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1. Introduction

The following two recent results suggest that the topology of codimension
one foliations of high dimensional manifolds has two opposite possibilities.
Namely, the absence/presence of leafwise symplectic structures could make
it dissimilar/similar to the 3-dimensional topology of foliations.

Theorem 1.1 (Meigniez [3]). Let F be a transversely oriented codimen-
sion one foliation of a closed (n+ 3)-manifold Mn+3 which is just smooth.
Then we can deform F to a minimal (all leaves dense) foliation F ′ such that
TF ′ is homotopic to TF as a tangent hyperplane field on Mn+3 (n > 0).

Theorem 1.2 (Mart́ınez Torres [2]). Let F be an oriented codimension one
foliation of an oriented closed (2n+3)-manifold M2n+3. Suppose that there
exists a closed 2-form ω on M with ωn+1|TF > 0. Then Donaldson-Auroux
approximately holomorphic geometry provides a codimension 2n submani-
fold N3 such that G = F|N3 is a taut foliation and N3 meets each leaf of
F at a single leaf of G (i.e.,M2n+3/F = N3/G).

Mitsumatsu found another kind of leafwise symplectic foliation which has
the same leaf space as a non-taut foliation of a 3-manifold.

Theorem 1.3 (Mitsumatsu [4]). The Lawson foliation of S5, which is a
leafwise fattening of the Reeb foliation of S3, admits a leafwise symplectic
structure. (It is the restriction of a non-closed 2-form on S5).

The Eliashberg-Thurston 3-dimensional confoliation theory discretized the
vast whole of foliations into contact structures. In [6], the author defined
higher dimensional confoliations by means of almost contact geometry:

Definition 1.4. Let ([α], [ω]) be the pair of conformal classes of a 1-form
α and a 2-form ω on a closed oriented (2n+ 1)-manifold M2n+1.

1. We say that ([α], [ω]) (or [α] itself) is an almost contact structure if
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it satisfies [α] ∧ [ω]n > 0 (for some [ω]).

2. We say that an almost contact structure is a contact structure (resp.
a foliation) if kerα is contact (resp. tangent to a foliation).

3. We say that an almost contact structure is a confoliation if it satisfies
[α ∧ dαn] ≥ 0. If moreover it belongs to the closure of the space of
contact structures or to the space of foliations (in the space of pairs
([α], [ω]) with smooth topology), it is called a strict confoliation.

Though we omit the precise construction in this abstract, we fix a situation
where we can obtain a family of higher dimensional strict confoliations
which goes to a leafwise symplectic foliation (§2).

Outside the Donaldson-Auroux approximately holomorphic geometry,
convex hypersurface theory due to Giroux is the most powerful tool in con-
tact topology. In 3-manifold case, it can be considered as a contact version
of sutured manifold theory due to Gabai (Honda-Kazez-Matić [1]). Further
Honda’s category theory regards a contact structure between convex sur-
faces as a morphism. This author is now trying to generalize this theory
in order to understand the (perhaps proper and natural) affinity between
high dimensional contact topology and 3-dimensional one (§3).

2. Confoliations

We start with the Thurston-Winkelnkemper-Giroux construction of contact
structure on a closed (2n + 1)-manifold M2n+1 equipped with a pagewise
exact symplectic open-book structure O. One may say that this construc-
tion is an extension (or a fattening) of a contact structure kerµ on the
binding B of O under the presence of exact symplectic filling pages. In [5],
the author pointed out that we can further construct a family of contact
structures convergent to a foliation F in the case where the Reeb field of
µ is tangent to a Riemannian foliation G of B defined by a closed 1-form ν
(n > 1). The foliation F consists of a closed leaf L = B × S1, page leaves
coiling into L, and a trivial extension of G also coiling into L. (One might
remember the Calabi conjecture theorem of Friedl-Vidussi.)

Theorem 2.1 ([6]). Assume that the Reeb field of µ is tangent to ker ν.
Suppose moreover that there exists a closed 2-form Ω on B such that

1. ν ∧ (dµ+ εΩ)n > 0 holds for small ε > 0, and

2. Ω extends to a closed 2-form on the page.

Then we can construct a family of pairs (αt, ωt) on M2n+1 such that

1. αt ∧ (dαt)
n > 0 for 0 ≤ t < 1,

2. ω0 = dα0, kerα1 = TF ,
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3. αt ∧ ωnt > 0 for 0 ≤ t ≤ 1 , and

4. ω1|F is leafwise symplectic.

Example 2.2. The Milnor fibration of x3 + y3 + z3 = 0 on C3 naturally
defines a pagewise exact symplectic open-book on (small) S5. In this case
Mitsumatsu [4] found the above 2-form Ω. Then the strict confoliations
([αt], [ωt]) starts with the standard contact structure on S5 and goes to the
Lawson foliation with leafwise symplectic structure.

3. Convex hypersurfaces

Let Σ be a compact oriented hypersurface in a contact manifold. Suppose
that, for a suitable representative α ∈ [α], the sign of dαn|TΣ defines a
dividing Σ \ Γ = Σ+ ∪ (−Σ−) along a submanifold Γ ⊂ Σ into strongly
pseudo-convex domains Σ±. Then Σ is called a convex hypersurface. (One
may generalize this notion in various ways, e.g., for leafwise symplectic
foliations, one may consider a union of pseudo-convex domains on leaves
connected with cylindrical “sutures” transverse to the foliation.)

In [5], the author generalized the Lutz modification of 3-dimensional
contact structure by using convex hypersurface theory. In general, this
modification changes the contact structure drastically (indeed makes it
non-fillable) and produces a convex hypersurface which contains a strongly
pseudo-convex domain with disconnected boundary. We call such a domain
on a convex hypersurface a Calabi hypersurface.

Question 3.1. Is there any Calabi hypersurface in S2n+3 ⊂ Cn+2 ?

We consider a certain generalization of the convex version of Thurston-
Bennequin inequality in higher dimension since the natural generalization
of the usual inequality does not hold even locally. On the other hand, if
a convex hypersurface violates the inequality, it contains a Calabi hyper-
surface. Here we notice that, while a surfaces in contact 3-manifolds are
smoothly approximated by convex ones, that is not the case with hyper-
surfaces in higher dimension. Anyway the generalized Lutz modification
produces a convex hypersurface which violates the inequality.

The existence problem of convex hypersurfaces is also interesting. First
we see that the boundary of the standard neighbourhood of a Legendrian
submanifold is naturally convex. Such a convex hypersurface is said to be
tubular. On the other hand, the Donaldson-Auroux approximately holo-
morphic geometry is the main source of non-tubular convex hypersurfaces.
For example it provides a pagewise exact symplectic open-book described
in §2, and a pair of pages forms a convex hypersurface. (Of course, it
is tubular if the page is a cotangent bundle.) Then Theorem 1.2 suggests
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that a convex hypersurface theory could embody some affinity between high
dimensional contact topology and 3-dimensional one.

Further as is described in §1, convex surfaces are objects in Honda’s
category theory. In [7], the author is trying to generalize this theory to
higher dimension. His aim is to show that some quotient of higher dimen-
sional contact category becomes equivalent to Honda’s category.

In summary,

Question 3.2. Can we “split” the 2n+ 3-dimensional topology of almost
contact confoliation into 2n + 2-dimensional (not 2n-dimensional !) sym-
plectic geometry and 3-dimensional confoliation theory ?
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