Geometry and Foliations 2013 Komaba, Tokyo, Japan

Metric diffusion along compact foliations

SZYMON WALCZAK

1. Wasserstein metric

The Wasserstein distance $d_{\mathcal{W}}$ of Borel probability measures μ and ν on Polish space X (complete separable metric space) endowed with a metric d is defined by

$$d_{\mathcal{W}}(\mu,\nu) = \inf \int_{M \times M} d(x,y) d\rho$$

where infimum is taken over all Borel probability measures ρ on $X \times X$ satisfying for any measurable sets $A, B \subset X$

$$\rho(A \times X) = \mu(A),$$

$$\rho(X \times B) = \nu(B).$$

A measure ρ is called a *coupling* of μ and ν . The set $\mathcal{P}(M)$ of all Borel probability measures with finite first moment endowed with $d_{\mathcal{W}}$ is a metric space. Moreover, $d_{\mathcal{W}}$ metrizes the weak-* topology. The metric $d_{\mathcal{W}}$ comes from the Monge-Kantorovich optimal transportation problem [10] [11]. One can find that

Theorem 1.1. [11] For any two Borel probability there exists a coupling ρ for which the Wasserstein distance is realized.

One should notice that the Wasserstein distance $d_{\mathcal{W}}(\delta_x, \delta_y)$ of Dirac masses concentrated in points $x, y \in M$ is equal to the distance d(x, y). This fact follows directly from the fact, that $\delta_{(x,y)}$ is the only coupling of δ_x and δ_y .

Let
$$\Delta^k = \{(t_1, \dots, t_k) \in \mathbb{R}^k : t_j \ge 0, \sum_j t_j = 1\}.$$

Proposition 1.2. The set

$$\mathcal{D}(M) = \{ \mu \in \mathcal{P}(M) : \mu = \sum_{i=1}^{k} t_k \delta_{x_k}, \ (t_1, \dots, t_k) \in \Delta^k, \ x_1, \dots, x_k \in M \}$$

is dense in $\mathcal{P}(M)$.

Supported by Polish National Science Center grant No. $6065/{\rm B}/{\rm H03}/2011/40$ © 2013 Szymon Walczak

2. Harmonic measures and heat diffusion

Let (M, \mathcal{F}, g) be a smooth closed oriented foliated manifold equipped with a Riemannian metric g and Laplace-Beltrami operator Δ defined by

$$\Delta f = \operatorname{div} \nabla f.$$

Let $\Delta_{\mathcal{F}}$ be foliated Laplace-Beltrami operator [2] [13] given by

$$\Delta_{\mathcal{F}} f(x) = \Delta_{L_x} f(x), \quad x \in M,$$

where L_x is a leaf through x, and Δ_L is Laplace-Beltrami operator on (L, g|L). The operator Δ_F acts on bounded measurable functions, which are C^2 -smooth along the leaves.

Let us recall that a probability measure μ on (M, \mathcal{F}, g) is called *har-monic* if for any $f: M \to \mathbb{R}$

$$\int_M \Delta_{\mathcal{F}} f d\mu = 0.$$

Theorem 2.1. [8] [1] On any compact foliated Riemannian manifold, harmonic probability measures exist.

One can associate with the operator $\Delta_{\mathcal{F}}$ the one-parameter semigroup $D_t, t \geq 0$, of heat diffusion operators characterized by

$$d_0 = \operatorname{id}, \ D_{t+s} = D_t \circ D_s, \ \frac{d}{dt} D_t|_{t=0} = \Delta_{\mathcal{F}}$$

 D_t restricted to a leaf $L \in \mathcal{F}$ coincides with the heat diffusion operators on L, which are given by

(2.2)
$$D_t f(x) = \int_{L_x} f(y) p(x, y; t) d \operatorname{vol}_{L_x},$$

where $p(\cdot, \cdot; t)$ is a *foliated heat kernel* [2] on (M, \mathcal{F}) . The foliated heat kernel is nonnegative and for any t > 0 satisfies

$$\int_{L_x} p(x, y; t) d \operatorname{vol}_{L_x} = 1.$$

Let μ be a probability measure on M. According to [2, 13], one can define the diffused measure $D_t\mu$ by the formula

$$\int f dD_t \mu = \int D_t f d\mu,$$

where f is any bounded measurable function on M. A measure μ is called *diffusion invariant* when $D_t \mu = \mu$ for all t > 0.

