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1. Introduction

In this paper, we study the problem of realizing an n-manifold Mn as a
Lagrangian submanifold in the 2n-dimensional Euclidean space R2n with a
not fixed symplectic structure.

For the standard symplectic structure, there are several conditions on
Lagrangian submanifolds.

Theorem 1.1 (Gromov [5]). Let Ln be a closed Lagrangian submanifold of
the 2n-dimensional Euclidean space with the standard symplectic structure,
(R2n, ω0). Then

[ω0] 6= 0 ∈ H2(R2n, L;R),

and therefore H1(L;R) 6= 0.

Theorem 1.2 (Fukaya [3]). Let (R6, ω0) be the 6-dimensional Euclidean
space with the standard symplectic structure and L be an oriented con-
nected closed prime 3-manifold. Then L can be embedded in (R6, ω0) as a
Lagrangian submanifold if and only if L is diffeomorphic to S1×Σg, where
Σg is an oriented closed 2-dimensional manifold of genus g ≥ 0.

By Theorem 1.1 and Theorem 1.2, the topology of a Lagrangian sub-
manifold of R2n with the standard symplectic structure is strongly re-
stricted. On the other hand, we will see that almost of all the closed
parallelizable manifolds can be Lagrangian submanifolds of the Euclidean
spaces with not fixed symplectic structures.

2. Main Result

The main result is the following.

Theorem 2.1. Let Mn be a closed parallelizable n-manifold. If n 6= 7, or
if n = 7 and the Kervaire semi-characteristic χ 1

2
(M7) is zero, then for any

embedding of Mn in R2n, there exists a symplectic structure on R2n such
that the embedding is Lagrangian.
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Remark 2.2. For n = 2, the only closed parallelizable 2-manifold is the
2-torus and for n = 3, any closed orientable 3-manifold is parallelizable.
There are infinitely many isotopy classes of embeddings of the 2-torus in
the 4-dimensional Euclidean space. For n ≥ 3, there is a surjection from the
set of isotopy classes of embeddings of Mn in the 2n-dimensional Euclidean
space R2n to the homology group H1(Mn;Z) if n is odd, and to H1(Mn;Z2)
if n is even [9], [10].

3. Preliminary

To obtain a Lagrangian embedding of an n-manifold in R2n, we embed its
cotangent bundle in R2n and extend its canonical symplectic structure to
R2n.

Proposition 3.1. Let Mn be a closed parallelizable n-manifold embedded
in R2n. Then its normal bundle is trivial.

Proof. It is an immediate consequence of Kervaire’s theorem that for any
stably parallelizable manifold Kd embedded in R2d, the normal bundle is
trivial [7].

Therefore, for a closed parallelizable n-manifold Mn, any embedding of
Mn in R2n extends to an embedding of T ∗Mn in R2n. To extend the canon-
ical symplectic structure on T ∗Mn, we review Gromov’s h-principle for
symplectic structures on an open manifold and the space of non-degenerate
2-forms on R2n.

Theorem 3.2 (Gromov [4]). Let N2n be a triangulated open 2n-manifold
and ω be a non-degenerate 2-form on N2n. Then there is a symplectic
form ω̃ on N2n. Moreover, if ω is closed on a neighborhood of a subset
M of a core C of N2n, then we can choose ω̃ which coincides with ω on a
neighborhood of M .

By Theorem 3.2, to extend the canonical symplectic structure, it is
sufficient to extend the canonical symplectic structure as a non-degenerate
2-form. We prepare some propositions to apply Theorem 3.2.

Proposition 3.3 (See the section 4.3 of [2]). Let N be a triangulated open
manifold. Then there exists a subpolyhedron C ⊂ N such that dimC <
dimN and N can be compressed by an isotopy ϕt : N → N , t ∈ [0, 1], into
any neighborhood of C.

We call C a core of the open manifold N .
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Proposition 3.4. There is a diffeomorphism from the space of linear sym-
plectic structures on R2n to the quotient space GL(2n;R)/Sp(2n). More-
over, the connected component GL+(2n;R)/Sp(2n) corresponds to the space
of linear symplectic structures on R2n which give the positive orientation on
R2n where

GL+(2n;R) = {A ∈ GL(2n;R) | detA > 0}.

