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1. Introduction

Let (M,ω) be a symplectic manifold. In this paper a diffeomorphism f of
M is called a symplectomorphism if f preserves the symplectic form ω.

Our result is as follows:

Theorem 1.1. Let (T2, ωT2) = (R2/Z2, ωT2) be the 2-torus with the co-
ordinates (p, q) and the symplectic form dp∧dq. The union M∪L of the
meridian curve M and the longitude curve L is a “[T2]-superheavy” subset
of (T2, ωT2).

As a corollary of Proposition 1.1, we have the following result:

Corollary 1.2. Let (CP n, ωFS) be the complex projective space with the
Fubini-Study form ωFS and C be the Clifford torus {[z0 : · · · : zn] ∈
CP n; |z0| = · · · = |zn|} of CP n. Then there exists no symplectomorphism
f of (CP n × T2, ωFS ⊕ ωT2) such that C×(M ∪ L) ∩ f(C×(M ∪ L)) = ∅.

2. Preliminaries

2.1. Definitions

For a function F : M → R with compact support, we define the Hamiltonian
vector field sgradF associated with F by

ω(sgradF, V ) = −dF (V ) for any V ∈ X (M),

where X (M) denotes the set of smooth vector fields on M .
For a function F : M×[0, 1] → R and t ∈ [0, 1], we define Ft : M → R

by Ft(x) = F (x, t). We denote by {ft} the isotopy which satisfies f0 = id
and d

dt
ft(x) = (sgradFt)ft(x). We call this the Hamiltonian path generated

by the Hamiltonian function F . The time-1 map f1 of {ft} is called the
Hamiltonian diffeomorphism generated by the Hamiltonian function F . A
diffeomorphism f is called a Hamiltonian diffeomorphism if there exists a
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Hamiltonian function with compact support generating f . A Hamiltonian
diffeomorphism is a symplectomorphism.

For a symplectic manifold (M,ω), we denote by Symp(M,ω), Ham(M,ω)

and H̃am(M,ω), the group of symplectomorphisms, the group of Hamilto-
nian diffeomorphisms of (M,ω) and its universal cover, respectively. We
denote by Symp0(M,ω) the identity component of Symp(M,ω). Note that
Ham(M,ω) is a normal subgroup of Symp0(M,ω).

Definition 2.1. For functions F andG and a symplectic manifold (M,ω),
the Poisson bracket {F,G} ∈ C∞(M) is defined by

{F,G} = ω(sgradG, sgradF ).

Definition 2.2 ([1]). Let (M,ω) be a symplectic manifold.
A subset U of M is called displaceable if there exists a Hamiltonian

diffeomorphism f ∈ Ham(M,ω) such that f(U)∩Ū = ∅.
A subset U of M is called strongly displaceable if there exist a symplec-

tomorphism f ∈ Symp(M,ω) such that f(U)∩Ū = ∅.
We consider the cotangent bundle T ∗S1 = R× S1 of the circle S1 with

the coordinates (r, θ) and the symplectic form dr ∧ dθ. A subset U of M
is called stably displaceable if U × {r = 0} is displaceable in M × T ∗S1

equipped with the split symplectic form ω̄ = ω ⊕ (dr ∧ dθ).

If U is displaceable, then U is stably displaceable. Since Ham(M,ω) ⊂
Symp(M,ω), if U is displaceable, then U is strongly displaceable.

2.2. Spectral invariants

For a closed connected symplectic manifold (M,ω), define

Γ =
π2(M)

Ker(c1) ∩Ker([ω])
,

where c1 is the first Chern class of TM with an almost complex structure
compatible with ω. The Novikov ring of the closed symplectic manifold
(M,ω) is defined as follows:

Λ =

{∑
A∈Γ

aAA; aA ∈ Q,#{A; aA 6= 0,

∫
M

ω < R} <∞ for any real number R

}

The quantum homologyQH∗(M,ω) is a Λ-module isomorphic toH∗(M ;Q)⊗Q
Λ and QH∗(M,ω) has a ring structure with the multiplication called quan-
tum product [3]. To each element a ∈ QH∗(M,ω), a functional c(a, ·) : C∞(M×
[0, 1])→ R is defined in terms of Hamiltonian Floer theory. The functional
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c(a, ·) is called spectral invariant ([3]). To describe the properties of a spec-
tral invariant, we define the spectrum of a Hamiltonian function as follows:

Definition 2.3 ([3]). Let H ∈ C∞(M × [0, 1]) be a Hamiltonian function
on a closed symplectic manifold M . Spectrum Spec(H) of H is defined as
follows:

Spec(H) =

{∫ 1

0

H(ht(x), t)dt+

∫
D2

u∗ω

}
⊂ R,

where {ht}t∈[0,1] is the Hamiltonian path generated by H and x ∈ M is
a fixed point of h1 whose orbit defined by γx(t) = ht(x) (t ∈ [0, 1]) is a
contractible loop and u : D2→M is a disc in M such that u|∂D2 = γx.

