
Geometry and Foliations 2013
Komaba, Tokyo, Japan

Application of a new integral formula for
two distributions with singularities on

Riemannian manifolds

Magdalena LUŻYŃCZYK

1. The Volume of a Tube

1.1. The second fundamental forms of the tubular hypersurfaces

Definition 1.1. Let P be a topologically embedded sub-manifold (pos-
sibly with boundary) in a Riemannian manifold M , then a tube T (P, r) of
radius r ≥ 0 about P is the set

T (P, r) ={m ∈M : there exists a geodesic ξ of length L(ξ) ≤ r(1.2)

from m meeting P orthogonally}.

We shall also need a notation closely related to that of tube.

Definition 1.3. We call a hypersurface of the form

Pt = {m ∈ T (P, r) : distance(m,P ) = t}

the tubular hypersurface at distance t from P.

For 0 < t ≤ r the tubular hypersurfaces Pt form a natural foliation of the
tubular region T (P, r)− P .

1.2. The volume of a tube in terms of the infinitesimal change
of volume function

We assume that P is topologically embedded submanifold with compact
closure of a complete Riemannian manifold M . For all r ≥ 0 both T (P, r)
and Pr are measurable sets. Let

VM
P (r) =the n− dimensional volume of T (P, r),

AM
P (r) =the (n− 1)− dimensional volume of Pr.

It is easy to show that AMP (r) is the derivative of V M
P (r). We use the lemma:
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Lemma 1.4. Suppose that expν : {(p, v) ∈ ν :‖ v ‖≤ r} 7−→ T (P, r) is a
diffeomorphism. Then

AMP (r) = rn−q−1

∫
P

∫
Sn−q−1(1)

Vu(r)dudP.

Lemma 1.5. Suppose that expν : {(p, v) ∈ ν :‖ v ‖≤ r} 7−→ T (P, r) is a
diffeomorphism. Then

d

dr
V M
P (r) = AMP (r)

= rn−q−1

∫
P

∫
Sn−q−1(1)

Vu(r)dudP.

Proofs of this lemmas are available at [3].

2. Riemannian manifolds with singularities

In this section we work with Riemannian geometry of manifolds equipped
with a pair of orthogonal plane fields. We want to generalize it to the case
of plane fields with singularities, that is defined on a compact manifold
except of singular set, the union of submanifolds of lower dimension. Till
now, author produced a new integral formula ( see[4] ) obtained from inte-
gration of the divergence of a vector field built from Newton transforms of
Weingarten operators applied to the mean curvature vectors of the plane
fields under consideration. This formula, in a sense, analogous to the one
obtained by Walczak in the 1990 [5].

We get reasonable applications of this formulae leading to provide ob-
structions for the existence of geometric structures - here, pairs of distri-
butions - satisfying some geometric conditions (for example: being totally
geodesic, minimal, umbilical and so on) on some special (locally symmetric,
of constant curvature, positively/negatively curved and so on) Riemann-
ian manifolds.

Let M be a Riemannian manifold, dimM ≥ 3, equipped with two
complementary distributions D1 and D2. We assume that

p+ q = n, where p = dimD1, q = dimD2 and n = dimM.

Let us take a local orthonormal frame e1, . . . , en adapted to D1 and D2,
i.e., we assume that ei is tangent to D1 for i = 1, . . . , p and eα is tangent
to D2 for α = p+ 1, . . . , n.
The second fundamental forms Bm of Dm (m = 1, 2) are defined as follows:

B1(X1, Y1) =
1

2
(∇X1Y1 +∇Y1X1)⊥, B2(X2, Y2) =

1

2
(∇X2Y2 +∇Y2X2)>
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for vector fields Xm and Ym tangent to Dm.
The integrability tensors Tm of Dm (m = 1, 2) are defined as follows:

T1(X1, Y1) =
1

2
[X1, Y1]⊥, T2(X2, Y2) =

1

2
[X2, Y2]>

for vector fields Xm and Ym tangent to Dm.
Then the mean curvature vectors Hm of Dm are given by

H1 = TraceB1 =
∑
i

B1(ei, ei) =
∑
i

(∇eiei)
⊥

H2 = TraceB2 =
∑
α

B2(eα, eα) =
∑
i

(∇eαeα)>.

