Geometry and Foliations 2013 Komaba, Tokyo, Japan

Generalizations of a theorem of Herman and a new proof of the simplicity of $\operatorname{Diff}_c^{\infty}(M)_0$

TOMASZ RYBICKI

Let M be a smooth manifold of dimension n. By $\operatorname{Diff}_{c}^{\infty}(M)$ we will denote the group of compactly supported diffeomorphisms of M. We shall consider a Lie group structure on $\operatorname{Diff}_{c}^{\infty}(M)$ in the sense of the convenient setting of Kriegl and Michor [10]. In particular, we assume that $\operatorname{Diff}_{c}^{\infty}(M)$ is endowed with the c^{∞} -topology [10, Section 4], i.e. the final topology with respect to all smooth curves. For compact M the c^{∞} -topology on $\operatorname{Diff}_{c}^{\infty}(M)$ coincides with the Whitney C^{∞} -topology, cf. [10, Theorem 4.11(1)]. In general the c^{∞} -topology on $\operatorname{Diff}_{c}^{\infty}(M)$ is strictly finer than the one induced from the Whitney C^{∞} -topology, cf. [10, Section 4.26]. The latter coincides with the inductive limit topology $\operatorname{Iim}_{K} \operatorname{Diff}_{K}^{\infty}(M)$ where K runs through all compact subsets of M.

Given smooth complete vector fields X_1, \ldots, X_N on M, we consider the map

(1)
$$K \colon \operatorname{Diff}_{c}^{\infty}(M)^{N} \to \operatorname{Diff}_{c}^{\infty}(M),$$
$$K(g_{1}, \ldots, g_{N}) := [g_{1}, \exp(X_{1})] \circ \cdots \circ [g_{N}, \exp(X_{N})].$$

Here $\exp(X)$ denotes the flow of a complete vector field X at time 1, and $[k, h] := k \circ h \circ k^{-1} \circ h^{-1}$ denotes the commutator of two diffeomorphisms k and h. It is readily checked that K is smooth. Indeed, one only has to observe that K maps smooth curves to smooth curves, cf. [10, Section 27.2]. Clearly $K(\operatorname{id}, \ldots, \operatorname{id}) = \operatorname{id}$.

A smooth local right inverse at the identity for K consists of an open neighborhood \mathcal{U} of the identity in $\operatorname{Diff}_c^{\infty}(M)$ together with a smooth map

$$\sigma = (\sigma_1, \ldots, \sigma_N) \colon \mathcal{U} \to \operatorname{Diff}_c^\infty(M)^N$$

so that $\sigma(\mathrm{id}) = (\mathrm{id}, \ldots, \mathrm{id})$ and $K \circ \sigma = \mathrm{id}_{\mathcal{U}}$. More explicitly, we require that each $\sigma_i \colon \mathcal{U} \to \mathrm{Diff}_c^\infty(M)$ is smooth with $\sigma_i(\mathrm{id}) = \mathrm{id}$ and, for all $g \in \mathcal{U}$,

$$g = [\sigma_1(g), \exp(X_1)] \circ \cdots \circ [\sigma_N(g), \exp(X_N)].$$

The aim of this talk is to present the following two results which generalize a well-known theorem of Herman for M being the torus [8, 9].

Key words and phrases. diffeomorphism group; perfect group; simple group; fragmentation; convenient calculus; foliation.

Joint with Stefan Haller and Josef Teichmann.

^{© 2013} Tomasz Rybicki

Theorem 1. Suppose M is a smooth manifold of dimension $n \ge 2$. Then there exist four smooth complete vector fields X_1, \ldots, X_4 on M so that the map K, see (1), admits a smooth local right inverse at the identity, N = 4. Moreover, the vector fields X_i may be chosen arbitrarily close to zero with respect to the strong Whitney C^0 -topology. If M admits a proper (circle valued) Morse function whose critical points all have index 0 or n, then the same statement remains true with three vector fields.

Particularly, on the manifolds $M = \mathbb{R}^n, S^n, T^n, n \ge 2$, or the total space of a compact smooth fiber bundle $M \to S^1$, three commutators are sufficient. At the expense of more commutators, it is possible to gain further control on the vector fields. More precisely, we have:

Theorem 2. Suppose M is a smooth manifold of dimension $n \ge 2$ and set N := 6(n + 1). Then there exist smooth complete vector fields X_1, \ldots, X_N on M so that the map K, see (1), admits a smooth local right inverse at the identity. Moreover, the vector fields X_i may be chosen arbitrarily close to zero with respect to the strong Whitney C^{∞} -topology.

