The minimal volume orientable hyperbolic 3 -manifold with 4 cusps

Ken'ıchi YOSHIDA

1. Introduction

For hyperbolic 3-manifolds, their volumes are known to be topological invariants. The structure of the set of the volumes of hyperbolic 3-manifolds is known by the Jørgensen-Thurston theorem: The set of the volumes of orientable hyperbolic 3 -manifolds is a well-ordered set of the type ω^{ω} with respect to the order of \mathbb{R}. The volume of an orientable hyperbolic 3 -manifold with n-cusps corresponds to an n-fold limit ordinal.

This theorem gives rise to the problem of determining the minimal volume orientable hyperbolic 3 -manifolds with n cusps. The answers are known in the cases where $0 \leq n \leq 2$. Agol [1] conjectured which manifolds have the minimal volume in the cases where $n \geq 3$. We present the result that we determined it in the case where $n=4$.

Theorem 1.1. The minimal volume orientable hyperbolic 3-manifold with 4 cusps is homeomorphic to the 8_{2}^{4} link complement. Its volume is $7.32 \ldots=$ $2 V_{8}$, where V_{8} is the volume of the ideal regular octahedron.

2. Outline of Proof

8_{2}^{4} link complement is obtained from two ideal regular octahedra by gluing along the faces. Hence we need a lower bound on the volume of an orientable hyperbolic 3 -manifold with 4 cusps. The proof relies on Agol's argument used to determine the minimal volume hyperbolic 3-manifolds with 2 cusps [1].

Let M be a finite volume hyperbolic 3-manifold, and let X be a (nonnecessarily connected) essential surface in M. After we cut M along X, the relative JSJ decomposition can be performed. The obtained components are characteristic or hyperbolic. The union of hyperbolic components is called the guts of $M-X$. The guts admit another hyperbolic metric with totally geodesic boundary. Then we can obtain a lower bound of the volume of M.

[^0]Theorem 2.1 (Agol-Storm-Thurston [2]). Let L be the guts of $M-X$. Then $\operatorname{vol}(M) \geq \operatorname{vol}(L) \geq \frac{V_{8}}{2}|\chi(\partial L)|$, where $\operatorname{vol}(L)$ is defined with respect to the hyperbolic metric of L with totally geodesic boundary.

Therefore it is sufficient that we estimate the Euler characteristic of the boundary of guts. Let M be a finite volume hyperbolic 3-manifold with 4 cusps. At first, we construct an essential surface X such that the guts of $M-X$ have 4 torus or annular cusps. We need to estimate the volume of a hyperbolic manifold L with totally geodesic boundary and 4 cusps. Purely homological arguement shows that L has a non-separating essential surface. Beginning from this surface, we construct an essential surface Y in L such that $\chi(\partial($ guts of $L-Y)) \leq-4$.

References

[1] I. Agol, The minimal volume orientable hyperbolic 2-cusped 3-manifolds, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3723-3732.
[2] I. Agol, P. Storm and W. Thurston, Lower bounds on volumes of hyperbolic Haken 3-manifolds, J. Amer. Math. Soc. 20 (2007), no. 4, 1053-1077.

Graduate School of Mathematical Science, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914
E-mail: kyoshida@ms.u-tokyo.ac.jp

[^0]: Partly supported by "Leading Graduate Course for Frontiers of Mathematical Sciences and Physics" from the Ministry of Education, Culture, Sports, Science and Technology (Mext) of Japan.
 (C) 2013 Ken’ichi Yoshida

