
Geometry and Foliations 2013
Komaba, Tokyo, Japan

Metric diffusion along compact foliations
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1. Wasserstein metric

The Wasserstein distance dW of Borel probability measures µ and ν on
Polish space X (complete separable metric space) endowed with a metric
d is defined by

dW(µ, ν) = inf

∫
M×M

d(x, y)dρ

where infimum is taken over all Borel probability measures ρ on X × X
satisfying for any measurable sets A,B ⊂ X

ρ(A×X) = µ(A),

ρ(X ×B) = ν(B).

A measure ρ is called a coupling of µ and ν. The set P(M) of all Borel
probability measures with finite first moment endowed with dW is a metric
space. Moreover, dW metrizes the weak-∗ topology. The metric dW comes
from the Monge-Kantorovich optimal transportation problem [10] [11]. One
can find that

Theorem 1.1. [11] For any two Borel probability there exists a coupling ρ
for which the Wasserstein distance is realized.

One should notice that the Wasserstein distance dW(δx, δy) of Dirac
masses concentrated in points x, y ∈ M is equal to the distance d(x, y).
This fact follows directly from the fact, that δ(x,y) is the only coupling of δx
and δy.

Let ∆k = {(t1, . . . , tk) ∈ Rk : tj ≥ 0,
∑

j tj = 1}.

Proposition 1.2. The set

D(M) = {µ ∈ P(M) : µ =
k∑
i=1

tkδxk , (t1, . . . , tk) ∈ ∆k, x1, . . . , xk ∈M}

is dense in P(M).
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2. Harmonic measures and heat diffusion

Let (M,F , g) be a smooth closed oriented foliated manifold equipped with
a Riemannian metric g and Laplace-Beltrami operator ∆ defined by

∆f = div∇f.

Let ∆F be foliated Laplace-Beltrami operator [2] [13] given by

∆Ff(x) = ∆Lxf(x), x ∈M,

where Lx is a leaf through x, and ∆L is Laplace-Beltrami operator on
(L, g|L). The operator ∆F acts on bounded measurable functions, which
are C2-smooth along the leaves.

Let us recall that a probability measure µ on (M,F , g) is called har-
monic if for any f : M → R ∫

M

∆Ffdµ = 0.

Theorem 2.1. [8] [1] On any compact foliated Riemannian manifold, har-
monic probability measures exist.

One can associate with the operator ∆F the one-parameter semigroup
Dt, t ≥ 0, of heat diffusion operators characterized by

d0 = id, Dt+s = Dt ◦Ds,
d

dt
Dt|t=0 = ∆F .

Dt restricted to a leaf L ∈ F coincides with the heat diffusion operators on
L, which are given by

(2.2) Dtf(x) =

∫
Lx

f(y)p(x, y; t)d volLx ,

where p(·, ·; t) is a foliated heat kernel [2] on (M,F). The foliated heat
kernel is nonnegative and for any t > 0 satisfies∫

Lx

p(x, y; t)d volLx = 1.

Let µ be a probability measure on M . According to [2, 13], one can
define the diffused measure Dtµ by the formula∫

fdDtµ =

∫
Dtfdµ,

where f is any bounded measurable function on M . A measure µ is called
diffusion invariant when Dtµ = µ for all t > 0.



327

3. Diffused metric

Let (M,F , g) be a smooth compact foliated manifold equipped with a Rie-
mannian metric g and carrying foliation F . Let δt denotes the Dirac mea-
sure at point x. For t > 0 the metric

(3.1) Dtd(x, y) = dW(Dtδx, Dtδy)

will be called the metric diffused along the foliation F at time t. Since
dW(δx, δy) = d(x, y) for any x, y ∈ M and D0 = id, we see that D0d
coincides the metric d. The metric space (M,Dtd) will be denoted by Mt.

Theorem 3.2. For any s, t ≥ 0, metrics Dtd and Dsd are equivalent.

