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Generic pseudogroups on (C, 0) and
the topology of leaves

Helena REIS

This is an extended abstract for the material in the papers [MRR] and
[RR] jointly with J.-F. Mattei and J. Rebelo.

In the study of some well-known problems about singular holomorphic
foliations, we usually experience difficulties concerning to greater or lesser
extent the topology of their leaves. Yet, most of these problems are essen-
tially concerned with pseudogroups generated by certain local holomorphic
diffeomorphisms defined on a neighborhood of 0 ∈ C. In this sense, results
about pseudogroups of Diff (C, 0) generated by a finite number of local
holomorphic diffeomorphisms are crucial for the understanding of certain
singular foliations defined about the origin of C2. Also, as it will be seen
below, for most of these problems it is necessary to consider classes of
pseudogroups with a distinguished generating set all of whose elements
have fixed conjugacy class in Diff (C, 0).

In the above mentioned works, some well-known questions about sin-
gular holomorphic foliations on (C2, 0) are answered. These questions have
first arisen as an outgrowth of the problem of classifying germs of plane
analytic curves (Zariski problem). The key to answer them will be the in-
troduction of a theory of pseudogroups obtained out of “generic” elements
in Diff (C, 0) having fixed conjugacy class. We shall explain these problems
before presenting our main results.

Recall that a local singular holomorphic foliation on a neighborhood
of (0, 0) ∈ C2 is nothing but the foliation induced by the local orbits of
a holomorphic vector field having isolated singularities and defined on the
mentioned neighborhood. In particular singular points of a foliation F
on (C2, 0) are always isolated and, besides, two holomorphic vector fields
representing F differ by an invertible multiplicative holomorphic function.
Assume that the origin is a singular point for a given foliation F and let X
be a representative of F . The eigenvalues of F at the origin correspond to
the eigenvalues of the linear part of X at the same point. It is well-known
that every foliation on (C2, 0) can be transformed by a finite sequence

of blow-up maps into a new foliation F̃ possessing singularities that are

“simple”, i.e. F̃ has at least one eigenvalue different from zero at each of

its singular points. This sequence of blow-up maps leading to F̃ is called
the resolution of F .
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The study of singularities of foliations and of their deformations, par-
alleling Zariski problem, led to the introduction of the Krull topology in
the space of these foliations. In this topology, a sequence of foliations Fi
is said to converge to F if there are representatives Xi for Fi and X for
F such that Xi is tangent to X, at the origin, to arbitrarily high orders
(modulo choosing i large enough). It should be noted that, given a foliation
F , its resolution depends only on a finite jet of the Taylor series of X at
the singular point. Therefore, if F ′ is close to F in the Krull topology,
then these foliations admit exactly the same resolution. Furthermore the

position of the singularities of the resolved foliations F̃ , F̃ ′ coincide and so
do their corresponding eigenvalues.

A prototypical problem in this direction that will also help us to clar-
ify the contents of the above discussion is provided by the nilpotent foli-
ations associated to Arnold singularities A2n+1. These are local foliations
F defined by a (germ of) vector field X having nilpotent linear part,
i.e. X = y∂/∂x + · · · , and a unique separatrix S that happens to be a
curve analytically equivalent to {y2 − x2n+1 = 0}. Let us discuss the sim-
plest case n = 1 in detail (the general case is very similar).

Consider a nilpotent foliation F associated to Arnold singularity A3,
i.e. a nilpotent foliation admitting a unique separatrix that happens to be
a curve analytically equivalent to {y2 − x3 = 0}. For this type of foliation,
the desingularization of the separatrix coincides with the resolution of the
foliation itself. More precisely, the map associated to the desingularization
of the separatrix ES : M → C2 reduces also the foliation F (see Figure 1
for the corresponding resolution).

