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Several problems on groups of
diffeomorphisms
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1. Introduction

This is a discussion on several problems related to the study of groups of
diffeomorphisms which the author worked on for a while with some hope
to find new phenomena.

For a compact manifold M , let Diffr(M) (r = 0, 1 5 r 5∞, or r = ω)
denote the group of Cr diffeomorphisms of M . Diffr(M) is equipped with
the Cr topology and let Diffr(M)0 denote the identity component of it.
The family of diffeomorphisms generated by a time dependent vector field
is called an isotopy. A diffeomorphism near the identity is contained in an
isotopy. Diffr(M) has a manifold structure modelled on the space of Cr

vector fields. It is worth noticing that the composition (g1, g2) −→ g1 ◦ g2

in Diffr(M) (1 5 r <∞) is C∞ with respect to g1 but not continuous with
respect to g2.

2. Foliated products

A smooth singular simplex σ : ∆m −→ Diffr(M) corresponds to the multi
dimensional isotopy which is the foliation of ∆m × M transverse to the
fibers of the projection ∆m ×M −→ ∆m whose leaf passing through (t, x)
is {σ(s)σ(t)−1(x)

∣∣ s ∈ ∆}. These multi isotopies naturally match up along
the boundary and form the universal foliatedM -product over the classifying
space BDiffr(M).
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Let BΓ r
n be the classifying space for Haefliger’s Γ r

n structures with triv-
ialized normal bundles. Since BΓ r

n classifies Cr foliations with trivialized
normal bundles, for an n-dimensional parallelized manifold Mn, we obtain
the map BDiffr(Mn)×Mn −→ BΓ r

n, and hence the map BDiffr(Mn) −→
Map(M,BΓ r

n). The deep result by Mather-Thurston says that the last map
induces an isomorphism in integral homology.

Theorem 2.1 (Mather-Thurston). For 1 5 r 5∞,

H∗(BDiffr(Mn);Z) ∼= H∗(Map(Mn, BΓ r
n);Z).

In particular, H∗(BDiffrc(R
n);Z) ∼= H∗(Ω

nBΓ r
n;Z) for the group Diffrc(R

n)
of Cr diffeomorphisms of Rn with compact support.

On the other hand, H1(BDiffr(Mn);Z) = 0 (1 5 r 5∞, r 6= n+1) has
been shown by Herman-Mather-Thurston. Note thatH1(BDiffr(Mn);Z) ∼=
H1(BD̃iffr(Mn)δ0;Z), where D̃iffr(Mn)0 is the universal covering group and
δ means that the group is equipped with the discrete topology when we take
its classifying space. In general, the abelianization of a group G is isomor-
phic to H1(BGδ;Z) and a group is said to be perfect if its abelianization is
trivial. Moreover, by the fragmentation technique, H1(BDiffr(Mn);Z) = 0

is equivalent to H1(BDiffrc(R
n);Z) = 0, and if D̃iffrc(R

n)0 is perfect, then

D̃iffr(Mn)0 and Diffr(Mn)0 are perfect.

Theorem 2.2 (Herman-Mather-Thurston). Diffrc(M
n)0 (1 5 r 5 ∞, r 6=

n+ 1) is a perfect group. It is a simple group if Mn is connected.

It is known that for r > 2 − 1/(n + 1), there is a characteristic co-
homology class called the Godbillon-Vey class in Hn+1(BDiffr(Mn);R).
BDiffr(Mn) is conjectured to be n-acyclic. For the higher dimensional ho-
mology, it is only known [ASPM (1985), Annals (1989)] that

H2(BDiffrc(R
n);Z) = 0 if 1 5 r < [n/2],

Hm(BDiffrc(R
n);Z) = 0 if 1 5 r < [(n+ 1)/m]− 1 and

Hm(BDiff1
c(R

n);Z) = 0 for m = 1.

The main technical reason of the above regularity conditions can be
seen in the infinite iteration construction using (Z+∗Z+)n action on Rn. As
is well-known, by the homothety of ratio A, the Cr-norm of a foliated Rn-
product is multiplied by A1−r. For the easiest case of divisible abelian m-
cycle c represented by time 1 maps of commuting vector fields, we divide it
into 2m pieces [n/m] times and we use Z2n

+ action generated by homotheties
of ratio A = 1/(2 + ε), then the infinite iteration construction converges in
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the Cr topology if 2−[n/m]/(2 + ε)1−r < 1, that is, if r − [n/m]− 1 < 0. To
treat general cycles we loose a little more regularity.