We define the non-degeneracy of Hamiltonian functions as follows:

Definition 2.4. H ∈ C∞(M×[0, 1]) is called non-degenerate if the graph
of the Hamiltonian diffeomorphism h generated by H is transverse to the
diagonal in M×M .

The followings are well-known properties of spectral invariants ([3], [4]).

Non-degenerate spectrality c(a,H) ∈ Spec(H) for every non-degenerate
H ∈ C∞(M×[0, 1]).

Hamiltonian shift property c(a,H + λ(t)) = c(a,H) +
∫ 1

0
λ(t)dt.

Monotonicity property If H1 ≤ H2, then c(a,H1) ≤ c(a,H2).

Lipschitz property The map H 7→c(a,H) is Lipschitz on C∞(M × [0, 1])
with respect to the C0-norm.

Symplectic invariance c(a, f ∗H) = c(a,H) for any f ∈ Symp0(M,ω)
and any H ∈ C∞(M × [0, 1]).

Homotopy invariance c(a,H1) = c(a,H2) for any normalized H1 and

H2 generating the same h ∈ H̃am(M). Thus one can define c(a, ·) : H̃am(M)→
R by c(a, h) = c(a,H), where H is a normalized Hamiltonian function
generating h.

Triangle inequality c(a ∗ b, fg) ≤ c(a, f) + c(b, g) for elements f and

g ∈ H̃am(M,ω), where ∗ denotes the quantum product.

2.3. Heaviness and superheaviness

M. Entov and L. Polterovich ([1]) defined the heaviness and the super-
heaviness of closed subsets in closed symplectic manifolds and gave stably
non-displaceable subsets and strongly non-displaceable subsets.
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For an idempotent a of the quantum homology QH∗(M,ω), define the
functional ζa : C∞(M)→ R by

ζa(H) = lim
l→∞

c(a, lH)

l
,

where c(a,H) is the spectral invariant ([3], see Section 2.2).

Definition 2.5 ([1]). Let (M,ω) be a 2n-dimensional closed symplectic
manifold. Take an idempotent a of the quantum homology QH∗(M,ω).

A closed subset X of M is called ζa-heavy (or a-heavy) if

ζa(H) ≥ inf
X
H for any H ∈ C∞(M),

and is called ζa-superheavy (or a-superheavy) if

ζa(H) ≤ sup
X
H for any H ∈ C∞(M).

A closed subset X of M is called heavy (respectively, superheavy) if X is ζa-
heavy (respectively, ζa-superheavy) for some idempotent a of QH∗(M,ω).

For a oriented closed manifold M , we denote its fundamental class by
[M ].

Theorem 2.6 (A part of Theorem 1.4 of [1]). For a non-trivial idempotent
a of QH∗(M,ω), the followings hold.

(1) Every ζa-superheavy subset is ζa-heavy.

(2) Every ζa-heavy subset is stably non-displaceable.

(3) Every [M ]-superheavy subset is strongly non-displaceable.

�

Example 2.7. (1) Let (T2, ωT2) = (R2/Z2, ωT2) be the 2-torus with the
coordinates (p, q) and the symplectic form dp∧dq. Then the meridian
curve M = {(p, q) ∈ T2; q = 0} and the longitude curve L = {(p, q) ∈
T2; p = 0} are [T2]-heavy subsets of (T2, ωT2), hence they are stably
non-displaceable ([1] Example 1.18).

(2) Let (CP n, ωFS) be the complex projective space with the Fubini-
Study form. The Clifford torus C = {[z0 : · · · : zn] ∈ CP n; |z0| =
· · · = |zn|} ⊂ CP n is a [CP n]-superheavy subset of (CP n, ωFS), hence
they are strongly non-displaceable ([1] Theorem 1.8).
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Definition 2.8. Let (M,ω) be a 2n-dimensional closed symplectic man-
ifold. Take an idempotent a of the quantum homology QH∗(M,ω). An
open subset U of M is said to be ζa-null if for G ∈ C∞(U),

ζa(G) = 0.

