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J. Brüning, F.W. Kamber and K. Richardson
Index theory for basic Dirac operators on
Riemannian foliations 221

S. Courte
Contact manifolds with symplectomorphic symplectizations 225

A. Czarnecki
Transverse Ricci flow as a tool for classification of
Riemannian flows 229

M. Czarnecki
Classsification of maximal codimension totally geodesic foliations of
the complex hyperbolic space 233



viii

R. Furukawa
Contact embeddings of some contact three manifolds into
the standard five sphere 235

N. Hashiguchi
Birkhoff sections for geodesic flows of hyperbolic surfaces 239

M. Hirayama
Holonomy maps along tangencies 243

N. Kato
Lie foliations transversely modeled on nilpotent Lie algebras 247

M. Kawasaki
Superheavy subsets and
noncontractible Hamiltonian circle actions 251

H. Kodama (j/w S. Matsumoto)
Minimal C1-diffeomorphisms of the circle which
admit measurable fundamental domains 259

M. Kourganoff
Configuration spaces of linkages on Riemannian surfaces 263

A. Kowalik
Some remarks on the reconstruction problems of
symplectic and cosymplectic manifolds 267

W. Koz lowski (j/w K. Andrzejewski and K. Niedzialomski)
Generalized Newton transformation and
its applications to extrinsic geometry 271

J. Lech and I. Michalik
On the homeomorphism and
diffeomorphism groups fixing a point 281

M. Lużyńczyk
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Brownian motion on
foliated complex surfaces,

Lyapunov exponents and applications

Bertrand DEROIN

To the birthdays of Steven Hurder and Takashi Tsuboi

Introduction

These lectures are motivated by the dynamical study of differential equa-
tions in the complex domain. Most of the topic will concern holomorphic
foliations on complex surfaces, and their connections with the theory of
complex projective structures on curves. In foliation theory, the interplay
between geometry and dynamics is what makes the beauty of the subject.
In these lectures, we will try to develop this relationship even more.

On the geometrical side, we have generalizations of the foliation cycles
introduced by Sullivan, see [68]: namely the foliated harmonic currents, see
e.g. [36, 4]. Those currents permit to think of the foliation as if it were a
genuine algebraic curve. For instance, one can associate a homology class,
compute intersections with divisors on the surface etc. . . These currents
can often be viewed as limits of the (conveniently normalized) currents of
integration on large leafwise domains defined via the uniformization of the
leaves. This point of view, closely related to Nevanlinna theory, is very
fruitful in the applications as we will see. See [5, 28].

On the dynamical side, the leafwise Brownian motions (w.r.t. to some
hermitian metric on the tangent bundle to the foliation, e.g. coming from
uniformization of leaves) generate a Markov process on the complex surface,
whose study was begun by Garnett, see [34]. This Markov process seems
to play a determinant role in the dynamics of foliated complex surfaces.
One reason is that the Brownian motion in two dimensions is conformally
invariant. Another reason is that leafwise Brownian trajectories equidis-
tribute w.r.t. the product of a certain foliated harmonic current times the
leafwise volume element. This makes the connection with the geometrical
side mentioned above.

One of the main theme that will be developed in these lectures is the
construction of numerical invariants that embrace these two aspects (dy-
namical and geometrical) of foliated complex surfaces. The discussion will

Date: July 26, 2013
B.D.’s research was partially supported by ANR-08-JCJC-0130-01, ANR-09-BLAN-0116.
c© 2013 Bertrand Deroin
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emphasize on the definition and properties of the foliated Lyapunov expo-
nent of a harmonic current, which heuristically measures the exponential
rate of convergence of leaves toward each other along leafwise Brown-
ian trajectories. A fruitful formula expresses this dynamical invariant in
terms of the intersection of some foliated harmonic currents and the nor-
mal/canonical bundles of the foliation, see [16]. This formula is a good
illustration of the interplay between geometry and dynamics in foliation
theory. This will be developed in the first lecture.

