
Geometry and Foliations 2013
Komaba, Tokyo, Japan

Generalizations of a theorem of Herman and
a new proof of the simplicity of Diff∞c (M)0

Tomasz RYBICKI

Let M be a smooth manifold of dimension n. By Diff∞c (M) we will
denote the group of compactly supported diffeomorphisms of M . We shall
consider a Lie group structure on Diff∞c (M) in the sense of the convenient
setting of Kriegl and Michor [10]. In particular, we assume that Diff∞c (M)
is endowed with the c∞-topology [10, Section 4], i.e. the final topology with
respect to all smooth curves. For compact M the c∞-topology on Diff∞(M)
coincides with the Whitney C∞-topology, cf. [10, Theorem 4.11(1)]. In
general the c∞-topology on Diff∞c (M) is strictly finer than the one induced
from the Whitney C∞-topology, cf. [10, Section 4.26]. The latter coincides
with the inductive limit topology limK Diff∞K (M) where K runs through all
compact subsets of M .

Given smooth complete vector fields X1, . . . , XN on M , we consider the
map

K : Diff∞c (M)N → Diff∞c (M),(1)

K(g1, . . . , gN) := [g1, exp(X1)] ◦ · · · ◦ [gN , exp(XN)].

Here exp(X) denotes the flow of a complete vector field X at time 1, and
[k, h] := k ◦ h ◦ k−1 ◦ h−1 denotes the commutator of two diffeomorphisms
k and h. It is readily checked that K is smooth. Indeed, one only has to
observe that K maps smooth curves to smooth curves, cf. [10, Section 27.2].
Clearly K(id, . . . , id) = id.

A smooth local right inverse at the identity for K consists of an open
neighborhood U of the identity in Diff∞c (M) together with a smooth map

σ = (σ1, . . . , σN) : U → Diff∞c (M)N

so that σ(id) = (id, . . . , id) and K ◦ σ = idU . More explicitly, we require
that each σi : U → Diff∞c (M) is smooth with σi(id) = id and, for all g ∈ U ,

g = [σ1(g), exp(X1)] ◦ · · · ◦ [σN(g), exp(XN)].

The aim of this talk is to present the following two results which gen-
eralize a well-known theorem of Herman for M being the torus [8, 9].
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Theorem 1. Suppose M is a smooth manifold of dimension n ≥ 2. Then
there exist four smooth complete vector fields X1, . . . , X4 on M so that the
map K, see (1), admits a smooth local right inverse at the identity, N = 4.
Moreover, the vector fields Xi may be chosen arbitrarily close to zero with
respect to the strong Whitney C0-topology. If M admits a proper (circle
valued) Morse function whose critical points all have index 0 or n, then the
same statement remains true with three vector fields.

Particularly, on the manifolds M = Rn, Sn, T n, n ≥ 2, or the total
space of a compact smooth fiber bundle M → S1, three commutators are
sufficient. At the expense of more commutators, it is possible to gain further
control on the vector fields. More precisely, we have:

Theorem 2. Suppose M is a smooth manifold of dimension n ≥ 2 and set
N := 6(n + 1). Then there exist smooth complete vector fields X1, . . . , XN

on M so that the map K, see (1), admits a smooth local right inverse at
the identity. Moreover, the vector fields Xi may be chosen arbitrarily close
to zero with respect to the strong Whitney C∞-topology.

Either of the two theorems implies that Diff∞c (M)o, the connected com-
ponent of the identity, is a perfect group, provided M is not R. Our proof
rests on Herman’s result similarly as that of [17] (see [2]), but is otherwise
elementary and different from Thurston’s approach. In fact we only need
Herman’s result in dimension 1.

