Application of a new integral formula for two distributions with singularities on Riemannian manifolds

Magdalena LuŻYŃCZYK

1. The Volume of a Tube

1.1. The second fundamental forms of the tubular hypersurfaces

Definition 1.1. Let P be a topologically embedded sub-manifold (possibly with boundary) in a Riemannian manifold M, then a tube $T(P, r)$ of radius $r \geq 0$ about P is the set
(1.2) $\quad T(P, r)=\{m \in M$: there exists a geodesic ξ of length $L(\xi) \leq r$ from m meeting P orthogonally .

We shall also need a notation closely related to that of tube.
Definition 1.3. We call a hypersurface of the form

$$
P_{t}=\{m \in T(P, r): \operatorname{distance}(m, P)=t\}
$$

the tubular hypersurface at distance t from P .
For $0<t \leq r$ the tubular hypersurfaces P_{t} form a natural foliation of the tubular region $T(P, r)-P$.

1.2. The volume of a tube in terms of the infinitesimal change

 of volume functionWe assume that P is topologically embedded submanifold with compact closure of a complete Riemannian manifold M. For all $r \geq 0$ both $T(P, r)$ and P_{r} are measurable sets. Let

$$
\mathrm{V}_{P}^{M}(r)=\text { the } n \text {-dimensional volume of } T(P, r),
$$

$$
\mathrm{A}_{P}^{M}(r)=\text { the }(n-1)-\text { dimensional volume of } P_{r} .
$$

It is easy to show that $A_{P}^{M}(r)$ is the derivative of $V_{P}^{M}(r)$. We use the lemma:

Lemma 1.4. Suppose that $\exp _{\nu}:\{(p, v) \in \nu:\|v\| \leq r\} \longmapsto T(P, r)$ is a diffeomorphism. Then

$$
A_{P}^{M}(r)=r^{n-q-1} \int_{P} \int_{S^{n-q-1}(1)} \mathcal{V}_{u}(r) d u d P
$$

Lemma 1.5. Suppose that $\exp _{\nu}:\{(p, v) \in \nu:\|v\| \leq r\} \longmapsto T(P, r)$ is a diffeomorphism. Then

$$
\begin{aligned}
\frac{d}{d r} V_{P}^{M}(r) & =A_{P}^{M}(r) \\
& =r^{n-q-1} \int_{P} \int_{S^{n-q-1}(1)} \mathcal{V}_{u}(r) d u d P .
\end{aligned}
$$

Proofs of this lemmas are available at [3].

2. Riemannian manifolds with singularities

In this section we work with Riemannian geometry of manifolds equipped with a pair of orthogonal plane fields. We want to generalize it to the case of plane fields with singularities, that is defined on a compact manifold except of singular set, the union of submanifolds of lower dimension. Till now, author produced a new integral formula (see[4]) obtained from integration of the divergence of a vector field built from Newton transforms of Weingarten operators applied to the mean curvature vectors of the plane fields under consideration. This formula, in a sense, analogous to the one obtained by Walczak in the 1990 [5].

We get reasonable applications of this formulae leading to provide obstructions for the existence of geometric structures - here, pairs of distributions - satisfying some geometric conditions (for example: being totally geodesic, minimal, umbilical and so on) on some special (locally symmetric, of constant curvature, positively/negatively curved and so on) Riemannian manifolds.

Let M be a Riemannian manifold, $\operatorname{dim} M \geq 3$, equipped with two complementary distributions D_{1} and D_{2}. We assume that

$$
p+q=n, \quad \text { where } p=\operatorname{dim} D_{1}, \quad q=\operatorname{dim} D_{2} \text { and } n=\operatorname{dim} M .
$$

