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Prevalence of non-uniform hyperbolicity
at the first bifurcation of Hénon-like families

Hiroki TAKAHASI

Hyperbolicity and structural stability are key concepts in the develop-
ment of the theory of dynamical systems. Nowadays, it is known that these
two concepts are essentially equivalent to each other, at least for C1 diffeo-
morphisms or flows of a compact manifold. Then, a fundamental problem
in the bifurcation theory is to study transitions from hyperbolic to non
hyperbolic regimes. When the loss of hyperbolicity is due to the formation
of a cycle (i.e., a configuration in the phase space involving non-transverse
intersections between invariant manifolds), an incredibly rich array of com-
plicated behaviors is unleashed by the unfolding of the cycle (See e.g. [12]
and the references therein). Many important aspects of this complexity are
poorly understood.

To study bifurcations of diffeomorphisms, we work within a framework
set up by Palis: consider arcs of diffeomorphisms losing their hyperbolicity
through generic bifurcations, and analyze which dynamical phenomena are
more frequently displayed (in the sense of the Lebesgue measure in param-
eter space) in the sequel of the bifurcation. More precisely, let {ϕa}a∈R be
a parametrized family of diffeomorphisms which undergoes a first bifurca-
tion at a = a∗, i.e., ϕa is hyperbolic for a > a∗, and ϕa∗ has a cycle. We
assume {ϕa}a∈R unfolds the cycle generically. A dynamical phenomenon P
is prevalent at a∗ if

lim inf
n→∞

1

ε
Leb{a ∈ [a∗ − ε, a∗] : ϕa displays P} > 0,

where Leb denotes the one-dimensional Lebesgue measure.
Particularly important is the prevalence of hyperbolicity. The pioneer-

ing work in this direction is due to Newhouse and Palis [8], on the bifur-
cation of Morse-Smale diffeomorphisms. The prevalence of hyperbolicity
in arcs of surface diffeomorphisms which are not Morse-Smale has been
studied in the literature [7, 10, 11, 13, 14]. However, even with all these
and other subsequent developments, including [15, 16], we still lack a good
understanding as to in which case the hyperbolicity becomes prevalent.

In [7, 10, 11, 13, 14], unfoldings of tangencies of surface diffeomorphisms
associated to basic sets have been treated. One key aspect of these models
is that the orbit of tangency at the first bifurcation is not contained in
the limit set. This implies a global control on new orbits added to the
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underlying basic set, and moreover allows one to use its invariant foliations
to translate dynamical problems to the problem on how two Cantor sets
intersect each other. Then, the prevalence of hyperbolicity is related to the
Hausdorff dimension of the limit set. This argument is not viable, if the
orbit of tangency, responsible for the loss of the stability of the system, is
contained in the limit set. Let us call such a first bifurcation an internal
tangency bifurcation.

We are concerned with an arc {fa}a∈R of planar diffeomorphisms of the
form

fa(x, y) = (1− ax2, 0) + b · Φ(a, b, x, y), 0 < b� 1.

Here Φ is bounded continuous in (a, b, x, y) and C4 in (a, x, y). This par-
ticular arc, often called an “Hénon-like family”, is embedded in generic
one-parameter unfoldings of quadratic homoclinic tangencies associated to
dissipative saddles [6], and so is relevant in the investigation of structurally
unstable surface diffeomorphisms.

Let Ωa denote the non wandering set of fa, which is a compact fa-
invariant set. It is known [5] that for sufficiently large a > 0, fa is Smale’s
horseshoe map and Ωa admits a hyperbolic splitting into uniformly con-
tracting and expanding subspaces. As a decreases, the infimum of the
angles between these two subspaces gets smaller, and the hyperbolic split-
ting disappears at a certain parameter. This first bifurcation is an internal
tangency bifurcation. Namely, for sufficiently small b > 0 there exists a
parameter a∗ = a∗(b) near 2 with the following properties [1, 2, 3, 5].:

• if a > a∗, then Ωa is a hyperbolic set, i.e., there exist constants C > 0,
ξ ∈ (0, 1) and at each x ∈ Ωa a non-trivial decomposition TxR2 =
Es
x ⊕ Eu

x with the invariance property such that ‖Dxf
n
a |Es

x‖ ≤ Cξn

and ‖Dxf
−n
a |Eu

x‖ ≤ Cξn for every n ≥ 0;

• there is a quadratic tangency between stable and unstable manifolds
of the fixed points of fa∗ . The orbit of this tangency at a = a∗ is
accumulated by transverse homoclinic points, and thus it is contained
in the limit set.