326

3. Diffused metric

Let (M, \mathcal{F}, g) be a smooth compact foliated manifold equipped with a Riemannian metric g and carrying foliation \mathcal{F} . Let δ_t denotes the Dirac measure at point x. For t > 0 the metric

$$(3.1) D_t d(x, y) = d_{\mathcal{W}}(D_t \delta_x, D_t \delta_y)$$

will be called the metric diffused along the foliation \mathcal{F} at time t. Since $d_{\mathcal{W}}(\delta_x, \delta_y) = d(x, y)$ for any $x, y \in M$ and $D_0 = \text{id}$, we see that $D_0 d$ coincides the metric d. The metric space $(M, D_t d)$ will be denoted by M_t .

Theorem 3.2. For any $s, t \ge 0$, metrics $D_t d$ and $D_s d$ are equivalent.

4. Metric diffusion for compact foliations of dimension one

First, we recall some facts about compact foliations, i.e. foliations with all leaves compact. The topology of the leaf space of a compact foliation \mathcal{F} on a compact manifold M does not have to be Hausdorff. Examples of such foliations were presented by Epstein and Vogt [7], Sullivan [9] and Vogt [12].

The following result describes the topology of a compact foliation in few equivalent conditions. First, denote by $\pi : M \to \mathcal{L}$ the quotient projection defined by $\pi(x) = L_x$, where \mathcal{L} denotes the space of leaves of a foliation \mathcal{F} , i.e., a quotient space of the equivalence relation $x \sim y$ if and only if $L_x = L_y$, where L_z denotes the leaf through z.

Theorem 4.1. [6] The following conditions are equivalent:

- 1. π is a closed map.
- 2. π maps compact sets onto closed sets.
- 3. Each leaf has arbitrarily small saturated neighborhoods.
- 4. \mathcal{L} with quotient topology is Hausdorff.
- 5. If $K \subseteq M$ is compact, then the saturation of K is also compact.

Let $G_{\mathcal{F}}$ be the set of all points $x \in M$ near which the volume function is bounded, i.e., $x \in G_{\mathcal{F}}$ if and only if there exists an open neighborhood U of x such that the volumes of all leaves passing through U are uniformly bounded. The set $G_{\mathcal{F}}$ is called *the good set* of the foliation \mathcal{F} . Due to [5], $G_{\mathcal{F}}$ is open, saturated, and dense in M and all holonomy groups of leaves contained in $G_{\mathcal{F}}$ are finite. The complement $B_{\mathcal{F}} = M \setminus G_{\mathcal{F}}$ of the good set is called *the bad set*. It follows directly from the definition of the good set and Theorem 4.1 that foliations with empty bad set have a volume of leaves commonly bounded.

One of the most important results about compact foliations is the following:

Theorem 4.2. [4] Let us suppose that M is a smooth compact Riemannian manifold which is foliated by compact foliation of co-dimension one or two. There is an upper bound of the volumes of the leaves of M.

Let \mathcal{F} be a compact foliation on a compact Riemannian manifold (M, g) with the volume of leaves commonly bounded above. The classical result says that on a compact manifold M the heat is evenly distributed over M while time is tending to infinity. More precisely,

Theorem 4.3. [3] For any $f \in L^2(M)$, the function $D_t f$ converges uniformly, as t goes to the infinity, to a harmonic function on M. Since M is compact, the limit function is a constant.

Let $L, L' \in \mathcal{F}$ be two leaves. One can define the metric ρ_{vol} in the space of leaves by

$$\rho_{\operatorname{vol}}(L, L') = d_{\mathcal{W}}(\operatorname{vol}(L), \operatorname{vol}(L')),$$

where $\overline{\mathrm{vol}}(F)$ denotes the normalized volume of the leaf F.

We will now restrict to the compact foliations of dimension 1. We will study the convergence in the Wasserstein-Hausdorff topology of the natural isometric embeddings $\iota: M_t \to \mathcal{P}(M)$ defined by

$$\iota_t(x) = D_t \delta_x$$

Precisely speeking, $\iota_t(M, D_t d)$ is a compact subset of $\mathcal{P}(M)$, while we define the Wasserstein-Hausdorff distance of diffused metrics by

$$d_{\mathcal{WH}}(M_t, M_s) = (d_{\mathcal{W}})_H(\iota_t(M), \iota_s(M)),$$

where $(d_{\mathcal{W}})_H$ denotes the Hausdorff distance of closed subsets of $\mathcal{P}(M)$.