Let us take a local orthonormal frame e_{1}, \ldots, e_{n} adapted to D_{1} and D_{2}, i.e., we assume that e_{i} is tangent to D_{1} for $i=1, \ldots, p$ and e_{α} is tangent to D_{2} for $\alpha=p+1, \ldots, n$.
The second fundamental forms B_{m} of $D_{m}(m=1,2)$ are defined as follows:

$$
B_{1}\left(X_{1}, Y_{1}\right)=\frac{1}{2}\left(\nabla_{X_{1}} Y_{1}+\nabla_{Y_{1}} X_{1}\right)^{\perp}, \quad B_{2}\left(X_{2}, Y_{2}\right)=\frac{1}{2}\left(\nabla_{X_{2}} Y_{2}+\nabla_{Y_{2}} X_{2}\right)^{\top}
$$

for vector fields X_{m} and Y_{m} tangent to D_{m}.
The integrability tensors T_{m} of $D_{m}(m=1,2)$ are defined as follows:

$$
T_{1}\left(X_{1}, Y_{1}\right)=\frac{1}{2}\left[X_{1}, Y_{1}\right]^{\perp}, \quad T_{2}\left(X_{2}, Y_{2}\right)=\frac{1}{2}\left[X_{2}, Y_{2}\right]^{\top}
$$

for vector fields X_{m} and Y_{m} tangent to D_{m}.
Then the mean curvature vectors H_{m} of D_{m} are given by

$$
\begin{gathered}
H_{1}=\text { Trace } B_{1}=\sum_{i} B_{1}\left(e_{i}, e_{i}\right)=\sum_{i}\left(\nabla_{e_{i}} e_{i}\right)^{\perp} \\
H_{2}=\text { Trace } B_{2}=\sum_{\alpha} B_{2}\left(e_{\alpha}, e_{\alpha}\right)=\sum_{i}\left(\nabla_{e_{\alpha}} e_{\alpha}\right)^{\top} .
\end{gathered}
$$

Let us define the Weingarten operators by

$$
\begin{aligned}
A_{1}: D_{1} \times D_{2} \rightarrow D_{1}, & \left\langle A_{1}(X, N), Y\right\rangle=\left\langle B_{1}(X, Y), N\right\rangle \\
& \text { for } X, Y \in D_{1}, N \in D_{2} \\
A_{2}: D_{2} \times D_{1} \rightarrow D_{2}, \quad & \left\langle A_{2}\left(X^{\prime}, N^{\prime}\right), Y^{\prime}\right\rangle=\left\langle B_{2}\left(X^{\prime}, Y^{\prime}\right), N^{\prime}\right\rangle \\
& \text { for } X^{\prime}, Y^{\prime} \in D_{2}, N^{\prime} \in D_{1} .
\end{aligned}
$$

Assume now that M has bounded geometry (i.e., bounded sectional curvature and injectivity radii $r_{x}, x \in M$, separated away from zero). Let A be a finite set of singularities(points, closed curve, etc.) on M and codimension $A=n-2$. Moreover, let $f: M / A \rightarrow[0,+\infty)$ be a function defined on M outside a finite set A.
We denote the tube $T(A, r)$ of radius $r \geq 0$ about set A by $N_{A}(r)$ and $\delta N_{A}(r)$ as the tubular hypersurface at a distance $r \geq 0$ from A.
We shall also need an one the well-known formula volume $\delta N_{\gamma}(r) \simeq L(\gamma)$. volume $S^{n-1}(r)$, where $\gamma \subset A$ is closed curve, $L(\gamma)$ is length of the the curve γ and $S^{n-1}(r) \subset R^{n}$ is sphere of radius r. In particular:

- in \mathbf{R}^{2} we obtain volume $\delta N_{\gamma}(r)=2 r \cdot L(\gamma)$
- in \mathbf{R}^{3} we obtain volume $\delta N_{\gamma}(r)=\pi r^{2} \cdot L(\gamma)$

It leads to the following and useful lemma.

Lemma 2.1.

$$
\text { If } \lim _{r \rightarrow 0^{+}} \inf \int_{\delta N_{\gamma}(r)} f>0, \text { then } \int_{M} f^{2}=0 .
$$

These lemma will be used extensively and will allow us to proof the following theorems.