Figure 1

The corresponding exceptional divisorD = E−1
S (0) consists of the union

of 3 rational curves as indicated in Figure 1. The singular points of F̃ are the
intersection points of consecutive components in the tree along with a point
s0 that corresponds to the intersection of the transformed of the separatrix
with E−1

S (0). This intersection takes place in the component C3 as indicated
in Figure 1. All these singular points possess two eigenvalues different from
zero. The corresponding eigenvalues can precisely be determined by using
the self-intersection of the various components of the exceptional divisor.
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For example, the eigenvalues of F̃ at s1 are 1,−3 whereas the eigenvalues

of F̃ at s2 are 1,−2.
It should be noted that the regular leaf C1 \ {s1} is isomorphic to C

and thus simply connected. This implies that the local holonomy map as-
sociated to a path contained in C1 \ {s1} and winding around s1 coincides

with the identity. This assertion combined with the fact that F̃ has eigen-

values 1,−3, guarantees that the germ of F̃ at s1 is linearizable. Thus the
local holonomy map f associated to a small loop about s1 and contained
in C3 must be of finite order equal to 3, i.e. it is conjugate to a rotation
of order 3. A similar discussion applies to the component C2 and leads to
the conclusion that the local holonomy map g associated to a small loop
around s2 and contained in C3 has order equal to 2, i.e. it is conjugate to

a rotation of order 2. Since C3 \ {s0, s1, s2} is a regular leaf of F̃ , we con-
clude that the (image of the) holonomy representation of the fundamental
group of C3 \ {s0, s1, s2} in Diff (C, 0) is nothing but the group generated
by f, g. The reader will easily convince himself/herself that the dynamics
of this holonomy group encodes all the information about the correspond-
ing foliation.

It should be noted that the conclusion above depends only on the con-
figuration of the reduction tree which, in turn, is determined by a finite jet
of the Taylor series of X at the singular point. Hence, if the coefficients
of Taylor series of the vector field X are perturbed starting from a suffi-
ciently high order, the new resulting vector field X ′ will still give rise to a
foliation whose singularity is reduced by the same blow-up map associated
to the divisor of Figure 1. In particular, the holonomy representation of
the fundamental group of C3 \ {s0, s1, s2} in Diff (C, 0), obtained from this
new foliation, is still generated by two elements of Diff (C, 0) having finite
orders respectively equal to 2 and to 3. Since every local diffeomorphism of
finite order as above is conjugate to the corresponding rotation, it follows
in particular that their conjugacy classes in Diff (C, 0) are fixed.

From what precedes, it follows that whenever F is a foliation as above
and F ′ is close to F in the Krull topology, then F ′ is also a nilpotent
foliation of type A3. It is then natural to wonder what type of dynamical
behavior can be expected from these foliations, or more precisely, from
a “typical” foliation in this family. Inasmuch the space of foliations was
endowed with the Krull topology, which fails to have the Baire property,
questions about “dense sets of foliations” can still be asked. The following
is an example of long-standing problem in the area:

Question. Does there exist a nilpotent foliation F in A3 whose leaves are
simply connected (apart maybe from a countable set)? Is the set of these
foliations dense in the Krull topology, i.e. given a nilpotent foliation F in
A3, does there exist a sequence of foliations Fi converging to F in the Krull
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topology and such that every Fi has simply connected leaves (with possible
exception of a countable set of leaves)?

Our methods are powerful enough to affirmatively settle both questions
above. A crucial point is the understanding of groups generated by f, g at
level of pseudogroup and not only at germ level. In fact, the local dynamics
of the holonomy pseudogroup arising from the leaf C3\{s0, s1, s2} on a fixed
neighborhood of 0 ∈ C must be studied.

In the case of nilpotent foliations in the class A3, it was seen that
pseudogroups given by generating sets with elements possessing fixed con-
jugacy classes play a central role in the description of the corresponding
foliations. This phenomenon is not peculiar to the mentioned family of
foliations and, indeed, appears quite often. To have a better insight in the
nature of the mentioned phenomenon, suppose we are given a foliation F
and consider F ′ very close to F in the Krull topology. In particular, the

resolutions F̃ , F̃ ′ of F , F ′ turn out to coincide. The positions of the sin-

gular points of F̃ , F̃ ′ in the common exceptional divisor coincide as well

and so do their corresponding eigenvalues. Suppose now that F̃ has only

hyperbolic singularities i.e. the singularities of F̃ have two eigenvalues dif-
ferent from zero and such that their quotient lies in C \R. The same holds

for F̃ ′ since corresponding singularities of F̃ , F̃ ′ have the same eigenvalues.
By Poincaré theorem, both singularities are then conjugate to the corres-
ponding linear model and, thus, they are conjugate to each other. Thus the
corresponding local holonomy maps arising from a small loop encircling the
singularity in question are themselves conjugate by a local diffeomorphism.
In other words, the pseudogroups generated by these holonomy maps for

F̃ and for F̃ ′ naturally have generating sets whose elements have the same
conjugacy classes. The latter are, indeed, fixed since it corresponds to the
class of a hyperbolic element of Diff (C, 0) with fixed multiplier.