The perfectness of Diff∞c (M)0 was already proved by Epstein [5] using
ideas of Mather [11, 12] who dealt with the Cr-case, 1 ≤ r < ∞, r 6=
n+ 1. The Epstein–Mather proof is based on a sophisticated construction,
and uses the Schauder–Tychonov fixed point theorem. The existence of a
presentation

g = [h1, k1] ◦ · · · ◦ [hN , kN ]

is guarantied, but without any further control on the factors hi and ki.
Theorem 1 or 2 actually implies that the universal covering of Diff∞c (M)o
is a perfect group. This result is known, too, see [17]. Thurston’s proof is
based on a result of Herman for the torus [8, 9]. Note that the perfectness of
Diff∞c (M)o implies that this group is simple, see Epstein [4]. The methods
used in [4] are elementary and actually work for a rather large class of
homeomorphism groups.

One could believe that the phenomenon of smooth perfectness de-
scribed in Theorems 1 and 2 would be also true for some classical diffeo-
morphism groups which are simple, e.g. for the Hamiltonian diffeomorphism
group of a closed symplectic manifold [1], or for the contactomorphism
group of an arbitrary co-oriented contact manifold [15]. However, the avail-
able methods seem to be useless for possible proofs of their smooth per-



311

fectness. Another open problem related to the above theorems is whether
a smooth global right inverse at the identity for K would exist. A possible
answer in the affirmative seems to be equally difficult. Consequently, it
would be difficult to improve Theorems 1 and 2 as they are in any possible
direction.

Another essential and important way to generalize the simplicity the-
orems for Diff∞c (M)o, where 1 ≤ r ≤ ∞, r 6= n + 1, is to consider the
uniform perfectness or, more generally, the boundedness of the groups in
question. In particular, we ask if the presentation g = [h1, k1]◦· · ·◦ [hN , kN ]
is available for all g ∈ Diff∞c (M)o with N bounded. This property has been
proved in the recent papers by Burago, Ivanov and Polterovich [3], and
Tsuboi [18], [19], [20], for a large class of manifolds. For instance, N = 10
was obtained in [3] for any closed three dimensional manifold, and then it
was improved in [18] to N = 6 for any closed odd dimensional manifold. It
seems that the methods of [3], [18], [19] and [20] combined with our The-
orem 2 would give some analogue of Theorem 1, but certainly not with the
presentation (1) and the condition on Xi. Also N could not be smaller in
this way. Another advantage of Theorem 1 is that it is valid for all smooth
paracompact manifolds. See also [16] for diffeomorphism groups with no
restriction of support.

Let T n := Rn/Zn denote the torus. For λ ∈ T n we let Rλ ∈ Diff∞(T n)
denote the corresponding rotation. The main ingredient in the proof of
Theorems 1 and 2 is the following result of Herman [9, 8].

Theorem 3 (Herman). There exist γ ∈ T n so that the smooth map

T n ×Diff∞(T n)→ Diff∞(T n), (λ, g) 7→ Rλ ◦ [g,Rγ],

admits a smooth local right inverse at the identity. Moreover, γ may be
chosen arbitrarily close to the identity in T n.

Herman’s result is an application of the Nash–Moser inverse function
theorem. When inverting the derivative one is quickly led to solve the
linear equation Y = X − (Rγ)

∗X for given Y ∈ C∞(T n,Rn). This is
accomplished using Fourier transformation. Here one has to choose γ suf-
ficiently irrational so that tame estimates on the Sobolev norms of X in
terms of the Sobolev norms of Y can be obtained. The corresponding small
denominator problem can be solved due to a number theoretic result of
Khintchine.

We shall make use of the following corollary of Herman’s result.

Proposition 1. There exist smooth vector fields X1, X2, X3 on T n so that
the smooth map Diff∞(T n)3 → Diff∞(T n),

(g1, g2, g3) 7→ [g1, exp(X1)] ◦ [g2, exp(X2)] ◦ [g3, exp(X3)],
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admits a smooth local right inverse at the identity. Moreover, the vector
fields Xi may be chosen arbitrarily close to zero with respect to the Whitney
C∞-topology.

