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1. Introduction

The uniform topology is one of basic topologies on function spaces. In this
note we report some results on local and global deformation properties of
spaces of uniform embeddings and groups of uniform homeomorphisms in
metric manifolds endowed with the uniform topology.

Our main goal is to understand local or global topological properties of
groups of uniform homeomorphisms of metric manifolds endowed with the
uniform topology (for example, local contractibility, homotopy type, local
or global topological type as infinite-dimensional manifolds, etc). Since the
notions of uniform continuity and uniform topology depend on the choice of
metrics, we are also interested in dependence of those topological properties
on the behavior of metrics in neighborhoods of ends of manifolds.

In [6] we studied the formal behaviour of local deformation property
in the space of uniform embeddings and showed that this property is pre-
served by the restriction and union of domains of uniform embeddings.
This observation reduces our problem to the study of simpler pieces. In [2]
A.V. Černavskĭı considered the case where the manifold M is the interior
of a compact manifold N and the metric d is a restriction of some metric on
N . Recently, in [5] we treated the class of metric covering spaces over com-
pact manifolds. In this case we can deduce a local deformation theorem for
uniform embeddings from the Edwards-Kirby local deformation theorem
for embeddings of compact spaces and the classical Arzela-Ascoli theorem
for equi-continuous families of maps ([5, Theorem 1.1]). The additivity of
local deformation property implies that any metric manifold with a locally
geometric group action also has the same local deformation property ([6,
Theorem 4.1]).

The local deformation property for uniform embeddings implies the lo-
cal contractibility of the group of uniform homeomorphisms. Our next aim
is to study its global deformation property. The most standard example
is the Euclidean space Rn with the standard Euclidean metric. Its rele-
vant feature is the existence of similarity transformations. This enables us
to deduce a global deformation for uniform embeddings in the Euclidean
end from the local one. Since this property is preserved by bi-Lipschitz
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homeomorphisms, we obtain a global deformation theorem for the group
of uniform homeomorphisms of any metric manifold with finitely many bi-
Lipschitz Euclidean ends ([5, Theorem 1.2]). This implies, for instance, the
contractibility of the identity components of the groups of uniform home-
omorphisms of Rn and any non-compact 2-manifold with finitely many
bi-Lipschitz Euclidean ends ([5, Example 1.1]).

In the succeeding sections we explain some details of the statements
described in this introduction. Section 2 contains local deformation results
for uniform embeddings. Section 3 includes global deformation results for
uniform homeomorphisms.

2. Local deformation property for uniform embed-
dings

2.1. Suppose (X, d) is a metric space. For subsets A,B of X we write
A ⊂u B and call B a uniform neighborhood of A in X if B contains the
ε-neighborhood Oε(A) of A in X for some ε > 0.

A map f : (X, d)→ (Y, ρ) between metric spaces is said to be uniformly
continuous if for each ε > 0 there is a δ > 0 such that if x, x′ ∈ X and
d(x, x′) < δ then ρ(f(x), f(x′)) < ε. The map f is called a uniform home-
omorphism if f is bijective and both f and f−1 are uniformly continuous.
A uniform embedding is a uniform homeomorphism onto its image.

A metric manifold means a separable topological manifold possibly with
boundary assigned a fixed metric. Suppose (M,d) is a metric n-manifold.
For subsets X and C of M , let Eu∗ (X,M ;C) denote the space of proper
uniform embeddings f : (X, d|X) → (M,d) such that f = id on X ∩ C.
This space is endowed with the uniform topology induced from the sup-
metric

d(f, g) = sup
{
d(f(x), g(x)) | x ∈ X

}
∈ [0,∞] (f, g ∈ Eu∗ (X,M ;C)).

Definition 2.1. For a subset A of M we say that A has the local defor-
mation property for uniform embeddings in (M,d) and write A : (LD)M if
the following holds:
(∗) for any subset X of A, any uniform neighborhoods W ′ ⊂ W of X in

(M,d) and any subsets Z ⊂u Y of M there exists a neighborhood W
of the inclusion map iW : W ⊂M in Eu∗ (W,M ;Y ) and a homotopy

φ :W × [0, 1] −→ Eu∗ (W,M ;Z) which satisfy the following conditions:

(1) For each h ∈ W
(i) φ0(h) = h, (ii) φ1(h) = id on X,

(iii) φt(h) = h on W −W ′ and φt(h)(W ) = h(W ) (t ∈ [0, 1]),
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(iv) if h = id on W ∩ ∂M , then φt(h) = id on W ∩ ∂M (t ∈ [0, 1]).