Let us define the Weingarten operators by

A1 : D1 ×D2 → D1,
〈
A1(X,N), Y

〉
=
〈
B1(X, Y ), N

〉
for X, Y ∈ D1, N ∈ D2

A2 : D2 ×D1 → D2,
〈
A2(X ′, N ′), Y ′

〉
=
〈
B2(X ′, Y ′), N ′

〉
for X ′, Y ′ ∈ D2, N

′ ∈ D1.

Assume now that M has bounded geometry (i.e., bounded sectional
curvature and injectivity radii rx, x ∈ M , separated away from zero). Let
A be a finite set of singularities(points, closed curve, etc.) on M and
codimensionA = n − 2. Moreover, let f : M/A → [0,+∞) be a function
defined on M outside a finite set A.
We denote the tube T (A, r) of radius r ≥ 0 about set A by NA(r) and
δNA(r) as the tubular hypersurface at a distance r ≥ 0 from A.
We shall also need an one the well-known formula volumeδNγ(r) w L(γ) ·
volumeSn−1(r), where γ ⊂ A is closed curve, L(γ) is length of the the curve
γ and Sn−1(r) ⊂ Rn is sphere of radius r. In particular:

• in R2 we obtain volume δNγ(r) = 2r · L(γ)

• in R3 we obtain volume δNγ(r) = πr2 · L(γ)

It leads to the following and useful lemma.

Lemma 2.1.

If lim
r→0+

inf

∫
δNγ(r)

f > 0, then

∫
M

f 2 = 0.

These lemma will be used extensively and will allow us to proof the
following theorems.
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Theorem 2.2. Let M being a compact Riemannian manifold of dimension
n ≥ 3 and A a finite subset of M . If

∫
M
‖ H1 ‖< ∞ and

∫
M
‖ H2 ‖<

∞ then

(2.3)

∫
M

||B1||2+||B2||2−||H1||2−||H2||2−||T1||2−||T2||2 =

∫
M

K(D1, D2),

where K(D1, D2) is a generalization on the Ricci curvature equal to the sum∑
i,α

< R(ei, eα)eα, ei >

and called the mixed scalar curvature.

Theorem 2.4. Let M being a compact Riemannian manifold of dimension
n ≥ 3 and A a finite subset of M . If

∫
M
‖ A1 ‖<∞ and

∫
M
‖ A2 ‖<∞ then∫

M

〈
Ric(H2), H1

〉
=∫

M

〈
H1, (∇H2H1)⊥

〉
+
〈
H2, (∇H1H2)>

〉
+〈

Tr⊥
(
∇•T1

)
(•, H2), H1

〉
+
〈
Tr>

(
∇•T2

)
(•, H1), H2

〉
+〈

AH1
1 ,∇>•H2

〉
+
〈
AH2

2 ,∇⊥•H2

〉
+∑

i

〈
A1

(
H2, (∇eiH1)⊥

)
, ei
〉

+
∑
α

〈
A2

(
H1, (∇eαH2)>

)
, eα
〉
+

2
∑
i

〈(
∇T1(ei,H2)ei

)⊥
, H1

〉
+ 2

∑
α

〈(
∇T2(eα,H1)eα

)>
, H2

〉
−〈

A2(H1, H2), H1

〉
−
〈
A1(H2, H1), H2

〉
.(2.5)

Corollary 2.6. Equality (2.3) holds if and only if K(D1, D2) > 0.

Proposition 2.7. If distributions D1 and D2 are totally geodesic and D2

is the orthogonal complement of D1, then H1 = 0 and H2 = 0 and we get∫
M

K(D1, D2) =

∫
M

(
||T1||2 + ||T2||2

)
,

where Hm and Tm (m=1, 2) denote mean curvature vectors and integrability
tensors of distributions Dm, respectively.
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