The orbit of tangency of fa∗ is in fact unique, and {fa}a∈R unfolds
this tangency generically. The next theorem gives a partial description of
prevalent dynamics at a = a∗.

Theorem 1. For sufficiently small b > 0 there exist ε0 = ε0(b) > 0 and a
set ∆ ⊂ [a∗− ε0, a

∗] of a-values containing a∗ with the following properties:

(a) lim
ε→+0

(1/ε)Leb(∆ ∩ [a∗ − ε, a∗]) = 1;

(b) if a ∈ ∆, then the Lebesgue measure of the set

K+
a := {x ∈ R2 : {fna x}n∈N is bounded}
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is zero. In particular, for Lebesgue almost every x ∈ R2, |fna x| → ∞
as n→∞.

In addition, if a ∈ ∆ then fa is transitive on Ωa. In other words,
for “most” diffeomorphisms immediately right after the first bifurcation,
the topological dynamics is similar to that of Smale’s horseshoe before the
bifurcation.

We suspect that the dynamics is non hyperbolic for all, or “most”
parameters in ∆. Nevertheless, the proof of the above theorem tells us that
the dynamics of fa, a ∈ ∆ is fairly structured, and this may yield a weak
form of hyperbolicity. A natural question then is the following:

To what extent the dynamics is hyperbolic for a ∈ ∆?

The main result of this paper gives one answer for this question. For mea-
suring the extent of hyperbolicity we estimate Lyapunov exponents, the
asymptotic exponential rates at which nearby orbits are separated (or draw
together).

Let us say that a point x ∈ Ωa is regular if there exist number(s)
χ1 < · · · < χr(x) and a decomposition TxR2 = E1(x) ⊕ · · · ⊕ Er(x)(x) such
that for every v ∈ Ei(x) \ {0},

lim
n→±∞

1

n
log ‖Dxf

n
a v‖ = χi(x) and

lim
n→±∞

1

n
log | detDxf

n
a | =

r(x)∑
i=1

χi(x)dimEi(x).

By the theorem of Oseledec [9], the set of regular points has total prob-
ability. If µ is ergodic, then the functions x 7→ r(x), λi(x) and dimEi(x)
are invariant along orbits, and so are constant µ-a.e. From this and the
Ergodic Theorem, one of the following holds for each ergodic µ:

• there exist two numbers χs(µ) < χu(µ), and for µ-a.e. x ∈ Ωa a
decomposition TxR2 = Es

x ⊕ Eu
x such that for any vσ ∈ Eσ

x \ {0} and
σ = s, u,

lim
n→±∞

1

n
log ‖Dxf

n
a v‖ = χσ(µ) and∫

log | detDfa|dµ = χs(µ) + χu(µ);

• there exists χ(µ) ∈ R such that for µ-a.e. x ∈ Ωa and all v ∈
TxR2 \ {0},

lim
n→±∞

1

n
log ‖Dxf

n
a v‖ = χ(µ) and
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log | detDfa|dµ = 2χ(µ).

The number(s) χs(µ) and χu(µ), or χ(µ) is called a Lyapunov exponent(s)
of µ.

Let Me(fa) denote the set of fa-invariant Borel probability measures
which are ergodic. We call µ ∈ Me(fa) a hyperbolic measure if µ has two
Lyapunov exponents χs(µ), χu(µ) with χs(µ) < 0 < χu(µ). Our main
theorem indicates a strong form of non-uniform hyperbolicty for a ∈ ∆.

Theorem 2. For sufficiently small b > 0, the following holds for all a ∈ ∆:

(a) any µ ∈Me(fa) is a hyperbolic measure;

(b) for each µ ∈Me(fa),

χs(µ) <
1

3
log b < 0 <

1

4
log 2 < χu(µ).

It must be emphasized that this kind of uniform bounds on Lyapunov ex-
ponents of ergodic measures are compatible with the non hyperbolicity of
the system, and therefore, Theorem A does not imply the uniform hyper-
bolicity for a ∈ ∆. Indeed, a∗ ∈ ∆ and fa∗ is genuinely non hyperbolic,
due to the existence of tangencies. See [3, 4] for the first examples of non
hyperbolic surface diffeomorphisms of this kind. As already mentioned, we
suspect that the dynamics is non hyperbolic for all, or “most” parameters
in ∆.

Little is known on the prevalence of hyperbolicity at internal tangency
bifurcations. The only previously known result in this direction is due to
Rios [15], on certain horseshoes in the plane with three branches. However,
certain hypotheses in [15] on expansion/contraction rates and curvatures of
invariant manifolds near the tangency, are no longer true for {fa}a∈R due
to the strong dissipation.
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