Proof. For a linear symplectic structure Ω on R2n, we can take a symplec-
tic basis 〈u1, v1, . . . , un, vn〉 which is determined up to linear transformations
by the symplectic group Sp(2n). That is, the map

Ω 7→ [A] ∈ GL(2n;R)/Sp(2n)
(
A = (u1 · · ·un v1 · · · vn)

)
is well defined. Its inverse is given by

[A] 7→ tA−1Ω0A
−1

(
Ω0 =

(
0 1
−1 0

)
∈ GL(2n;R)

)
.

Then we can identify a positive non-degenerate 2-form on R2n with a
smooth map

R2n → GL+(2n;R)/Sp(2n).

We note that the map represents a symplectic basis of the non-degenerate
2-form at each point of R2n.

Proposition 3.5 (See the section 2.2 of [8]). The map

GL+(2n;R)/Sp(2n)→ SO(2n)/U(n), [A] 7→ [B],

where (tA−1Ω0A
−1 tA−1 tΩ0A

−1)−
1
2 (tA−1Ω0A

−1) = BΩ0B
−1, is a homotopy

equivalence.

By Proposition 3.4 and 3.5, we can identify the canonical symplectic
structure ω on T ∗Mn with the continuous map

ω : T ∗Mn → SO(2n)/U(n).

Actually, the possibility of extending the canonical symplectic structure ω
as a non-degenerate 2-form depends only on the homotopy type of ω.

Remark 3.6. For an n-manifold Mn, the existence of a Lagrangian em-
bedding of Mn in R2n with a not fixed symplectic structure is equivalent
to the existence of a totally real embedding of Mn in Cn. Indeed, we can
check it by applying Theorem 3.2 and Gromov’s h-principle for totally real
embeddings [6]. Audin gave a necessary and sufficient condition for the
existence of a totally real embedding of Mn in Cn in [1]. In particular, the
existence part of Theorem 2.1 is a part of Audin’s theorem if n 6= 7.
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4. Outline of the Proof of Theorem 2.1

Proof. We prove only the case where n = 3. It suffices to show that the
map ω : T ∗M3 → SO(6)/U(3) is null-homotopic. Let us take a triangulation
of M3, M (0) ⊂ M (1) ⊂ M (2) ⊂ M (3) = M3 be the skeletons, f : M3 → R6

be the embedding. First, we denote the Gauss map of f by g0. Since M3

is parallelizable, the Gauss map of f takes the value in the Stiefel manifold
V6,3,

g0 : M3 → V6,3.

The map g0 is null-homotopic on M (2) because V6,3 is 2-connected. Thus

there exists a homotopy g
(2)
t : M (2) → V6,3, t ∈ [0, 1], with g

(2)
0 = g0 |M(2)

and g
(2)
1 is a constant map. By the covering homotopy property of the

fibration SO(6)→ V6,3, we can take the lift G
(2)
t of g

(2)
t ,

G
(2)
t : M (2) → SO(6).

Since the fiber of the fibration SO(6) → V6,3 is SO(3) and the homotopy

group π2

(
SO(3)

)
= 0, G

(2)
0 extends to the map G0 : M3 → SO(6) which

formed by an orthonormal tangent 3-frame field and an orthonormal nor-

mal 3-frame field of M3. On the other hand, G
(2)
1 extends to a constant

map G1 : M3 → SO(6). Next, we composes these map with the projection

π : SO(6)→ SO(6)/U(3) which we denote Ḡ0 = π ◦G0, Ḡ
(2)
t = π ◦G(2)

t , and
Ḡ1 = π ◦G1. We note that the map Ḡ0 = ω : T ∗M3 → SO(6)/U(3) and the
map Ḡ1 is a constant map. Lastly, since the homotopy group π3

(
SO(6)/

U(3)
)

= 0, Ḡ
(2)
t extends to the map Ḡt : M

3 → SO(6)/U(3). Therefore, ω
is null-homotopic.

The remaining cases are similar by using the Kervaire semi-characteristic.
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