Geometry and Foliations 2013 Komaba, Tokyo, Japan

The mixed scalar curvature flow and harmonic foliations

VLADIMIR ROVENSKI

A flow of metrics, g_t , on a manifold is a solution of evolution equation $\partial_t g = S(g)$, where S(g) is a symmetric (0, 2)-tensor usually related to some kind of curvature. The mixed sectional curvature of a foliated manifold (M, \mathcal{F}) regulates the deviation of leaves along the leaf geodesics. (In the language of mechanics it measures the rate of relative acceleration of two particles moving forward on neighboring geodesics). Let $\{\varepsilon_{\alpha}, e_i\}_{\alpha \leq p, i \leq n}$ be a local orthonormal frame on TM adapted to $T\mathcal{F}$ and the orthogonal distribution $\mathcal{D} := T\mathcal{F}^{\perp}$.

The mixed scalar curvature is defined by $\operatorname{Sc}_{\operatorname{mix}} = \sum_{i=1}^{n} \sum_{\alpha=1}^{p} R(\varepsilon_{\alpha}, e_{i}, \varepsilon_{\alpha}, e_{i})$, where R is the Riemannain curvature. For a codimension-one foliation with a unit normal N, we have $\operatorname{Sc}_{\operatorname{mix}} = \operatorname{Ric}(N, N)$. For a surface (M^{2}, g) , i.e., n = p = 1, we obtain $\operatorname{Sc}_{\operatorname{mix}} = K$ – the gaussian curvature.

We study the flow of metrics on a foliation, whose velocity along \mathcal{D} is proportional to Sc_{mix} :

(1)
$$\partial_t g = -2(\operatorname{Sc}_{\operatorname{mix}}(g) - \Phi)\hat{g}.$$

Here $\Phi: M \to \mathbb{R}$ is leaf-wise constant. The \mathcal{D} -truncated metric tensor \hat{g} is given by $\hat{g}(X_1, X_2) = g(X_1, X_2)$ and $\hat{g}(Y, \cdot) = 0$ for $X_i \in \mathcal{D}, Y \in T\mathcal{F}$. We show relations of (1) with Burgers equation (the prototype for non-linear advection-diffusion processes in gas and fluid dynamics) and Schrödinger heat equation (which is central to all of quantum mechanics).

Let $h_{\mathcal{F}}$, h be the second fundamental forms and $H_{\mathcal{F}}$, H the mean curvature vectors of $T\mathcal{F}$ and the distribution \mathcal{D} , respectively. Also denote T the integrability tensor of \mathcal{D} . Then, see [2],

(2) Sc_{mix}(g) = div(H + H_F) +
$$||H||^2 + ||T||^2 - ||h||^2 + ||H_F||^2 - ||h_F||^2$$
.

The flow (1) preserves total geodesy (i.e. $h_{\mathcal{F}} = 0$) and harmonicity (i.e. $H_{\mathcal{F}} = 0$) of foliations and is used to examine the question [1]: Which foliations admit a metric with a given property of Sc_{mix} (e.g., positive or negative)? Suppose that the leaves of \mathcal{F} are compact minimal submanifolds. We observe that (1) yields the leaf-wise evolution equation for the vector field H:

(3)
$$\partial_t H + \nabla^{\mathcal{F}} g(H, H) = n \nabla^{\mathcal{F}} (\operatorname{Div}_{\mathcal{F}} H) + n \nabla^{\mathcal{F}} (\|T\|_g^2 - \|h_{\mathcal{F}}\|_g^2 - n\beta_{\mathcal{D}}).$$

^{© 2013} Vladimir Rovenski

The function $\beta_{\mathcal{D}} := n^{-2} (n \|h\|^2 - \|H\|^2) \ge 0$ is time-independent, it serves as a measure of "non-umbilicity" of \mathcal{D} , since $\beta_{\mathcal{D}} = 0$ for totally umbilical \mathcal{D} . For dim $\mathcal{F} = 1$ we have $\beta_{\mathcal{D}} = n^{-2} \sum_{i < j} (k_i - k_j)^2$, where k_i are the principal curvatures of \mathcal{D} .

Suppose that $H_0 = -n\nabla^{\mathcal{F}}(\log u_0)$ (leaf-wise conservative) for a function $u_0 > 0$.

If $||T||_{g_0} > ||h_{\mathcal{F}}||_{g_0}$ then its potential obeys the leaf-wise non-linear Schrödinger heat equation

(4)
$$(1/n)\partial_t u = \Delta_{\mathcal{F}} u + (\beta_{\mathcal{D}} + \Phi/n)u - (\Psi/n)u^{-3}, \quad u(\cdot, 0) = u_0,$$

where $\Psi := u_0^4 (\|T\|_{g_0}^2 - \|h_{\mathcal{F}}\|_{g_0}^2)$, moreover, the solution obeys $u = \Psi^{1/4} (\|T\|_{g_t}^2 - \|h_{\mathcal{F}}\|_{g_t}^2)^{-1/4}$.

