Geometry and Foliations 2013 =
Komaba, Tokyo, Japan @%\/)

Generalizations of a theorem of Herman and
a new proof of the simplicity of Diff>°(M ),

Tomasz RYBICKI

Let M be a smooth manifold of dimension n. By Diff>°(M) we will
denote the group of compactly supported diffeomorphisms of M. We shall
consider a Lie group structure on Diff>°(M) in the sense of the convenient
setting of Kriegl and Michor [10]. In particular, we assume that Diff>° (M)
is endowed with the ¢>*-topology [10, Section 4], i.e. the final topology with
respect to all smooth curves. For compact M the ¢>-topology on Diff>* (M)
coincides with the Whitney C*°-topology, cf. [10, Theorem 4.11(1)]. In
general the ¢®-topology on Diffo°(M) is strictly finer than the one induced
from the Whitney C*°-topology, cf. [10, Section 4.26]. The latter coincides
with the inductive limit topology lim Diff ¥ (M) where K runs through all
compact subsets of M.

Given smooth complete vector fields X1, ..., X on M, we consider the
map

(1) K: Diff*(M)N — Diff* (M),
K(g1,---,9n) = [g1,exp(Xy)] o - o [gn, exp(Xn)].

Here exp(X) denotes the flow of a complete vector field X at time 1, and
[k,h] ;= kohok ™ oh ! denotes the commutator of two diffeomorphisms
k and h. It is readily checked that K is smooth. Indeed, one only has to
observe that K maps smooth curves to smooth curves, cf. [10, Section 27.2].
Clearly K(id,...,id) = id.

A smooth local right inverse at the identity for K consists of an open
neighborhood U of the identity in Diff>° (M) together with a smooth map

o= (01,...,0n): U — Diff>(M)N

so that o(id) = (id,...,id) and K o o0 = idy. More explicitly, we require
that each o;: U — Diffo°(M) is smooth with o;(id) = id and, for all g € U,

g =lo1(g9),exp(X1)] o+ 0 [on(g), exp(Xn)].

The aim of this talk is to present the following two results which gen-
eralize a well-known theorem of Herman for M being the torus [8, 9].
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Theorem 1. Suppose M is a smooth manifold of dimension n > 2. Then
there exist four smooth complete vector fields X1, ..., X4 on M so that the
map K, see (1), admits a smooth local right inverse at the identity, N = 4.
Moreover, the vector fields X; may be chosen arbitrarily close to zero with
respect to the strong Whitney C°-topology. If M admits a proper (circle
valued) Morse function whose critical points all have indezx 0 or n, then the
same statement remains true with three vector fields.

Particularly, on the manifolds M = R", S™,T", n > 2, or the total
space of a compact smooth fiber bundle M — S!, three commutators are
sufficient. At the expense of more commutators, it is possible to gain further
control on the vector fields. More precisely, we have:

Theorem 2. Suppose M is a smooth manifold of dimension n > 2 and set
N :=6(n+1). Then there exist smooth complete vector fields X1,..., Xy
on M so that the map K, see (1), admits a smooth local right inverse at
the identity. Moreover, the vector fields X; may be chosen arbitrarily close
to zero with respect to the strong Whitney C*-topology.

Either of the two theorems implies that Diff>°(M),, the connected com-
ponent of the identity, is a perfect group, provided M is not R. Our proof
rests on Herman’s result similarly as that of [17] (see [2]), but is otherwise
elementary and different from Thurston’s approach. In fact we only need
Herman’s result in dimension 1.

The perfectness of Diffo°(M ), was already proved by Epstein [5] using
ideas of Mather [11, 12] who dealt with the C"-case, 1 < r < oo, r #
n+ 1. The Epstein—-Mather proof is based on a sophisticated construction,
and uses the Schauder-Tychonov fixed point theorem. The existence of a
presentation

g = [hlykl] O---0 [hN,k'N]

is guarantied, but without any further control on the factors h; and k;.
Theorem 1 or 2 actually implies that the universal covering of Diff>° (M),
is a perfect group. This result is known, too, see [17]. Thurston’s proof is
based on a result of Herman for the torus [8, 9]. Note that the perfectness of
Diff>°(M), implies that this group is simple, see Epstein [4]. The methods
used in [4] are elementary and actually work for a rather large class of
homeomorphism groups.

One could believe that the phenomenon of smooth perfectness de-
scribed in Theorems 1 and 2 would be also true for some classical diffeo-
morphism groups which are simple, e.g. for the Hamiltonian diffeomorphism
group of a closed symplectic manifold [1], or for the contactomorphism
group of an arbitrary co-oriented contact manifold [15]. However, the avail-
able methods seem to be useless for possible proofs of their smooth per-
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fectness. Another open problem related to the above theorems is whether
a smooth global right inverse at the identity for K would exist. A possible
answer in the affirmative seems to be equally difficult. Consequently, it
would be difficult to improve Theorems 1 and 2 as they are in any possible
direction.

Another essential and important way to generalize the simplicity the-
orems for Diff2°(M),, where 1 < r < oo, r # n + 1, is to consider the
uniform perfectness or, more generally, the boundedness of the groups in
question. In particular, we ask if the presentation g = [hy, k1]o---o[hn, kn]
is available for all g € Diff>°(M), with N bounded. This property has been
proved in the recent papers by Burago, Ivanov and Polterovich [3], and
Tsuboi [18], [19], [20], for a large class of manifolds. For instance, N = 10
was obtained in [3] for any closed three dimensional manifold, and then it
was improved in [18] to N = 6 for any closed odd dimensional manifold. It
seems that the methods of [3], [18], [19] and [20] combined with our The-
orem 2 would give some analogue of Theorem 1, but certainly not with the
presentation (1) and the condition on X;. Also N could not be smaller in
this way. Another advantage of Theorem 1 is that it is valid for all smooth
paracompact manifolds. See also [16] for diffeomorphism groups with no
restriction of support.

