Geometry and Foliations 2013 Komaba, Tokyo, Japan

Classification of maximal codimension totally geodesic foliations of the complex hyperbolic space

MACIEJ CZARNECKI

1. Totally geodesic foliations of \mathbb{H}^n

Totally geodesic foliations of the real hyperbolic space \mathbb{H}^n in codimension 1 are well understood. The first classification given by Ferus in [5] concentrates on geometry of orthogonal transversal. Browne observed that it is enough to study vector fields along geodesics (cf. [2]). Lastly, Lee and Yi classified totally geodesic codimension 1 foliations of \mathbb{H}^n through closed curves on S^{n-1} which represent the ideal boundary of leaves. For short explanation compare [4] and [1].

2. Complex hyperbolic space and complex de Sitter space

The complex hyperbolic space $\mathbb{C}H^n$ is one of the easiest examples of the Hadamard manifold with nonconstant sectional curvature. Even here there is no (real) codimesion 1 totally geodesic submanifolds; in fact only totally geodesic submanifolds are totatly complex or totally real (cf. [6]).

Define complex de Sitter space $\mathbb{C}\Lambda^n$ as the (complex) projectivization of positive vectors with respect to the Hermitian form in \mathbb{C}^{n+1} given by

$$\langle Z, W \rangle = -Z_0 \overline{W_0} + Z_1 \overline{W_1} + \ldots + Z_n \overline{W_n}.$$

Recall that $\mathbb{C}H^n$ is simply projectivization of negative vectors in \mathbb{C}^{n+1} .

Every totally geodesic codimension 2 submanifold of $\mathbb{C}H^n$ is the projectivization of complex hyperplane which is complex-time-like. Thus it is represented by a positive vector i.e. belonging to $\mathbb{C}\Lambda^n$.

3. Classification of totally geodesic codimension 2 foliations of $\mathbb{C}H^n$

In [4] Czarnecki and Walczak stated the problem of geometric classification of foliations of $\mathbb{C}H^n$ with leaves isometric to $\mathbb{C}H^{n-1}$, i.e. of the real

^{© 2013} Maciej Czarnecki

codimension 2.

This problem could be studied similarly to the real case when the conformal geometry is applied. Using methods developed in [7] Czarnecki and Langevin (see [3]) gave local and global conformal condition for curves in de Sitter space Λ^{n+2} to represent a totally geodesic codimension 1 folations of \mathbb{H}^n .

Totally geodesic codimension 2 foliations are curves in $\mathbb{C}\Lambda^n$ such that its tangent vector is of complex-time-like. Therefore, totally geodesic maximal codimension foliations of $\mathbb{C}H^n$ are those which are orthogonal to a complex curve of holomorphic curvature bounded by 1. Such a curve is an Hadamard 2–dimensional submanifold of bounded negative curvature.

References

- M. Badura, M. Czarnecki, *Recent progress in geometric foliation theory*, to appear in Foliations 2012, World Scientific 2013.
- [2] H. Browne, Codimension one totally geodesic foliations of Hⁿ, Tohoku Math. Journ. 36 (1984), 315–340.
- [3] M. Czarnecki, R. Langevin, *Totally umbilical foliations on hyperbolic spaces*, in preparation.
- M. Czarnecki, P. Walczak, *Extrinsic geometry of foliations* in Foliations 2005, World Scientific 2006, 149–167.
- [5] D. Ferus, On isometric immersions between hyperbolic spaces, Math. Ann. 205 (1973), 193-200.
- [6] W. Goldman, Complex Hyperbolic Geometry, Oxford University Press 1999.
- [7] R. Langevin, P. Walczak, Conformal geometry of foliations, Geometriae Dedicata 132 (2008), 135–178.
- [8] K. B. Lee, S. Yi, Metric foliations on hyperbolic spaces, J. Korean Math. Soc. 48(1) (2011), 63–82.

Uniwersytet Lódzki, Katedra Geometrii Banacha 22, PL 90-238 Lódź, Poland E-mail: maczar@math.uni.lodz.pl

234