For the connectivity of BΓ r
n, it seems that it increases when r tends

to 1. It is true that in Diff1+α
c (Rn), we can construct a Zk action which

permutes open sets, where k tends to infinity as α tends to 0 [JMSJ (1995)],
and we think that we can use it to construct infinite iterations of chains.
The bound of the rank of such action has been studied by Andrés Navas
which gave rise to a new direction of study of group of diffeomorphisms.

For seeking more regular construction, it is necessary to know that
abelian cycles are null homologous.

Problem 2.3. For the action ϕ : Rm −→ Diffr(Mn), show that
B(Rm)δ −→ BDiffr(Mn) induces the trivial homomorphism in integral
homology.

Remark 2.4. It is true for Diff∞c (R) [Fourier (1981), Fete of Topology
(1988)]. It is probably true for m = 1 and Diff∞c (Rn). The first interesting
case is R2 −→ Diff∞c (R2).

To treat non abelian cycles, we notice that the theorem of Mather-
Thurston implies that any class of H2(BDiff

r
(Mn);Z) (r 6= n + 1) can be

represented by a foliated Mn product over the surface Σ2 of genus 2.
For the smooth codimension 1 foliations, there is the interesting prob-

lem of determining the kernel of the Godbillon-Vey class.

Problem 2.5. Determine the kernel of GV : H2(BDiffrc(R);Z) −→ R.

Remark 2.6. There is a group G which contains both Diffrc(R) (r >
1 + 1/2) and the group PLc(R) of piecewise linear homeomorphisms of
R with compact support, with a metric such that GV cocycle is contin-
uous [Fourier (1992)]. We know that for a G-foliated R-product F over
a surface, GV (F) = 0 if and only if F is homologous to a G-foliated R-
product H0 over a surface Σ which is the limit of G-foliated R-products Hk

over the surface Σ representing 0 in H2(G;Z) [Proc. Japan Acad (1992)].
Hk are in fact transversely piecewise linear foliations and the topology of
BPLc(R)δ has been known by the work of Peter Greenberg. It will be
nice if we can take Hk to be C1 piecewise PSL(2;R) foliated S1-products.
The group of C1 piecewise PSL(2;R) diffeomorphisms of S1 contains the
Thompson simple group (consisting of C1 piecewise PSL(2;Z) diffeomor-
phisms) which gives other interests to study this group.
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3. BΓ ω
1

Many years ago, Haefliger showed that BΓ ω
1 is a K(π, 1) space. If one

understands the definition of the Γ ω
1 structures, though π is a huge group,

it is easy to show that H1(BΓ ω
1 ;Z) = 0.

Problem 3.1. Prove or disprove that H2(BΓ ω
1 ;Z) = 0.

Remark 3.2. The homology group H2(BΓ ω
1 ;Z) is generated by cycles

represented by surfaces Σ2 of genus 2 with Cω singular foliations with 2
saddles. Since H1(BΓ ω

1 ;Z) = 0 is a K(π, 1), a homology class represented
by the map from S2 is trivial. A homology class represented by the map
from T 2 is homologous to a union of suspensions of Cω diffeomorphisms of
S1, and these are trivial because Diffω(S1)0 is perfect by a result of Arnold.

As for the perfectness of the group Diffω(Mn)0 of real-analytic diffeo-
morphisms of Mn, Herman showed that Diffω(T n)0 is simple almost 40
years ago. Rather recently, we could show that if Mn admits a nice circle
action then Diffω(Mn)0 is perfect [Ann. ENS (2009)]. These are applica-
tions of Arnold’s work on the small denominators. With this method, it
should be at least generalized to the manifolds with circle actions. There
are torus bundles which admits a flow whose orbit closures are fibers. It
might be possible to apply the argument of [Ann. ENS (2009)].

4. Uniform perfectness

For a perfect group G, every element g can be written as a product of
commutators. The least number of commutators to write g is called the
commutator length of g and written as cl(g). A group G is uniformly
perfect if cl is a bounded function. The least bound cw(G) is called
the commutator width. After the result by Burago-Ivanov-Polterovich
[ASPM (2008)], we showed that for a compact n-dimensional manifold Mn

which admits a handle decomposition without handles of the middle in-
dex n/2, cw(Diffr(Mn)0) 5 3 if n is even, cw(Diffr(Mn)0) 5 4 if n is odd
(r 6= n + 1). For a compact 2m-dimensional manifold M2m (2m = 6),
cw(Diffr(M2m)0) <∞ (r 6= 2m+ 1) [CMH (2012)].

Problem 4.1. Estimate cw(Diffr(T 2)0), cw(Diffr(CP 2)0), cw(Diffr(S2 ×
S2)0), ...