Let T™ := R™/Z" denote the torus. For A € T™ we let R, € Dift>(T™")
denote the corresponding rotation. The main ingredient in the proof of
Theorems 1 and 2 is the following result of Herman [9, 8].

Theorem 3 (Herman). There exist v € T™ so that the smooth map
T" x Diff*(T") — Dift>(1™), (A, g) = Ryolg, R,

admits a smooth local right inverse at the identity. Moreover, v may be
chosen arbitrarily close to the identity in T".

Herman’s result is an application of the Nash—Moser inverse function
theorem. When inverting the derivative one is quickly led to solve the
linear equation ¥ = X — (R,)*X for given Y € C>(T",R"). This is
accomplished using Fourier transformation. Here one has to choose ~ suf-
ficiently irrational so that tame estimates on the Sobolev norms of X in
terms of the Sobolev norms of Y can be obtained. The corresponding small
denominator problem can be solved due to a number theoretic result of
Khintchine.

We shall make use of the following corollary of Herman’s result.

Proposition 1. There exist smooth vector fields X1, Xo, X3 onT™ so that
the smooth map Diff>*(T™)3 — Diff > (T"),

(91, 92, 93) = [g1, exp(X1)] 0 [g2, exp(X2)] o [g3, exp(X3)],
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admits a smooth local right inverse at the identity. Moreover, the vector
fields X; may be chosen arbitrarily close to zero with respect to the Whitney
C*>-topology.

The following lemma leads to a decomposition of a diffeomorphism
into factors which are leaf preserving. If F is a smooth foliation of M we
let Diff>°(M; F) denote the group of compactly supported diffeomorphisms
preserving the leaves of F. This is a regular Lie group modelled on the con-
venient vector space of compactly supported smooth vector fields tangential
to F.

Lemma 1. Suppose My and My are two finite dimensional smooth mani-
folds and set M = M; x My. Let F; and F5 denote the foliations with
leaves My x {pt} and {pt} x My on M, respectively. Then the smooth map

F: Diff>°(M; Fy) x Diff2°(M; F2) — Diff>° (M), F(g1,g2) := g1 © g2,

18 a local diffeomorphism at the identity.
Now we need a version of the exponential law.

Lemma 2. Suppose B and T are finite dimensional smooth manifolds,
assume T" compact, and let F denote the foliation with leaves {pt} x T on
B x T. Then the canonical bijection

C>(B, Diff*(T)) = Diff*(B x T} F)

1s an isomorphism of reqular Lie groups.

Another ingredient of the proof is a smooth fragmentation of diffeo-
morphisms.

Suppose U C M is an open subset. Every compactly supported diffeo-
morphism of U can be regarded as a compactly supported diffeomorphism
of M by extending it identically outside U. The resulting injective ho-
momorphism Diff>°(U) — Diff2°(M) is clearly smooth. Note, however,
that a curve in Diff2°(U), which is smooth when considered as a curve in
Diffo°(M), need not be smooth as a curve into Diff2°(U). Nevertheless, if
there exists a closed subset A of M with A C U and if the curve has sup-
port contained in A, then one can conclude that the curve is also smooth
in Diff2°(U).

Proposition 2 (Fragmentation). Let M be a smooth manifold of dimen-
sion n, and suppose Uy, ..., Uy is an open covering of M, ie. M = Uy U
-+ U Ug. Then the smooth map

P: Dift°(Uy) x - - - x Dift°(Uy,) — Diff* (M),  P(g1,-..,9k) := g10- - -0gs,
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admits a smooth local right inverse at the identity.

Proceeding as in [3] permits to reduce the number of commutators
considerably, see also [18] and [19].

Proposition 3. Let M be a smooth manifold of dimension n > 2 and
put N = 6(n + 1). Moreover, let U an open subset of M and suppose
¢ € Diff**(M), not necessarily with compact support, such that the closures

of the subsets
U, ¢(U), 6*(U), ..., ¢"(U)

are mutually disjoint. Then there exists a smooth complete vector field X
on M, a c¢>-open neighborhood U of the identity in Diff>°(U), and smooth
maps 01, 02: U — DIff>° (M) so that p1(id) = p2(id) = id and, for allg € U,

g =lo1(g), ¢ o [02(9), exp(X)].

Moreover, the vector field X may be chosen arbitrarily close to zero in the
strong Whitney C*°-topology on M.

Now, by applying the Morse theory ([13], [14]) we get

Lemma 3. Let M be a smooth manifold of dimension n. Then there exists
an open covering M = Uy U Uy U Uz and smooth complete vector fields
X1, X9, X35 on M so that exp(X1)(Uy) C Us, exp(X2)(Us) C Us, and such
that the closures of the sets

U3, eXp(Xg)(Ug), eXp(Xg)Q(Ug),

are mutually disjoint. Moreover, the vector fields X1, Xo, X3 may be chosen
arbitrarily close to zero with respect to the strong Whitney C°-topology. If
M admits a proper (circle valued) Morse function whose critical points all
have index 0 or n, then we may, moreover, choose Uy = () and X; = 0.

Theorem 1 is then a consequence of Lemma 3.
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