The following lemma leads to a decomposition of a diffeomorphism
into factors which are leaf preserving. If F is a smooth foliation of M we
let Diff∞c (M ;F) denote the group of compactly supported diffeomorphisms
preserving the leaves of F . This is a regular Lie group modelled on the con-
venient vector space of compactly supported smooth vector fields tangential
to F .

Lemma 1. Suppose M1 and M2 are two finite dimensional smooth mani-
folds and set M := M1 ×M2. Let F1 and F2 denote the foliations with
leaves M1×{pt} and {pt}×M2 on M , respectively. Then the smooth map

F : Diff∞c (M ;F1)×Diff∞c (M ;F2)→ Diff∞c (M), F (g1, g2) := g1 ◦ g2,

is a local diffeomorphism at the identity.

Now we need a version of the exponential law.

Lemma 2. Suppose B and T are finite dimensional smooth manifolds,
assume T compact, and let F denote the foliation with leaves {pt} × T on
B × T . Then the canonical bijection

C∞c (B,Diff∞(T ))
∼=−→ Diff∞c (B × T ;F)

is an isomorphism of regular Lie groups.

Another ingredient of the proof is a smooth fragmentation of diffeo-
morphisms.

Suppose U ⊆M is an open subset. Every compactly supported diffeo-
morphism of U can be regarded as a compactly supported diffeomorphism
of M by extending it identically outside U . The resulting injective ho-
momorphism Diff∞c (U) → Diff∞c (M) is clearly smooth. Note, however,
that a curve in Diff∞c (U), which is smooth when considered as a curve in
Diff∞c (M), need not be smooth as a curve into Diff∞c (U). Nevertheless, if
there exists a closed subset A of M with A ⊆ U and if the curve has sup-
port contained in A, then one can conclude that the curve is also smooth
in Diff∞c (U).

Proposition 2 (Fragmentation). Let M be a smooth manifold of dimen-
sion n, and suppose U1, . . . , Uk is an open covering of M , ie. M = U1 ∪
· · · ∪ Uk. Then the smooth map

P : Diff∞c (U1)×· · ·×Diff∞c (Uk)→ Diff∞c (M), P (g1, . . . , gk) := g1◦· · ·◦gk,
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admits a smooth local right inverse at the identity.

Proceeding as in [3] permits to reduce the number of commutators
considerably, see also [18] and [19].

Proposition 3. Let M be a smooth manifold of dimension n ≥ 2 and
put N = 6(n + 1). Moreover, let U an open subset of M and suppose
φ ∈ Diff∞(M), not necessarily with compact support, such that the closures
of the subsets

U, φ(U), φ2(U), . . . , φN(U)

are mutually disjoint. Then there exists a smooth complete vector field X
on M , a c∞-open neighborhood U of the identity in Diff∞c (U), and smooth
maps %1, %2 : U → Diff∞c (M) so that %1(id) = %2(id) = id and, for all g ∈ U ,

g = [%1(g), φ] ◦ [%2(g), exp(X)].

Moreover, the vector field X may be chosen arbitrarily close to zero in the
strong Whitney C∞-topology on M .

Now, by applying the Morse theory ([13], [14]) we get

Lemma 3. Let M be a smooth manifold of dimension n. Then there exists
an open covering M = U1 ∪ U2 ∪ U3 and smooth complete vector fields
X1, X2, X3 on M so that exp(X1)(U1) ⊆ U2, exp(X2)(U2) ⊆ U3, and such
that the closures of the sets

U3, exp(X3)(U3), exp(X3)2(U3), . . .

are mutually disjoint. Moreover, the vector fields X1, X2, X3 may be chosen
arbitrarily close to zero with respect to the strong Whitney C0-topology. If
M admits a proper (circle valued) Morse function whose critical points all
have index 0 or n, then we may, moreover, choose U1 = ∅ and X1 = 0.

Theorem 1 is then a consequence of Lemma 3.

References

[1] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une
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