Theorem 4.4. The Gromov-Hausdorff limit of a diffused foliation with empty bad set is isometric to the space of leaves equipped with the metric ρ_{vol} .

The following example visualizes that in the above Theorem the assumption on the bad set is necessary.

EXAMPLE 4.5. Following [12], let G be a topological group, while $\gamma : [0, 2\pi] \to G$ a closed curve. One can define a one dimensional foliation $\mathcal{F}(\gamma)$ on $S^1 \times G$ filling it by closed curves as follows:

328

$$[0, 2\pi] \ni s \mapsto (s, \gamma(s)\gamma(t)^{-1}x).$$

Leaves of $\mathcal{F}(\gamma)$ are the fibers of a trivial bundle over G with a fiber S^1 . Moreover, if G is a Lie group then $\mathcal{F}(\gamma)$ is a C^r -foliation if only γ is a C^r -curve.

Consider as a Lie group a sphere $S^3 = \{(z, w) \in \mathbb{C}^2 : z\bar{z} + w\bar{w} = 1\}$ with multiplication defined by

$$(a,b) \cdot (c,d) = (ac - b\overline{d}, ad + b\overline{c}).$$

The first step is to define, for any $\tau \in (0,1]$, a curve $\gamma_{\tau} : [0,2\pi] \to S^3$ as follows:

1. if
$$\tau = \frac{1}{2n+1} - t$$
, $0 \le t \le \frac{1}{(2n+1)(2n+2)} = a_n$, $n = 0, 1, 2, ...$ then
 $\gamma_{\tau}(s) = (\sqrt{1 - (\frac{t}{a_n})^2} e^{ins}, \frac{t}{a_n} e^{ins}), \quad s \in [0, 2\pi];$
2. if $\tau = \frac{1}{2n} - t$, $0 \le t \le \frac{1}{2n(2n+1)} = b_n$, $n = 1, 2, ...$ then

$$\gamma_{\tau}(s) = (\frac{t}{b_n} e^{ins}, \sqrt{1 - (\frac{t}{b_n})^2} e^{i(n+1)s}), \quad s \in [0, 2\pi].$$

One can easily check that the family γ_{τ} is continuous. Next step is to foliate $(0, 1] \times S^1 \times S^3$ foliating, for given $\tau \in (0, 1]$, the set $\{\tau\} \times S^1 \times S^3$ by $\mathcal{F}(\gamma_{\tau})$. Directly from the definition of $\mathcal{F}(\gamma_{\tau})$, one can see that the length of leaves tends to infinity, and the length of the S^1 component of the vector tangent to a leaf goes to 0 while $\tau \to 0$. Moreover, γ_{τ} converge tangentially to the left co-sets of closed 1-parameter subgroup

$$H = \{ (e^{is}, 0), s \in [0, 2\pi] \}$$

Complementing the foliation of $M = [0,1] \times S^1 \times S^3$ by a foliation of $\{0\} \times S^1 \times S^3$ by leaves of the form

$$\{0\} \times \{t\} \times H \cdot g, \quad g \in S^3, t \in S^1$$

we obtain 1-dimensional foliation $\tilde{\mathcal{F}}$ of $[0,1] \times S^1 \times S^3$ with nonempty bad set.

Now, we introduce a modification of $\tilde{\mathcal{F}}$ to obtain our target foliation.

Let $h: [0, 2\pi] \to [0, 2\pi]$ be a increasing function with the graph as on the Figure 1

Next, let $\bar{h}: [0,1] \times [0,2\pi] \to [0,2\pi]$ be a smooth homotopy from identity to h, that is $\bar{h}(t,s) = (1-t)s + th(s)$. Define a modificating function $h: [0,1] \times [0,2\pi] \to [0,2\pi]$ by the formula

$$\tilde{h}(t,s) = \begin{cases} \bar{h}(2t,s) & \text{for } t \in [0,\frac{1}{2}], \\ \bar{h}(-2t+2,s) & \text{for } t \in [\frac{1}{2},1]. \end{cases}$$

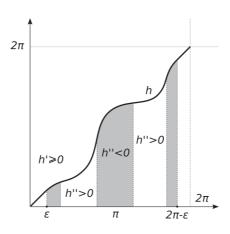


Figure 1: A modificating function.