4. Metric diffusion for compact foliations of dimen-
sion one

First, we recall some facts about compact foliations, i.e. foliations with all
leaves compact. The topology of the leaf space of a compact foliation F on
a compact manifold M does not have to be Hausdorff. Examples of such
foliations were presented by Epstein and Vogt [7], Sullivan [9] and Vogt
[12].

The following result describes the topology of a compact foliation in few
equivalent conditions. First, denote by π : M → L the quotient projection
defined by π(x) = Lx, where L denotes the space of leaves of a foliation
F , i.e., a quotient space of the equivalence relation x ∼ y if and only if
Lx = Ly, where Lz denotes the leaf through z.

Theorem 4.1. [6] The following conditions are equivalent:

1. π is a closed map.

2. π maps compact sets onto closed sets.

3. Each leaf has arbitrarily small saturated neighborhoods.

4. L with quotient topology is Hausdorff.

5. If K ⊆M is compact, then the saturation of K is also compact.

Let GF be the set of all points x ∈M near which the volume function
is bounded, i.e., x ∈ GF if and only if there exists an open neighborhood
U of x such that the volumes of all leaves passing through U are uniformly
bounded. The set GF is called the good set of the foliation F . Due to [5],
GF is open, saturated, and dense in M and all holonomy groups of leaves
contained in GF are finite. The complement BF = M \ GF of the good
set is called the bad set. It follows directly from the definition of the good
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set and Theorem 4.1 that foliations with empty bad set have a volume of
leaves commonly bounded.

One of the most important results about compact foliations is the fol-
lowing:

Theorem 4.2. [4] Let us suppose that M is a smooth compact Riemannian
manifold which is foliated by compact foliation of co-dimension one or two.
There is an upper bound of the volumes of the leaves of M .

Let F be a compact foliation on a compact Riemannian manifold (M, g)
with the volume of leaves commonly bounded above. The classical result
says that on a compact manifold M the heat is evenly distributed over M
while time is tending to infinity. More precisely,

Theorem 4.3. [3] For any f ∈ L2(M), the function Dtf converges uni-
formly, as t goes to the infinity, to a harmonic function on M . Since M is
compact, the limit function is a constant.

Let L,L′ ∈ F be two leaves. One can define the metric ρ vol in the
space of leaves by

ρ vol(L,L
′) = dW( vol(L), vol(L′)),

where vol(F ) denotes the normalized volume of the leaf F .
We will now restrict to the compact foliations of dimension 1. We will

study the convergence in the Wasserstein-Hausdorff topology of the natural
isometric embeddings ι : Mt → P(M) defined by

ιt(x) = Dtδx.

Precisely speeking, ιt(M,Dtd) is a compact subset of P(M), while we define
the Wasserstein-Hausdorff distance of diffused metrics by

dWH(Mt,Ms) = (dW)H(ιt(M), ιs(M)),

where (dW)H denotes the Hausdorff distance of closed subsets of P(M).

Theorem 4.4. The Gromov-Hausdorff limit of a diffused foliation with
empty bad set is isometric to the space of leaves equipped with the metric
ρ vol.

The following example visualizes that in the above Theorem the as-
sumption on the bad set is necessary.

Example 4.5. Following [12], let G be a topological group, while γ :
[0, 2π] → G a closed curve. One can define a one dimensional foliation
F(γ) on S1 ×G filling it by closed curves as follows:
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Through a point (t, x) ∈ S1 ×G passes a curve

[0, 2π] 3 s 7→ (s, γ(s)γ(t)−1x).

Leaves of F(γ) are the fibers of a trivial bundle over G with a fiber
S1. Moreover, if G is a Lie group then F(γ) is a Cr-foliation if only γ is a
Cr-curve.

Consider as a Lie group a sphere S3 = {(z, w) ∈ C2 : zz̄ + ww̄ = 1}
with multiplication defined by

(a, b) · (c, d) = (ac− bd̄, ad+ bc̄).

