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Metric diffusion along compact foliations
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1. Wasserstein metric

The Wasserstein distance dyy of Borel probability measures p and v on
Polish space X (complete separable metric space) endowed with a metric
d is defined by

dw(p,v) = inf/ d(z,y)dp
MxM

where infimum is taken over all Borel probability measures p on X x X
satisfying for any measurable sets A, B C X

p(A x X) = p(A),
p(X x B) =v(B).

A measure p is called a coupling of ;1 and v. The set P(M) of all Borel
probability measures with finite first moment endowed with d,y is a metric
space. Moreover, dy, metrizes the weak-x topology. The metric dy, comes
from the Monge-Kantorovich optimal transportation problem [10] [11]. One
can find that

Theorem 1.1. [11] For any two Borel probability there exists a coupling p
for which the Wasserstein distance is realized.

One should notice that the Wasserstein distance dyy(d,,d,) of Dirac
masses concentrated in points z,y € M is equal to the distance d(x,y).
This fact follows directly from the fact, that d(, ) is the only coupling of 4,
and 0.

Let A% = {(t1,...,tx) €R" 1 1; > 0,3 t; = 1}.

Proposition 1.2. The set
k
DM)={pePM):p=> ts, (tr,....tx) € A, 21, 2 € M}
=1

is dense in P(M).
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2. Harmonic measures and heat diffusion

Let (M, F, g) be a smooth closed oriented foliated manifold equipped with
a Riemannian metric g and Laplace-Beltrami operator A defined by

Af = divV /.
Let Az be foliated Laplace-Beltrami operator 2] [13] given by
Arf(z) =Ar, f(z), ze€M,

where L, is a leaf through z, and Ay is Laplace-Beltrami operator on
(L,g|L). The operator Az acts on bounded measurable functions, which
are C%-smooth along the leaves.

Let us recall that a probability measure p on (M, F,g) is called har-
monic if for any f: M — R

M

Theorem 2.1. /8] [1] On any compact foliated Riemannian manifold, har-
monic probability measures exist.

One can associate with the operator Az the one-parameter semigroup
Dy, t >0, of heat diffusion operators characterized by

d
dO = lda Dt+5 = Dt o Dsa aDth:O = A]:

D, restricted to a leaf L € F coincides with the heat diffusion operators on
L, which are given by

(2.2) Duf(x) = / F(w)p(ey: t)d vols,.

where p(-,-;t) is a foliated heat kernel [2] on (M,F). The foliated heat
kernel is nonnegative and for any ¢ > 0 satisfies

/p(:c,y;t)d vol,, = 1.

Ly

Let p be a probability measure on M. According to [2, 13|, one can
define the diffused measure D by the formula

[ tivu= [ Disan,

where f is any bounded measurable function on M. A measure p is called
diffusion invariant when D;u = p for all £ > 0.
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3. Diffused metric

Let (M, F,g) be a smooth compact foliated manifold equipped with a Rie-
mannian metric g and carrying foliation F. Let ¢; denotes the Dirac mea-
sure at point x. For £ > 0 the metric

(31) Dtd(x7y) = dW(DtéxyDt(Sy)

will be called the metric diffused along the foliation F at time t. Since
dw(6z,0y) = d(z,y) for any z,y € M and Dy = 1id, we see that Doyd
coincides the metric d. The metric space (M, Dyd) will be denoted by M.

Theorem 3.2. For any s,t > 0, metrics Did and Dgd are equivalent.

4. Metric diffusion for compact foliations of dimen-
sion one

First, we recall some facts about compact foliations, i.e. foliations with all
leaves compact. The topology of the leaf space of a compact foliation F on
a compact manifold M does not have to be Hausdorff. Examples of such
foliations were presented by Epstein and Vogt [7], Sullivan [9] and Vogt
[12].

The following result describes the topology of a compact foliation in few
equivalent conditions. First, denote by 7 : M — L the quotient projection
defined by m(x) = L,, where £ denotes the space of leaves of a foliation
F, i.e., a quotient space of the equivalence relation x ~ y if and only if
L, = L,, where L, denotes the leaf through z.

Theorem 4.1. [6] The following conditions are equivalent:

1. m1s a closed map.

T maps compact sets onto closed sets.

Each leaf has arbitrarily small saturated neighborhoods.
L with quotient topology is Hausdorff.

If K C M s compact, then the saturation of K s also compact.

Let G be the set of all points « € M near which the volume function
is bounded, i.e., x € G £ if and only if there exists an open neighborhood
U of x such that the volumes of all leaves passing through U are uniformly
bounded. The set G £ is called the good set of the foliation F. Due to [5],
G r is open, saturated, and dense in M and all holonomy groups of leaves
contained in Gx are finite. The complement B = M \ Gx of the good
set is called the bad set. It follows directly from the definition of the good
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set and Theorem 4.1 that foliations with empty bad set have a volume of
leaves commonly bounded.

One of the most important results about compact foliations is the fol-
lowing;:

Theorem 4.2. [4] Let us suppose that M is a smooth compact Riemannian
manifold which is foliated by compact foliation of co-dimension one or two.
There is an upper bound of the volumes of the leaves of M.