An open subset U of M is said to be strongly ζa-null if for F ∈ C∞(M)
and G ∈ C∞(U) such that {F,G} = 0,

ζa(F +G) = ζa(F ).

A subset X of M is said to be (strongly) ζa-null if there exists a (strongly)
ζa-null open neighborhood U of X.

3. Main proposition

Definition 3.1. A closed symplectic manifold (M,ω) is called rational if
ω(π2(M)) is a discrete subgroup of R.

The main result is the following proposition. We use this proposition to
prove Theorem 1.1 by using the argument of stems.

Proposition 3.2. Let (M,ω) be a rational closed symplectic manifold. Let
α be a nontrivial free homotopy class of free loops on M ; α ∈ [S1,M ], α 6= 0.
Let U be an open subset of M . Assume that there exists a Hamiltonian
function H ∈ C∞(M × [0, 1]) which satisfies the followings:

(1) h1|U = idU ,

(2) for any x ∈ U , the free loop γx : S1 → M defined by γx(t) = ht(x)
belongs to α, and

(3) α /∈ i∗([S1, U ]).

Here i : U→M is the inclusion map and {ht}t∈[0,1] is the Hamiltonian path
generated by H. Then U is strongly ζa-null for any idempotent a of QH∗(M,ω).

�

The proof of Theorem 3.2 is based on the idea of K. Irie in the proof
of Theorem 2.4 of [2].

4. Proof of Theorem 1.1

M. Entov and L. Polterovich defined stems to give examples of superheavy
subsets. We define ζa-stems which generalizes a little the notion of stems
and there exhibits ζa-superheaviness.

We generalize the argument of Entov and Polterovich as follows.
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Definition 4.1. Let A be a finite-dimensional Poisson-commutative sub-
space of C∞(M) and Φ: M → A∗ be the moment map defined by 〈Φ(x), F 〉 =
F (x). Let a be a non-trivial idempotent of QH∗(M,ω). A non-empty fiber
Φ−1(p), p ∈ A∗ is called a ζa-stem of A if all non-empty fibers Φ−1(q) with
q 6= p is strongly ζa-null. If a subset of M is a ζa-stem of a finite-dimensional
Poisson-commutative subspace of C∞(M), it is called just a ζa-stem.

Theorem 4.2. For every idempotent a of QH∗(M,ω), every ζa-stem is a
ζa-superheavy subset.

�

Proof of Theorem 1.1.
Note that (T2, ωT2) is rational. Consider a momentum map Φ ∈ C∞(T2)

such that Φ(x) = 0 if x ∈ M ∪ L and Φ(x) > 0 if x /∈ M ∪ L. Take a real
number ε 6= 0. Then there exist a positive number δ and an open neigh-
borhood U of Φ−1(ε) such that U ⊂ (δ, 1 − δ) × (δ, 1 − δ). Consider a
Hamiltonian function H ∈ C∞(T2 × [0, 1]) such that H((p, q), t) = p for
any p ∈ [δ, 1− δ].

Define the free loop γ : S1 → T2 by γ(t) = (0, t). Let α ∈ [S1,T2] be
the homotopy class of free loops represented by γ. Then α, U and H satisfy
the assumptions of Theorem 3.2, hence U satisfies is strongly ζa-null. Thus
M ∪ L is a ζa-stem, hence it is ζa-superheavy.

�

5. Proof of Corollary 1.2

We use the following theorem to prove Corollary 1.2.

Theorem 5.1 ([1] Theorem 1.7). Let (M1, ω1) and (M2, ω2) be closed sym-
plectic manifolds. Take non-zero idempotents a1, a2 of QH∗(M1), QH∗(M1),
respectively. Assume that for i = 1, 2, Xi be a ai-heavy (respectively, ai-
superheavy) subset. Then the product X1×X2 is a1⊗a2-heavy (respectively,
a1⊗a2-superheavy) subset of (M1×M2, ω1 ⊕ ω2) of QH∗(M1×M2).

�

Proof of Corollary 1.2. By Example 2.7 and Theorem 1.1, Theorem 5.1,
C×(M ∪ L) is [C×(M ∪ L)]-superheavy subset of (CP n × T2, ωFS ⊕ ωT2).
Thus Theorem 2.6 implies that there exists no symplectomorphism f such
that C×(M ∪ L) ∩ f(C×(M ∪ L)) = ∅.

�
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