Having explained the need for considering pseudogroups with generat-
ing sets all of whose elements possess a fixed conjugacy class in Diff (C, 0),
we can now proceed to state our main results. Let us begin with the re-
sults concerning pseudogroups generated by a finite number of elements in
Diff (C, 0) which will later allow us to answer the above stated questions
on nilpotent foliations. For this, let us equip Diff (C, 0) with the so-called
analytic topology, that was first considered by Takens in the context of real
diffeomorphisms of an analytic manifold and further discussed in the case
of Diff (C, 0) in [MRR]. Unlike the Krull topology, the analytic topology
has the Baire property. Now, consider a k-tuple of local holomorphic dif-
feomorphisms f1, . . . , fk fixing 0 ∈ C. The first theorem states that the
local diffeomorphisms fi can be perturbed inside their conjugacy classes so
as to generate a pseudogroup isomorphic to the free product of the cor-
responding cyclic groups. Indeed, the perturbation can be made inside a
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Gδ-dense subset of (Diff (C, 0))k. Also, it can be proved that the mentioned
perturbation can be made inside the class of diffeomorphisms tangent to the
identity to every a priori fixed order (which for technical reasons is also nec-
essary to solve the corresponding questions on foliations). More precisely,
letting Diffα(C, 0) stand for the normal subgroup of Diff (C, 0) consisting
of elements tangent to the identity to order α, we have the following:

Theorem A ([MRR]). Fixed α ∈ N, let f1, . . . , fk be given elements in
Diff (C, 0) and consider the corresponding cyclic groups G1, . . . , Gk. Then,
there exists a Gδ-dense set V ⊂ (Diffα(C, 0))k such that, whenever (h1, . . . ,
hk) ∈ V, the following holds:

(1) The group generated by h−1
1 ◦ f1 ◦h1, . . . , h

−1
k ◦ fk ◦hk induces a group

in Diff (C, 0) that is isomorphic to the free product G1 ∗ · · · ∗Gk.

(2) Let f1, . . . , fk and h1, . . . , hk be identified to local diffeomorphisms de-
fined about 0 ∈ C. Suppose that none of the local diffeomorphisms
f1, . . . , fk has a Cremer point at 0 ∈ C. Denote by Γh the pseudo-
group defined on a neighborhood V of 0 ∈ C by the mappings h−1

1 ◦
f1 ◦ h1, . . . , h

−1
k ◦ fk ◦ hk, where (h1, . . . , hk) ∈ V. Then V can be

chosen so that, for every non-empty reduced word W (a1, . . . , ak), the
element of Γh associated to W (h−1

1 ◦f1 ◦h1, . . . , h
−1
k ◦fk ◦hk) does not

coincide with the identity on any connected component of its domain
of definition.

Item (1) of the previous result concern groups at the germ level, while
item (2) concerns pseudogroups. Note that the assumption that none of the
fixed diffeomorphisms f1, . . . , fk has a Cremer point at 0 ∈ C is not nec-
essary for the first conclusion of Theorem A. This assumption is, however,
indispensable for the second item due to certain examples of dynamics near
Cremer points that were constructed by Perez-Marco.