Either of the two theorems implies that $\operatorname{Diff}_{c}^{\infty}(M)_{o}$, the connected component of the identity, is a perfect group, provided M is not \mathbb{R} . Our proof rests on Herman's result similarly as that of [17] (see [2]), but is otherwise elementary and different from Thurston's approach. In fact we only need Herman's result in dimension 1.

The perfectness of $\operatorname{Diff}_{c}^{\infty}(M)_{0}$ was already proved by Epstein [5] using ideas of Mather [11, 12] who dealt with the C^{r} -case, $1 \leq r < \infty, r \neq n+1$. The Epstein–Mather proof is based on a sophisticated construction, and uses the Schauder–Tychonov fixed point theorem. The existence of a presentation

$$g = [h_1, k_1] \circ \cdots \circ [h_N, k_N]$$

is guarantied, but without any further control on the factors h_i and k_i . Theorem 1 or 2 actually implies that the universal covering of $\text{Diff}_c^{\infty}(M)_o$ is a perfect group. This result is known, too, see [17]. Thurston's proof is based on a result of Herman for the torus [8, 9]. Note that the perfectness of $\text{Diff}_c^{\infty}(M)_o$ implies that this group is simple, see Epstein [4]. The methods used in [4] are elementary and actually work for a rather large class of homeomorphism groups.

One could believe that the phenomenon of smooth perfectness described in Theorems 1 and 2 would be also true for some classical diffeomorphism groups which are simple, e.g. for the Hamiltonian diffeomorphism group of a closed symplectic manifold [1], or for the contactomorphism group of an arbitrary co-oriented contact manifold [15]. However, the available methods seem to be useless for possible proofs of their smooth per-

310

fectness. Another open problem related to the above theorems is whether a smooth *global* right inverse at the identity for K would exist. A possible answer in the affirmative seems to be equally difficult. Consequently, it would be difficult to improve Theorems 1 and 2 as they are in any possible direction.

Another essential and important way to generalize the simplicity theorems for $\operatorname{Diff}_{c}^{\infty}(M)_{o}$, where $1 \leq r \leq \infty$, $r \neq n+1$, is to consider the uniform perfectness or, more generally, the boundedness of the groups in question. In particular, we ask if the presentation $g = [h_{1}, k_{1}] \circ \cdots \circ [h_{N}, k_{N}]$ is available for all $g \in \operatorname{Diff}_{c}^{\infty}(M)_{o}$ with N bounded. This property has been proved in the recent papers by Burago, Ivanov and Polterovich [3], and Tsuboi [18], [19], [20], for a large class of manifolds. For instance, N = 10was obtained in [3] for any closed three dimensional manifold, and then it was improved in [18] to N = 6 for any closed odd dimensional manifold. It seems that the methods of [3], [18], [19] and [20] combined with our Theorem 2 would give some analogue of Theorem 1, but certainly not with the presentation (1) and the condition on X_{i} . Also N could not be smaller in this way. Another advantage of Theorem 1 is that it is valid for all smooth paracompact manifolds. See also [16] for diffeomorphism groups with no restriction of support.

Let $T^n := \mathbb{R}^n / \mathbb{Z}^n$ denote the torus. For $\lambda \in T^n$ we let $R_\lambda \in \text{Diff}^{\infty}(T^n)$ denote the corresponding rotation. The main ingredient in the proof of Theorems 1 and 2 is the following result of Herman [9, 8].

Theorem 3 (Herman). There exist $\gamma \in T^n$ so that the smooth map

 $T^n \times \operatorname{Diff}^{\infty}(T^n) \to \operatorname{Diff}^{\infty}(T^n), \qquad (\lambda, g) \mapsto R_{\lambda} \circ [g, R_{\gamma}],$

admits a smooth local right inverse at the identity. Moreover, γ may be chosen arbitrarily close to the identity in T^n .

Herman's result is an application of the Nash–Moser inverse function theorem. When inverting the derivative one is quickly led to solve the linear equation $Y = X - (R_{\gamma})^* X$ for given $Y \in C^{\infty}(T^n, \mathbb{R}^n)$. This is accomplished using Fourier transformation. Here one has to choose γ sufficiently irrational so that tame estimates on the Sobolev norms of X in terms of the Sobolev norms of Y can be obtained. The corresponding small denominator problem can be solved due to a number theoretic result of Khintchine.