Let F be a compact foliation on a compact Riemannian manifold (M, g)
with the volume of leaves commonly bounded above. The classical result
says that on a compact manifold M the heat is evenly distributed over M
while time is tending to infinity. More precisely,

Theorem 4.3. [3] For any f € L*(M), the function Df converges umi-
formly, as t goes to the infinity, to a harmonic function on M. Since M is
compact, the limit function is a constant.

Let L,L' € F be two leaves. One can define the metric p o in the
space of leaves by

P vol(L’ L,) = dW<W(L>7W(L,))7

where vol(F) denotes the normalized volume of the leaf F'.

We will now restrict to the compact foliations of dimension 1. We will
study the convergence in the Wasserstein-Hausdorff topology of the natural
isometric embeddings ¢ : My — P(M) defined by

t(x) = Dy,.

Precisely speeking, ¢,(M, D,d) is a compact subset of P(M), while we define
the Wasserstein-Hausdorff distance of diffused metrics by

dwn (M, My) = (dw)r (ee(M), vs(M)),
where (dyy)g denotes the Hausdorff distance of closed subsets of P(M).

Theorem 4.4. The Gromov-Hausdorff limit of a diffused foliation with
empty bad set is isometric to the space of leaves equipped with the metric

P wvol-

The following example visualizes that in the above Theorem the as-
sumption on the bad set is necessary.

ExAMPLE 4.5. Following [12], let G be a topological group, while ~ :
[0,27] — G a closed curve. One can define a one dimensional foliation
F(v) on S* x G filling it by closed curves as follows:
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Through a point (¢,z) € S! x G passes a curve

1

0,27] 3 s+ (s,7(s)v(t) " ).

Leaves of F(y) are the fibers of a trivial bundle over G with a fiber
S1. Moreover, if G is a Lie group then F(v) is a C"-foliation if only ~ is a
C"-curve.

Consider as a Lie group a sphere S® = {(z,w) € C*: 2z + ww = 1}
with multiplication defined by

(a,b) - (¢,d) = (ac — bd, ad + bc).

The first step is to define, for any 7 € (0,1], a curve 7, : [0, 27] — S3
as follows:

: _ 1 1 _ _
1. 1f7’—m—t,0§t§m—an,n—o,l,Q,... then
t ins t ins
fyT(S) :( 1_( )26 ) e )7 s € [0727T]7

Qn Qn

2. ifT:%—t,OStS% =b,,n=1,2,... then

1
(2n+1)

t t
r(s) = (- ™ 1= () ), s e [0, 27).

One can easily check that the family v, is continuous.

Next step is to foliate (0, 1] x S* x S3 foliating, for given 7 € (0, 1], the
set {7} x S* x S% by F(v,) . Directly from the definition of F(v,), one
can see that the length of leaves tends to infinity, and the length of the S*
component of the vector tangent to a leaf goes to 0 while 7 — 0. Moreover,
v, converge tangentially to the left co-sets of closed 1-parameter subgroup

H = {(e,0),s € [0,27]}.

Complementing the foliation of M = [0,1] x S' x S3 by a foliation of
{0} x S' x S2 by leaves of the form

{0y x{t} xH-g, geS*tecst

we obtain 1-dimensional foliation F of [0,1] x S* x S* with nonempty bad
set.

Now, we introduce a modification of F to obtain our target foliation.

Let h : [0,27] — [0,27] be a increasing function with the graph as on
the Figure 1

Next, let h : [0,1] x [0,27] — [0,27] be a smooth homotopy from
identity to h, that is h(t,s) = (1 — t)s + th(s). Define a modificating
function A : [0,1] x [0, 27] — [0, 27] by the formula

~ B B(2t7 S) for t € [Oa %
h(t,s) = { h(=2t+2,s) fortel[i,1

J
]
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2n

h'>0 .

< h'>0 on

£ m 2m-€

Figure 1: A modificating function.

Having h, we define mappings H,, : [0,1] x S x §3 — [0,1] x S' x $3

by

i (m, h(n(n + 1)1 = n),s),

H,(t,s,2) = for (1,s,2) € [ﬁ, ﬁ] x St x S3,

(1,5,7) otherwise.
Note that H,, changes F only on the set
1 1
x St x 3
(7.5,2) € [—s 3]

and leaves it unchanged everywhere else.
Let us modify the foliation F as follows:
For n; = 1 set F; = (H;)«F. Next, choose #; > 0 such that for all

0> 6, and all p = (7,s,7) € [2n11+2,1] x St x 93

- 1
dW(D915p7 VOI(LP)) < %
Suppose that we have choosen ny > n,_; and 0, > 0;_; such that for
foliation

fk:<HkO"'OH1)*.F
and all p = (7,s,2) € [m,l] x St x §3

dy (Dg, 0y, vOl(Ly)) < o
Let us choose ny1 > ny, for which all leaves of Fjy 1 = (Hyy1)«Fr passing
through p = (7, s,7) € [0, ] x S* x S3 satisfy

P M1

— 1
dW(-DGk(Sp? VOl(L((]’S’x))) < ?
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Finally foliation F as (- - - Hyo- - -0 Hy),F and consider the Riemannian
metric d induced from R7 equipped wih F on M.

Theorem 4.6. The family of (M,F,D,d) does not satisfies the Cauchy
condition in Wasserstein-Hausdorff topology. Namely, there exists ¢g > 0
such that for any T > 0 one can find 0, X > T satisfying

1]

NS

<

1
[11]
[12]

[13]

dywu (Mg, My) > €.
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