Item (2) ensures the existence of a point p possessing an infinite orbit
of hyperbolic fixed points for the pseudogroup Γh. In other words, p has an
infinite orbit under Γh and, for every point q lying in the orbit of p, there is
an element g ∈ Γh for which q is a hyperbolic fixed point (i.e. ‖g′(q)‖ 6= 0).
In fact, the existence of this type of point p associated to a pseudogroup
whose germ at 0 ∈ C is not solvable has been known for a while (see [Lo] and
their references). However the question on whether or not these pseudo-
groups exhibit more than one single orbit of hyperbolic “fixed points”, at
least in the case of “typical” pseudogroups, has remained open. In [RR],
we provide “generic” answers for this question and for the question on the
nature of the stabilizer of points p 6= 0. This is as follows:

Theorem B ([RR]). Suppose we are given f, g in α and denote by D an
open disc about 0 ∈ C where f, g and their inverses are defined. Assume that
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none of the local diffeomorphisms f, g has a Cremer point at 0 ∈ C. Then,
there is a Gδ-dense set U ⊂ Diffα(C, 0) × Diffα(C, 0) such that, whenever

(h1, h2) lies in U , the pseudogroup Γh1,h2 generated by f̃ = h−1
1 ◦ f ◦ h1,

g̃ = h−1
2 ◦ g ◦ h2 on D satisfies the following:

(1) The stabilizer of every point p ∈ D is either trivial or cyclic.

(2) There is a sequence of points {Qi}, Qi 6= 0 for every i ∈ N∗, con-
verging to 0 ∈ C and such that every Qn is a hyperbolic fixed point of
some element Wi(f̃ , g̃) ∈ Γh1,h2. Furthermore the orbits under Γh1,h2

of Qn1, Qn2 are disjoint provided that n1 6= n2.

Let us now show how the previous theorems can be translated in terms
of nilpotent foliations in the class A2n+1. The above conducted discus-
sion can be expanded to show the existence of an injection from the set of
nilpotent foliations associated to Arnold singularities A2n+1 in the space of
subgroups of Diff (C, 0) generated by two diffeomorphisms such that one of
them has order 2 and the other has order 2n+ 1. Denote by Γ the pseudo-
group generated by f , g on a neighbourhood V of 0 ∈ C. A necessary
condition for a foliation as above to have simply connected leaves (up to a
countable set of them), is that every element on Γ cannot coincide with the
identity on any connected component of its domain of definition. Owing to
Theorem A, the diffeomorphisms f, g can be perturbed into f̃ = h−1

1 ◦f ◦h1

and g̃ = h−1
2 ◦ g ◦ h2 so as to satisfy this condition. It remains the prob-

lem of realizing these diffeomorphisms as the generators of the holonomy of
another nilpotent foliation associated to the Arnold singularity A2n+1. In
this direction, we proved that the existence of an actual correspondence be-
tween the space of these foliations and the space of subgroups of Diff (C, 0)
generated by two holomorphic diffeomorphims conjugate to the rotations
of order 2 and order 2n+ 1 (cf. [MRR]).

To formulate our statement in terms of “Krull denseness”, as in the
original questions, let X ∈ X(C2,0) be a holomorphic vector field with an
isolated singularity at the origin and defining a germ of nilpotent foliation
F of type A2n+1, in particular F possesses one unique separatrix. Now by
putting together the construction in [MRR] with Theorems A and B above,
we obtain:

Theorem C ([MRR, RR]). Let X ∈ X(C2,0) be a vector field with an iso-
lated singularity at the origin and defining a germ of nilpotent foliation F of
type A2n+1. Then, for every N ∈ N, there exists a vector field X ′ ∈ X(C2,0)

defining a germ of foliation F ′ and satisfying the following conditions:

(a) JN0 X
′ = JN0 X.

(b) F and F ′ have S as a common separatrix.
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(c) there exists a fundamental system of open neighborhoods {Uj}j∈N of
S, inside a closed ball B̄(0, R), such that the following holds for every
j ∈ N:

(c1) The leaves of the restriction of F ′ to Uj \S, F ′|(Uj\S) are simply
connected except for a countable number of them.

(c2) The countable set constituted by non-simply connected leaves is,
indeed, infinite.

(c3) Every leaf of F ′|(Uj\S) is either simply connected or homeo-
morphic to a cylinder.

The item (c1) in Theorem C appears already in [MRR] whereas
items (c2) and (c3) require Theorem B proved in [RR]. The realization
of pseudogroups as in the statement of Theorems A and B as holonomy
pseudogroups of nilpotent foliations was carried out in [MRR] and relies
heavily on the techniques of [MS].
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