(2) φt(iW ) = iW (t ∈ [0, 1]).

In the case where A = M we omit the subscript M in the symbol
(LD)M .

The celebrated Edwards-Kirby local deformation theorem [3] can be
restated in the next form.

Theorem 2.2. (Edwards-Kirby [3]) Any relatively compact subset K of M
satisfies the condition (LD)M .

The condition (LD)M has the following formal properties:

Proposition 2.3. ([6, Proposition 3.1, Corollary 3.1, Remark 3.2])

(1) The property (LD) is preserved by any uniform homeomorphism (i.e.,
if (M,d) is uniformly homeomorphic to (N, ρ), then (M,d) : (LD)
⇐⇒ (N, ρ) : (LD).)

(2) (Restriction) (i) Suppose A ⊂ B ⊂ M . Then, B : (LD)M =⇒
A : (LD)M .

(ii) Suppose A ⊂u N ⊂M and N is an n-manifold. Then, A : (LD)N
⇐⇒ A : (LD)M .

(3) (Additivity) (i) Suppose A ⊂u U ⊂ M and B ⊂ M . Then, U ,
B : (LD)M =⇒ A ∪B : (LD)M .

(ii) Suppose M = A ∪ B, A, B are n-manifolds and A − B ⊂u A.
Then, A, B : (LD) =⇒ M : (LD).

(4) Suppose K is a relatively compact subset of M and A ⊂ M . Then,
A : (LD)M ⇐⇒ A ∪K : (LD)M .

(5) (Neighborhoods of ends) Suppose M = K ∪ ∪mi=1Li, K is relatively
compact, each Li is an n-manifold and closed in M , and d(Li, Lj) > 0
for any i 6= j. Then, M : (LD) ⇐⇒ Li : (LD) (i = 1, · · · ,m).

2.2. Metric covering projections and Geometric group actions
Our next aim is to seek concrete examples which have the local defor-

mation property for uniform embeddings. The following notion is a natural
metric version of Riemannian covering projections.

Definition 2.4. A map π : (X, d) → (Y, ρ) between metric spaces is
called a metric covering projection if it satisfies the following conditions:
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(\)1 There exists an open cover U of Y such that for each U ∈ U the
inverse π−1(U) is the disjoint union of open subsets of X each of
which is mapped isometrically onto U by π.

(\)2 For each y ∈ Y the fiber π−1(y) is uniformly discrete in X.

(\)3 ρ(π(x), π(x′)) ≤ d(x, x′) for any x, x′ ∈ X.

Here, a subset A of X is said to be uniformly discrete if there exists an
ε > 0 such that d(x, y) ≥ ε for any distinct points x, y ∈ A. Note that if
Y is an n-manifold, then so is X and ∂X = π−1(∂Y ). From the Edwards-
Kirby local deformation theorem [3] and the Arzela-Ascoli theorem we can
deduce the local deformation theorem for uniform embeddings [5, Theorem
1.1].

Theorem 2.5. If π : (M,d) → (N, ρ) is a metric covering projection and
N is a compact metric manifold, then (M,d) satisfies the condition (LD).

In term of covering transformations, this theorem corresponds to the
case of free group actions. For the non-free case, we have the following
generalization. Recall that an action Φ of a discrete group G on a metric
space X is called geometric if it is proper, cocompact and isometric. (cf.
[1, Chapter I.8]). More generally we say that the action Φ is (i) locally
isometric if for every x ∈ X there exists ε > 0 such that each g ∈ G maps
Oε(x) isometrically onto Oε(gx), and (ii) locally geometric if it is proper,
cocompact and locally isometric.

Corollary 2.6. ([6, Theorem 4.1]) A metric manifold (M,d) satisfies the
condition (LD) if it admits a locally geometric group action.