Theorem 2.2. Let M being a compact Riemannian manifold of dimension $n \geq 3$ and A a finite subset of M. If $\int_{M}\left\|H_{1}\right\|<\infty$ and $\int_{M}\left\|H_{2}\right\|<$ ∞ then

$$
\begin{equation*}
\int_{M}\left\|B_{1}\right\|^{2}+\left\|B_{2}\right\|^{2}-\left\|H_{1}\right\|^{2}-\left\|H_{2}\right\|^{2}-\left\|T_{1}\right\|^{2}-\left\|T_{2}\right\|^{2}=\int_{M} K\left(D_{1}, D_{2}\right) \tag{2.3}
\end{equation*}
$$

where $K\left(D_{1}, D_{2}\right)$ is a generalization on the Ricci curvature equal to the sum

$$
\sum_{i, \alpha}<R\left(e_{i}, e_{\alpha}\right) e_{\alpha}, e_{i}>
$$

and called the mixed scalar curvature.
Theorem 2.4. Let M being a compact Riemannian manifold of dimension $n \geq 3$ and A a finite subset of M. If $\int_{M}\left\|A_{1}\right\|<\infty$ and $\int_{M}\left\|A_{2}\right\|<\infty$ then

$$
\begin{align*}
& \int_{M}\left\langle\operatorname{Ric}\left(H_{2}\right), H_{1}\right\rangle= \\
& \int_{M}\left\langle H_{1},\left(\nabla_{H_{2}} H_{1}\right)^{\perp}\right\rangle+\left\langle H_{2},\left(\nabla_{H_{1}} H_{2}\right)^{\top}\right\rangle+ \\
& \left\langle\operatorname{Tr}^{\perp}\left(\nabla \cdot T_{1}\right)\left(\bullet, H_{2}\right), H_{1}\right\rangle+\left\langle\operatorname{Tr}^{\top}\left(\nabla \cdot T_{2}\right)\left(\bullet, H_{1}\right), H_{2}\right\rangle+ \\
& \left\langle A_{1}^{H_{1}}, \nabla_{\bullet}^{\top} H_{2}\right\rangle+\left\langle A_{2}^{H_{2}}, \nabla_{\bullet}^{\perp} H_{2}\right\rangle+ \\
& \sum_{i}\left\langle A_{1}\left(H_{2},\left(\nabla_{e_{i}} H_{1}\right)^{\perp}\right), e_{i}\right\rangle+\sum_{\alpha}\left\langle A_{2}\left(H_{1},\left(\nabla_{e_{\alpha}} H_{2}\right)^{\top}\right), e_{\alpha}\right\rangle+ \\
& 2 \sum_{i}\left\langle\left(\nabla_{T_{1}\left(e_{i}, H_{2}\right)} e_{i}\right)^{\perp}, H_{1}\right\rangle+2 \sum_{\alpha}\left\langle\left(\nabla_{T_{2}\left(e_{\alpha}, H_{1}\right)} e_{\alpha}\right)^{\top}, H_{2}\right\rangle- \\
& \left\langle A_{2}\left(H_{1}, H_{2}\right), H_{1}\right\rangle-\left\langle A_{1}\left(H_{2}, H_{1}\right), H_{2}\right\rangle . \tag{2.5}
\end{align*}
$$

Corollary 2.6. Equality (2.3) holds if and only if $K\left(D_{1}, D_{2}\right)>0$.
Proposition 2.7. If distributions D_{1} and D_{2} are totally geodesic and D_{2} is the orthogonal complement of D_{1}, then $H_{1}=0$ and $H_{2}=0$ and we get

$$
\int_{M} K\left(D_{1}, D_{2}\right)=\int_{M}\left(\left\|T_{1}\right\|^{2}+\left\|T_{2}\right\|^{2}\right)
$$

where H_{m} and $T_{m}(m=1,2)$ denote mean curvature vectors and integrability tensors of distributions D_{m}, respectively.

References

[1] F.G.B. Brito, P.G. Walczak On the energy of unit vector fields with isolated singularities, Annales Polonici Mathematici Vol. 73 (2000), 269-273
[2] W. Fenchel Über die Krümmung und Windung geschlossen Raumkurven, Math. Ann. 101 (1929), 238-252
[3] A. Gray Tubes, Advanced Book Program, 44-46
[4] M. Lużyńczyk New integral formulae for two complementary orthogonal distributions on Riemannian manifolds, Preprint Faculty of Mathematics and Computer Science University of Lodz (2012)
[5] P.G. Walczak, An integral formula for Riemannian manifold with two orthogonal complementary distributions, Coll. Math. Vol. LVIII (1990), 243-252.

Wydział Matematyki i Informatyki Uniwersytet Łódzki
Łódź, Poland
E-mail: luzynczyk@math.uni.lodz.pl