We shall make use of the following corollary of Herman's result.

Proposition 1. There exist smooth vector fields X_1, X_2, X_3 on T^n so that the smooth map $\text{Diff}^{\infty}(T^n)^3 \to \text{Diff}^{\infty}(T^n)$,

 $(g_1, g_2, g_3) \mapsto [g_1, \exp(X_1)] \circ [g_2, \exp(X_2)] \circ [g_3, \exp(X_3)],$

admits a smooth local right inverse at the identity. Moreover, the vector fields X_i may be chosen arbitrarily close to zero with respect to the Whitney C^{∞} -topology.

The following lemma leads to a decomposition of a diffeomorphism into factors which are leaf preserving. If \mathcal{F} is a smooth foliation of M we let $\operatorname{Diff}_{c}^{\infty}(M; \mathcal{F})$ denote the group of compactly supported diffeomorphisms preserving the leaves of \mathcal{F} . This is a regular Lie group modelled on the convenient vector space of compactly supported smooth vector fields tangential to \mathcal{F} .

Lemma 1. Suppose M_1 and M_2 are two finite dimensional smooth manifolds and set $M := M_1 \times M_2$. Let \mathcal{F}_1 and \mathcal{F}_2 denote the foliations with leaves $M_1 \times \{\text{pt}\}$ and $\{\text{pt}\} \times M_2$ on M, respectively. Then the smooth map

 $F: \operatorname{Diff}_{c}^{\infty}(M; \mathcal{F}_{1}) \times \operatorname{Diff}_{c}^{\infty}(M; \mathcal{F}_{2}) \to \operatorname{Diff}_{c}^{\infty}(M), \quad F(g_{1}, g_{2}) := g_{1} \circ g_{2},$

is a local diffeomorphism at the identity.

Now we need a version of the exponential law.

Lemma 2. Suppose B and T are finite dimensional smooth manifolds, assume T compact, and let \mathcal{F} denote the foliation with leaves $\{pt\} \times T$ on $B \times T$. Then the canonical bijection

 $C_c^{\infty}(B, \operatorname{Diff}^{\infty}(T)) \xrightarrow{\cong} \operatorname{Diff}_c^{\infty}(B \times T; \mathcal{F})$

is an isomorphism of regular Lie groups.

Another ingredient of the proof is a smooth fragmentation of diffeomorphisms.

Suppose $U \subseteq M$ is an open subset. Every compactly supported diffeomorphism of U can be regarded as a compactly supported diffeomorphism of M by extending it identically outside U. The resulting injective homomorphism $\operatorname{Diff}_c^{\infty}(U) \to \operatorname{Diff}_c^{\infty}(M)$ is clearly smooth. Note, however, that a curve in $\operatorname{Diff}_c^{\infty}(U)$, which is smooth when considered as a curve in $\operatorname{Diff}_c^{\infty}(M)$, need not be smooth as a curve into $\operatorname{Diff}_c^{\infty}(U)$. Nevertheless, if there exists a closed subset A of M with $A \subseteq U$ and if the curve has support contained in A, then one can conclude that the curve is also smooth in $\operatorname{Diff}_c^{\infty}(U)$.

Proposition 2 (Fragmentation). Let M be a smooth manifold of dimension n, and suppose U_1, \ldots, U_k is an open covering of M, i.e. $M = U_1 \cup \cdots \cup U_k$. Then the smooth map

$$P: \operatorname{Diff}_{c}^{\infty}(U_{1}) \times \cdots \times \operatorname{Diff}_{c}^{\infty}(U_{k}) \to \operatorname{Diff}_{c}^{\infty}(M), \quad P(g_{1}, \ldots, g_{k}) := g_{1} \circ \cdots \circ g_{k},$$

admits a smooth local right inverse at the identity.

Proceeding as in [3] permits to reduce the number of commutators considerably, see also [18] and [19].