Having \tilde{h} , we define mappings $H_n: [0,1] \times S^1 \times S^3 \to [0,1] \times S^1 \times S^3$ by

$$\tilde{H}_n(\tau, s, x) = \begin{cases} (\tau, \tilde{h}(n(n+1)\tau - n), s), x) \\ & \text{for } (\tau, s, x) \in \left[\frac{1}{2n+2}, \frac{1}{2n+1}\right] \times S^1 \times S^3, \\ (\tau, s, x) & \text{otherwise.} \end{cases}$$

Note that H_n changes $\tilde{\mathcal{F}}$ only on the set

$$(\tau, s, x) \in [\frac{1}{2n+2}, \frac{1}{2n+1}] \times S^1 \times S^3$$

and leaves it unchanged everywhere else.

Let us modify the foliation $\tilde{\mathcal{F}}$ as follows: For $n_1 = 1$ set $\mathcal{F}_1 = (H_1)_* \tilde{\mathcal{F}}$. Next, choose $\theta_1 > 0$ such that for all $\theta > \theta_1$ and all $p = (\tau, s, x) \in [\frac{1}{2n_1+2}, 1] \times S^1 \times S^3$

$$d_{\mathcal{W}}(D_{\theta_1}\delta_p, \overline{\mathrm{vol}}(L_p)) < \frac{1}{2^{n_1}}.$$

Suppose that we have choosen $n_k > n_{k-1}$ and $\theta_k > \theta_{k-1}$ such that for foliation

$$\mathcal{F}_k = (H_k \circ \cdots \circ H_1)_* \mathcal{F}$$

and all $p=(\tau,s,x)\in [\frac{1}{2(n_k+1)},1]\times S^1\times S^3$

$$d_{\mathcal{W}}(D_{\theta_k}\delta_p, \overline{\mathrm{vol}}(L_p)) < \frac{1}{2^{n_k}}.$$

Let us choose $n_{k+1} > n_k$ for which all leaves of $\mathcal{F}_{k+1} = (H_{k+1})_* \mathcal{F}_k$ passing through $p = (\tau, s, x) \in [0, \frac{1}{n_{k+1}}] \times S^1 \times S^3$ satisfy

$$d_{\mathcal{W}}(D_{\theta_k}\delta_p, \overline{\mathrm{vol}}(L_{(0,s,x)})) < \frac{1}{2^k}.$$

330

Finally foliation \mathcal{F} as $(\cdots H_n \circ \cdots \circ H_1)_* \tilde{\mathcal{F}}$ and consider the Riemannian metric d induced from \mathbb{R}^7 equipped with \mathcal{F} on M.

Theorem 4.6. The family of $(M, \mathcal{F}, D_t d)$ does not satisfies the Cauchy condition in Wasserstein-Hausdorff topology. Namely, there exists $\epsilon_0 > 0$ such that for any T > 0 one can find $\theta, \lambda > T$ satisfying

$$d_{\mathcal{WH}}(M_{\theta}, M_{\lambda}) > \epsilon_0.$$

References

- A. Candel, The harmonic measures of Lucy Garnett, Advances in Math., Vol. 176 (2003) no. 2, 187-247.
- [2] A. Candel, L. Conlon, Foliations I and II, AMS, Province, 2001, 2003.
- [3] I. Chavel, *Eigenvalues in Riemannian geometry*
- [4] R. Edwards & K. Millett & D. Sullivan, Foliations with all leaves compact, Topology 16 (1977), 13-32.
- [5] D.B.A. Epstein, Periodic flows on 3-manifolds, Ann. of Math. 95 (1972), 66-82.
- [6] D.B.A. Epstein, *Foliations with all leaves compact*, Ann. Inst. Fourier Grenoble 26 (1976), 265-2822.
- [7] Epstein, Vogt, A counterexapmle to the periodic orbit conjecture, Ann. Math. 108 (1978), 539-552.
- [8] L. Garnett, Foliations, the Ergodic Theorem and Brownian Motions, J. Func. Anal. 51 (1983), no. 3, 285-311.
- [9] D. Sullivan, A counterexapple to the periodic orbit conjecture, Publ. Math. de IHES, (1976) Vol. 46.1, 5-14.
- [10] C. Villani, Topics in optimal transportation, AMS 2003.
- [11] C. Villani, Optimal Transport, Old and New, Springer 2009.
- [12] Vogt, A periodic flow with infinite Epstein hierarchy, Manuscripta Math. 22 (1977), 403-412.
- [13] P. Walczak, Dynamics of foliations, Groups and Pseudogroups, Birkhäuser 2004.

University of Łódź ul. Banacha 22, 90-238 Łódź, Poland szymon.walczak@math.uni.lodz.pl