Example 2.7. The Euclidean space Rn with the standard Euclidean met-
ric admits the canonical geometric action of Zn and the associated Rieman-
nian covering projection π : Rn → Rn/Zn onto the flat torus. Therefore,
Rn has the property (LD). From Proposition 2.3 (4) and (3) it follows
that the Euclidean ends Rnr = Rn − Or(0) (r > 0) and the half space
Rn≥0 = {x ∈ Rn | xn ≥ 0} also have the property (LD).

3. Groups of uniform homeomorphisms

Suppose (X, d) is a metric space and A is a subset of X. Let Hu
A(X, d)

denote the group of uniform homeomorphisms of (X, d) onto itself which
fix A pointwise, endowed with the uniform topology. Let Hu

A(X, d)0 denote
the connected component of the identity map idX of X in Hu

A(X, d). We
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also consider the subgroup

Hu
A(X, d)b = {h ∈ Hu

A(X, d) | d(h, idX) <∞}.

It is easily seen that Hu
A(X, d)0 ⊂ Hu

A(X, d)b since the latter is both closed
and open in Hu

A(X, d).
The group Hu(M,d) is locally contractible if a metric manifold (M,d)

satisfies the condition (LD) in Section 2. Hence, our main concern in this
section is in the study of its global deformation property.

The most standard model space Rn has the similarity transformations

kγ : Rn ≈ Rn : kγ(x) = γx (γ > 0).

Conjugation with these similarity transformations enables us to deduce a
global deformation property for uniform embeddings in the Euclidean ends
Rnr = Rn −Or(0) (r > 0) from the local one. Since this global deformation
property is preserved by bi-Lipschitz equivalence, we can transfer to a more
general setting of metric spaces with finitely many bi-Lipschitz Euclidean
ends.

Recall that a map h : (X, d) → (Y, ρ) between metric spaces is said
to be Lipschitz if there exists a constant C > 0 such that ρ(h(x), h(x′)) ≤
Cd(x, x′) for any x, x′ ∈ X. The map h is called a bi-Lipschitz home-
omorphism if h is bijective and both h and h−1 are Lipschitz maps. A
bi-Lipschitz n-dimensional Euclidean end of a metric space (X, d) means a
closed subset L of X which admits a bi-Lipschitz homeomorphism of pairs,
θ : (Rn1 , ∂Rn1 ) ≈ ((L,FrXL), d|L) and d(X − L,Lr) → ∞ as r → ∞, where
FrXL is the topological frontier of L in X and Lr = θ(Rnr ) for r ≥ 1. We
set L′ = θ(Rn2 ) and L′′ = θ(Rn3 ).

Theorem 3.1. ([5, Theorem 1.2]) Suppose X is a metric space and L1, · · · ,
Lm are mutually disjoint bi-Lipschitz Euclidean ends of X. Let L′ =
L′1 ∪ · · · ∪ L′m and L′′ = L′′1 ∪ · · · ∪ L′′m. Then there exists a strong de-
formation retraction φ of Hu(X)b onto Hu

L′′(X) such that

φt(h) = h on h−1(X − L′)− L′ for any (h, t) ∈ Hu(X)b × [0, 1].

This theorem leads to the following conclusions.

Example 3.2. (1) Hu(Rn)b is contractible for every n ≥ 1. In fact, there
exists a strong deformation retraction of Hu(Rn)b onto Hu

Rn3
(Rn) and the

latter is contractible by Alexander’s trick.
(2) Suppose N is a compact connected 2-manifold with a nonempty

boundary and C = ∪mi=1Ci is a nonempty union of some boundary circles of
N . If the noncompact 2-manifoldM = N−C is assigned a metic d such that
for each i = 1, · · · ,m the end Li of M corresponding to the boundary circle
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Ci is a bi-Lipschitz Euclidean end of (M,d), then Hu(M,d)0 ' Hu
L′′(M)0 ≈

HC(N)0 ' ∗.

We close the section with a question on the topological type of the
group Hu(Rn)b. In [4] we studied the topological type of Hu(R)b as an
infinite-dimensional manifold and showed that it is homeomorphic to `∞.
Example 3.2 (1) leads to the following conjecture.

Conjecture 3.3. Hu(Rn)b is homeomorphic to `∞ for any n ≥ 1.
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