ is
injective. Hence we get m = 1 and S is an irreducible lattice of H×G/KR,
which implies that so is p(Γ) (see [21, Corollary 5.21]). Then the projection
of Γ to any normal simple subgroup of H ×G is dense.

To show that G is semisimple, it suffices to show that R is finite. Since
R0 is abelian, the kernel of R → G/[G,G] is finite. On the other hand,
since Γ is a lattice of H ×G and the projection of Γ to any normal simple
subgroup of H × G is dense, a vanishing theorem of Starkov [23] implies
that Γ/[Γ,Γ] = 0. Since Γ is dense in G, it follows that G/[G,G] = 0.
Hence R is finite.
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