Proposition 3. Let M be a smooth manifold of dimension $n \ge 2$ and put N = 6(n + 1). Moreover, let U an open subset of M and suppose $\phi \in \text{Diff}^{\infty}(M)$, not necessarily with compact support, such that the closures of the subsets

$$U, \phi(U), \phi^2(U), \ldots, \phi^N(U)$$

are mutually disjoint. Then there exists a smooth complete vector field X on M, a c^{∞} -open neighborhood \mathcal{U} of the identity in $\operatorname{Diff}_{c}^{\infty}(U)$, and smooth maps $\varrho_{1}, \varrho_{2} \colon \mathcal{U} \to \operatorname{Diff}_{c}^{\infty}(M)$ so that $\varrho_{1}(\operatorname{id}) = \varrho_{2}(\operatorname{id}) = \operatorname{id}$ and, for all $g \in \mathcal{U}$,

$$g = [\varrho_1(g), \phi] \circ [\varrho_2(g), \exp(X)].$$

Moreover, the vector field X may be chosen arbitrarily close to zero in the strong Whitney C^{∞} -topology on M.

Now, by applying the Morse theory ([13], [14]) we get

Lemma 3. Let M be a smooth manifold of dimension n. Then there exists an open covering $M = U_1 \cup U_2 \cup U_3$ and smooth complete vector fields X_1, X_2, X_3 on M so that $\exp(X_1)(U_1) \subseteq U_2$, $\exp(X_2)(U_2) \subseteq U_3$, and such that the closures of the sets

$$U_3$$
, $\exp(X_3)(U_3)$, $\exp(X_3)^2(U_3)$, ...

are mutually disjoint. Moreover, the vector fields X_1, X_2, X_3 may be chosen arbitrarily close to zero with respect to the strong Whitney C^0 -topology. If M admits a proper (circle valued) Morse function whose critical points all have index 0 or n, then we may, moreover, choose $U_1 = \emptyset$ and $X_1 = 0$.

Theorem 1 is then a consequence of Lemma 3.

References

- A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227.
- [2] A. Banyaga, The structure of classical diffeomorphism groups, Kluwer Academic Publishers Group, Dordrecht, 1997.
- [3] D. Burago, S. Ivanov and L. Polterovich, Conjugation-invariant norms on groups of geometric origin, Groups of diffeomorphisms, 221–250, Adv. Stud. Pure Math. 52, Math. Soc. Japan, Tokyo, 2008.

- [4] D.B.A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22(1970), 165–173.
- [5] D.B.A. Epstein, Commutators of C[∞]-diffeomorphisms. Appendix to: "A curious remark concerning the geometric transfer map" by John N. Mather, Comment. Math. Helv. 59(1984), 111–122.
- S. Haller, T. Rybicki and J. Teichmann, Smooth perfectness for the group of diffeomorphisms, arXiv:math/0409605
- [7] S. Haller and J. Teichmann, Smooth perfectness through decomposition of diffeomorphisms into fiber preserving ones, Ann. Global Anal. Geom. 23(2003), 53–63.
- [8] M.R. Herman, Simplicité du groupe des difféomorphismes de classe C[∞], isotopes à l'identité, du tore de dimension n, C. R. Acad. Sci. Paris Sr. A 273(1971), 232-234.
- M.R. Herman, Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier (Grenoble) 23(1973), 75–86.
- [10] A. Kriegl and P.W. Michor, *The convenient setting of global analysis*. Mathematical Surveys and Monographs 53, American Mathematical Society, 1997.
- [11] J.N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. 49(1974), 512–528.
- [12] J.N. Mather, Commutators of diffeomorphisms. II, Comment. Math. Helv. 50(1975), 33–40.
- [13] J. Milnor, *Morse theory*. Annals of Mathematics Studies 51, Princeton University Press, Princeton, N.J. 1963.
- [14] S.P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260(1981), 31–35. English translation: Soviet Math. Dokl. 24(1981), 222–226(1982).
- [15] T. Rybicki, Commutators of contactomorphisms, Adv. Math. 225(2010), 3291-3326.
- [16] T. Rybicki, Boundedness of certain automorphism groups of an open manifold, Geometriae Dedicata 151,1(2011), 175-186.
- [17] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80(1974), 304–307.
- [18] T. Tsuboi, On the uniform perfectness of diffeomorphism groups. Groups of diffeomorphisms, 505–524, Adv. Stud. Pure Math. 52, Math. Soc. Japan, Tokyo, 2008.
- [19] T. Tsuboi, On the uniform simplicity of diffeomorphism groups. Differential geometry, 43–55, World Sci. Publ., Hackensack, NJ, 2009.
- [20] T. Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of evendimensional manifolds, Comment. Math. Helv. 87,1(2012), 141-185.

Faculty of applied mathematics AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Krakow, Poland E-mail: tomasz@agh.edu.pl