If $\Psi \equiv 0$ (e.g., $T(g_0) = 0$ and $h_{\mathcal{F}}(g_0) = 0$) then (3) reduces to a forced Burgers equation

(5)
$$\partial_t H + \nabla^{\mathcal{F}} g(H, H) = n \nabla^{\mathcal{F}} (\operatorname{Div}_{\mathcal{F}} H) - n^2 \nabla^{\mathcal{F}} \beta_{\mathcal{D}},$$

moreover, the leaf-wise potential function for H may be chosen as a solution of the linear PDE $(1/n)\partial_t u = \Delta_{\mathcal{F}} u + \beta_{\mathcal{D}} u$, $u(\cdot, 0) = u_0$. The first eigenvalue $\lambda_0 \leq 0$ of Schrödinger operator $\mathcal{H}(u) = -\Delta_{\mathcal{F}} u - \beta_{\mathcal{D}} u$ corresponds to the unit L_2 -norm eigenfunction $e_0 > 0$ (called the ground state). Under certain conditions (on any leaf F) (6)

$$\Phi > -n\beta_{\mathcal{D}}, \quad |n\lambda_0 + \Phi| \ge \max_F (||T||_{g_0}^2 - ||h_{\mathcal{F}}||_{g_0}^2) \left(\max_F (u_0/e_0) / \min_F (u_0/e_0) \right)^4$$

the asymptotic behavior of solutions to (4) is the same as for the linear equation, when (5) has a single-point global attractor: $H_t \to -n\nabla^{\mathcal{F}}(\log e_0)$ as $t \to \infty$. Using the scalar maximum principle, we show that there exists a positive solution \tilde{u} of the linear PDE $(1/n)\partial_t \tilde{u} = \Delta_{\mathcal{F}} \tilde{u} + (\beta_{\mathcal{D}} + \lambda_0)\tilde{u}$ such that for any $\alpha \in (0, \min\{\lambda_1 - \lambda_0, 4|\lambda_0|\})$ and $k \in \mathbb{N}$ the following hold:

- (i) $u = e^{-\lambda_0 t} (\tilde{u} + \theta(x, t))$, where $\|\theta(\cdot, t)\|_{C^k} = O(e^{-\alpha t})$ as $t \to \infty$;
- (ii) $\nabla^{\mathcal{F}}(\log u) = \nabla^{\mathcal{F}}(\log e_0) + \theta_1(x,t)$, where $\|\theta_1(\cdot,t)\|_{C^k} = O(e^{-\alpha t})$ as $t \to \infty$.

In this case, (1) has a unique global solution g_t ($t \ge 0$), whose Sc_{mix} converges exponentially to $n\lambda_0 \le 0$. The metrics are smooth on M when all leaves are compact and have finite holonomy group. After rescaling of metrics on \mathcal{D} , we also obtain convergence to a metric with $Sc_{mix} > 0$.

Proposition 1. Let (M, g) be endowed with a harmonic compact foliation \mathcal{F} . Suppose that $\|h_{\mathcal{F}}\|_g < \|T\|_g$ and $H = -n\nabla^{\mathcal{F}}(\log u_0)$ for a function $u_0 > 0$.

(i) If $\lambda_0 < 0$ then there exists \mathcal{D} -conformal to g metric \bar{g} with $\operatorname{Sc}_{\min}(\bar{g}) < 0$.

(ii) If $\lambda_0 > -\frac{1}{n} (\frac{u_0}{\tilde{u}_0 e_0})^4 (||T||_g^2 - ||h_{\mathcal{F}}||_g^2)$ then there is \mathcal{D} -conformal to g metric \bar{g} with $\operatorname{Sc}_{\min}(\bar{g}) > 0$.

For surfaces of revolution M_t : $[\rho(x,t)\cos\theta, \rho(x,t)\sin\theta, h(x)]$ $(0 \le x \le l, |\theta| \le \pi)$ with $(\rho_{,x})^2 + (h_{,x})^2 = 1$, (1) reads as $\partial_t g = -2(K(g) - \Phi)\hat{g}$. This yields the PDE $\partial_t \rho = \rho_{,xx} + \Phi \rho$. For $\Phi = \text{const}$ and appropriate initial and end conditions for ρ , we have the following. If $\Phi < (\pi/l)^2$ then M_t converge to a surface with $K = \Phi$, and if $\Phi = (\pi/l)^2$ then $\lim_{t \to \infty} \rho(x,t) = A\sin(\pi x/l)$, and M_t converge to a surface with $K = \Phi$ (a sphere of radius l/π when $A = l/\pi$).

References

- V. Rovenski and L. Zelenko: The mixed scalar curvature flow and harmonic foliations, ArXiv:1303.0548, preprint, 20 pp. 2013.
- [2] P. Walczak: An integral formula for a Riemannian manifold with two orthogonal complementary distributions. Colloq. Math. 58 (1990), 243–252.

Mathematical Department University of Haifa E-mail: rovenski@math.haifa.ac.il