The first step is to define, for any τ ∈ (0, 1], a curve γτ : [0, 2π] → S3

as follows:

1. if τ = 1
2n+1

− t, 0 ≤ t ≤ 1
(2n+1)(2n+2)

= an, n = 0, 1, 2, . . . then

γτ (s) = (

√
1− (

t

an
)2 eins,

t

an
eins), s ∈ [0, 2π];

2. if τ = 1
2n
− t, 0 ≤ t ≤ 1

2n(2n+1)
= bn, n = 1, 2, . . . then

γτ (s) = (
t

bn
eins,

√
1− (

t

bn
)2 ei(n+1)s), s ∈ [0, 2π].

One can easily check that the family γτ is continuous.
Next step is to foliate (0, 1]×S1×S3 foliating, for given τ ∈ (0, 1], the

set {τ} × S1 × S3 by F(γτ ) . Directly from the definition of F(γτ ), one
can see that the length of leaves tends to infinity, and the length of the S1

component of the vector tangent to a leaf goes to 0 while τ → 0. Moreover,
γτ converge tangentially to the left co-sets of closed 1-parameter subgroup

H = {(eis, 0), s ∈ [0, 2π]}.
Complementing the foliation of M = [0, 1] × S1 × S3 by a foliation of
{0} × S1 × S3 by leaves of the form

{0} × {t} ×H · g, g ∈ S3, t ∈ S1

we obtain 1-dimensional foliation F̃ of [0, 1]× S1 × S3 with nonempty bad
set.

Now, we introduce a modification of F̃ to obtain our target foliation.
Let h : [0, 2π] → [0, 2π] be a increasing function with the graph as on

the Figure 1
Next, let h̄ : [0, 1] × [0, 2π] → [0, 2π] be a smooth homotopy from

identity to h, that is h̄(t, s) = (1 − t)s + th(s). Define a modificating

function h̃ : [0, 1]× [0, 2π]→ [0, 2π] by the formula

h̃(t, s) =

{
h̄(2t, s) for t ∈ [0, 1

2
],

h̄(−2t+ 2, s) for t ∈ [1
2
, 1].
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Figure 1: A modificating function.

Having h̃, we define mappings Hn : [0, 1]× S1 × S3 → [0, 1]× S1 × S3

by

H̃n(τ, s, x) =

 (τ, h̃(n(n+ 1)τ − n), s), x)
for (τ, s, x) ∈ [ 1

2n+2
, 1

2n+1
]× S1 × S3,

(τ, s, x) otherwise.

Note that Hn changes F̃ only on the set

(τ, s, x) ∈ [
1

2n+ 2
,

1

2n+ 1
]× S1 × S3

and leaves it unchanged everywhere else.
Let us modify the foliation F̃ as follows:
For n1 = 1 set F1 = (H1)∗F̃ . Next, choose θ1 > 0 such that for all

θ > θ1 and all p = (τ, s, x) ∈ [ 1
2n1+2

, 1]× S1 × S3

dW(Dθ1δp, vol(Lp)) <
1

2n1
.

Suppose that we have choosen nk > nk−1 and θk > θk−1 such that for
foliation

Fk = (Hk ◦ · · · ◦H1)∗F̃
and all p = (τ, s, x) ∈ [ 1

2(nk+1)
, 1]× S1 × S3

dW(Dθkδp, vol(Lp)) <
1

2nk
.

Let us choose nk+1 > nk for which all leaves of Fk+1 = (Hk+1)∗Fk passing
through p = (τ, s, x) ∈ [0, 1

nk+1
]× S1 × S3 satisfy

dW(Dθkδp, vol(L(0,s,x))) <
1

2k
.
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Finally foliation F as (· · ·Hn◦· · ·◦H1)∗F̃ and consider the Riemannian
metric d induced from R7 equipped wih F on M .

Theorem 4.6. The family of (M,F , Dtd) does not satisfies the Cauchy
condition in Wasserstein-Hausdorff topology. Namely, there exists ε0 > 0
such that for any T > 0 one can find θ, λ > T satisfying

dWH(Mθ,Mλ) > ε0.
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