For the group of homeomorphisms, we managed to prove that for the
spheres Sn and the Menger compact space µn, cw(Homeo(Sn)0) = 1 and
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cw(Homeo(µn)) = 1 [Proc. AMS (2013)]. It is probably true that for the
Menger-type compact space µnk , cw(Homeo(µnk)+) = 1, where + means a
certain condition concerning the orientation. The idea of proof comes from
the fact that the typical homeomorphism of such a space is the one with one
source and one sink and that the conjugacy class of such a homeomorphism
should be unique.

Problem 4.2. Find other examples of groups of commutator width 1.

In 1980, Fathi showed that for the group Homeoµ(Mn)0 of homeomor-
phisms preserving a good measure µ of Mn (n = 3), the kernel of the flux
homomorphism Homeoµ(Mn)0 −→ Hn−1(Mn;R) is perfect. It seems that
he proved that the kernel is uniformly perfect (at least he proved it for the
spheres). For the group Diffvol(M

n)0 of volume preserving diffeomorphisms,
Thurston showed that the kernel of the flux homomorphism is perfect.

Problem 4.3. Prove or disprove that Diffvol(S
n)0 (n = 3) is uniformly

perfect.

Burago-Ivanov-Polterovich gave the notion of norms on the group and
studied its properties. ν : G −→ R=0 is a (conjugate invariant) norm if
it satisfies (i) ν(1) = 0; (ii) ν(f) = ν(f−1); (iii) ν(fg) 5 ν(f) + ν(g); (iv)
ν(f) = ν(gfg−1) and (v) ν(f) > 0 for f 6= 1. For a symmetric subset
K ∈ G normally generating G, any f ∈ G can be written as a product of
conjugates of elements of K and the function giving the minimum number
qK(f) of the conjugates is a norm. Then cl(f) = qK(f) for K being the set
of single commutators.

For the groups of diffeomorphism with the fragmentation property, the
perfectness implies the simplicity. For a simple group G, the norm q{g,g−1} :
G −→ Z=0 is defined for g ∈ G. If {q{g,g−1}}g∈G\{1} is bounded then G is
said to be uniformly simple. In other words, for any f ∈ G and g ∈ G\{1},
f is written as a product of a bounded number of conjugates of g or g−1.
We have a distance function d on the set {C{g,g−1}}g 6=1 of symmetrized
nontrivial conjugate classes:

d(C{f,f−1}, C{g,g−1}) = log max{q{f,f−1}(g), q{g,g−1}(f)}
For simple groups which are not uniformly simple, for example, Diffvol,c(R

n)0

(n = 3), A∞, etc, it is interesting to study the metric d. For the infinite al-
ternative group A∞, Kodama and Matsuda told me that d is quasi-isometric
to the half line.

A real valued function φ on a group G is a homogeneous quasimorphism
if (g1, g2) 7→ φ(g2)−φ(g1g2)+φ(g1) is bounded and φ(gn) = nφ(g) for n ∈ Z.
Put

D(φ) = sup{|φ(g2)− φ(g1g2) + φ(g1)|
∣∣ (g1, g2) ∈ G×G}.
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Then Bavard’s duality says that

scl(g) =
1

2
sup

φ∈Q(G)/H1(G;R)

φ(g)

D(φ)
,

where scl(g) = lim
n→∞

cl(gn)

n
(stable commutator length) and Q(G) is the

real vector space of homogeneous quasimorphisms on G. Of course, for
groups with infinite commutator width, we need to study their stable com-
mutator length function. If the commutator width of a group G is infinite,
G is not uniformly simple, hence the distance function d is unbounded.
We might have more information on the distance d by looking at rela-
tive quasimorphisms. Let Q(G,K) be the real vector space of homoge-
neous quasimorphisms on G which vanishes on K. If there is a nontrivial
element φ ∈ Q(G,K) (for example, if dimQ(G) is larger than the num-
ber of K), then φ(f) 5 (qK(f) − 1)D(φ) and qK is not bounded. Since
Entov-Polterovich, Gambaudo-Ghys, Ishida, and others have shown that
Q(Diffvol(D

2, rel∂D2)) is infinite dimensional and hence the kernel of the
Calabi homomorphism Diffvol(D

2, rel∂D2) −→ R is not uniformly simple.

Problem 4.4. For the kernel of the Calabi homomorphism
Diffvol(D

2, rel∂D2) −→ R, show that {C{g,g−1}}g 6=1 with metric d is not
quasi-isometric to the half line.

As for the group Homeovol(D
2, rel∂D2), despite attemps by many peo-

ple, its simplicity is still an open problem. The following problem seems to
be the first step to show it.

Problem 4.5. Using area preserving homeomorphisms with the Calabi
invariant being infinity, show that an area preserving diffeomorphism with
nontrivial Calabi invariant is a product of commutators.
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