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1. Birkhoff section

DEeFINITION 1.1. A Birkhoff section for a flow ¢; defined on a closed 3-
manifold is an embedded surface satisfying that its interior is transverse to
¢ and that its boundaries are consist of closed orbits of .

EXAMPLE 1.2. 1. Let T2 be a flat torus. Now we construct a Birkhoff
section for the geodesic flow g; of T in the unit tangent vector bundle
TyT?. We take closed geodesics Cy,Cy, Cs, Cy of T? (see Figure 1).
The complement of these closed geodesics is 4 rectangles. We choose
two rectangles R; and Ry which are not adjacent. Next we consider
a family C; (i = 1,2) of convex simple closed curves which fills the
interior of R; with one singularity deleted. Let S be the closure of the
union of unit tangent vectors of all curves of C; and Cy. Then, S is a
torus with 8 discs deleted and the boundaries of S are close oriented
geodesics corresponding to Cy, Cy, C3, Cy.

Figure 1: Geodesics and rectangles of 12
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S is a Birkhoff section for ¢g;. The first return map of ¢, associated with
S is topologically semiconjugate to the toral automorphism induced

by
1 0
().

In the hyperbolic case, we construct a genus one Birkhoff section of
the geodesic flow by the same method of the above case.

Let X, (g > 2) be a genus g orientable closed surface with a hyper-
bolic metric. The geodesic flow of X, has genus one Birkhoff sec-
tions [1, 2, 3]. The first return maps associated with these sections
are topologically semiconjugate to hyperbolic toral automorphisms.
These toral automorphisms are induced by

4, - ( 29° =1 29(g - 1))

20(g+1) 2¢°—1

and

B — 49> — 29 — 1 2¢%> — 2g
g 8g% — 2 4g% — 29 — 1

>

Figure 2: Branched covering v : T? — P

3. Let P be a flat pillowcase i.e. a 2-dimensional sphere with 4 singular

points. P is also considered as a quotient space R?/T" where T is
the group of isometries of R? generated by m-rotations centered at
(0,+1) and (+1,0). We consider a branched covering v : T? — P
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(see Figure 2). The differential T}~ of v preserves geodesic flows and
S" =Ty7v(95) is also a genus one Birkhoff section for the geodesic flow
fi of P. The double covering T17y|s : S — S’ is induced by the matrix
D = (1) g) Hence, the first return map of f; associated with S’

is topologically semiconjugate to a toral automorphism induced by

. (10
DA,D _(8 L)

2. Main Results

In [1], Brunella showed the method to construct genus one Birkhoff sections.
We apply this method to geodesic flows of 2-spheres with singularities.

For any three positive integers p,q,r satisfying that the hyperbolic
condition le + é + % < 1, let S(p,q,r) be a 2-sphere with three singular
2T 2w 27
P qa T
on S(p,q,r), then the geodesic flow F; of S(p,q,r) is an Anosov flow on a
triangular Seifert fibred space.

Using Scott’s result about closed geodesics of F; [5], we have the next
theorem.

points whose cone angles are If we consider the hyperbolic metric

Theorem 2.1. If (p,q,r) is not (2,3,u) (u > 7) nor (2,4,u) (u > 5)
up to permutation of p,q,r, then the geodesic flow Fy of S(p,q,r) has a
genus one Birkhoff section and F} is topologically constructed by doing Dehn
surgeries along two closed orbits of the suspension of the hyperbolic toral
automorphism induced by a matriz A, ., € SL(2;Z).

In some special cases, we can calculate A, ,, by the same way of the
above flat pillowcase case. There exist branched coverings ¥, — S(2g +
2,2g+2,9g+1) and £, — S(2g+ 1,29 + 1,29 + 1). Since these branched
covering preserve the geodesic flows, they are used to calculate Aggi2 9412 g+1
and Aggi12g+1,2g41-

Theorem 2.2.

A _ (29" =1 g(g? = 1)
29+2,2g+2,9+1 49 292 -1

A _ (49" =29 -1 29(9-1)2g+1)
29+1,29+1,2g+1 — 2(29 _ 1) 492 _ 29 -1
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