In the second and third lectures, we will collect some applications of
this formula in different contexts.

The first application concerns Levi-flats in complex algebraic surfaces.
Those are (real) hypersurfaces that are foliated by holomorphic curves.
Most examples occur as three (real) dimensional analytic invariant subsets
of singular algebraic foliations. Foliations having Levi-flats are analogous to
Fuchsian groups (those having an invariant analytic circle in the Riemann
sphere) in the context of Kleinian groups or to Blashke products/Tchebychef
polynomials (having an invariant analytic circle/interval) in the context of
iteration of rational functions. Very little is known about Levi-flats in al-
gebraic surfaces. For instance, it is still unknown wether every algebraic
surface contains a Levi-flat. A folklore conjecture predicts that the com-
plex projective plane should not have any. Still, there exists a multitude
of examples, e.g. in flat ruled bundles over curves, in singular holomorphic
fibrations, in ramified covers of these etc. As we will see, some new restric-
tions concerning the topology of Levi-flats can be deduced from a detailed
analysis of the foliated Lyapunov exponent and its relation to the geometry
of the ambiant surface. For instance, we will prove that a Levi-flat hyper-
surface in a surface of general type is not diffeomorphic to the unitary
tangent bundle of a two dimensional compact orbifold of negative curva-
ture, nor to a hyperbolic torus bundle, and that its fundamental group has
exponential growth. This will be explained in the second lecture, where
we’ll also construct many examples of Levi-flats, most notably we will real-
ize all the models of Thurston’s geometries as Levi-flats in algebraic surfaces
appart the elliptic one. All this is based on a work in collaboration with
Christophe Dupont, see [20].

The second application concerns complex projective structures on
curves. These structures are of interest in various problems of uniformiza-
tion in two or three dimensions. We will define some new invariants
associated to complex projective structures: a Lyapunov exponent, a de-
gree, and a family of harmonic measures (analogous to harmonic measure
of a compact set in the complex line), and we will see how to relate these
invariants. The connexion with foliation theory will be of utmost im-
portance. It comes from the study of the particular class of transversally
holomorphic foliations : any algebraic curve transverse to such a folia-
tion inherits a complex projective structure by restricting the transverse
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projective structure of the foliation to the curve. As an illustration of this
point of view, an algebraic curve in a Hilbert modular surface of the form
Γ\H×H, where Γ is a cocompact lattice in PSL(2,R)×PSL(2,R) inherits
two (branched) complex projective structures from the two (horizontal and
vertical) foliations. We will derive applications of these new invariants,
most notably some estimates for the dimension of harmonic measures of
complex projective structures. In particular, we will recover the Jones–
Wolff and Makarov estimates for classical harmonic measures of limit sets
of Kleinian groups. Another application will be to reinforce the analogy
between complex projective structures and polynomial dynamics, that was
brought to light by McMullen, see [58]. All these developments have been
obtained in collaboration with Romain Dujardin, see [19].

Acknowledgments. I warmly thank the organizers of the conference
Geometry and Foliations 2013 who gave me the opportunity to deliver
these lectures.

1. Lecture 1 – Lyapunov exponents associated to
foliated complex surfaces

1.1. Basic definitions and examples

In this lecture, S will be a complex surface, and F a non singular holo-
morphic foliation on S. Recall that F is a maximal atlas of holomorphic
charts (x, z) : U → D×D (D ⊂ C is the unit disc) defined on open subsets
U covering S, and overlaping as

(x′, z′) = (x′(x, z), z′(z)).

Hence the local fibrations z = cst are preserved by the change of coord-
inates. The fibers of these local fibrations, called the plaques, are glued
together and define Riemann surfaces, called the leaves of the foliation.
The sets D 3 z are called transversal sets, and will be denoted Dt. We
refer to the book [10] for the basics on foliation theory: most notably, the
definition of holonomy maps, transverse invariant measures etc. . .

The data of S and F will be referred to as foliated complex surface. We
assume in the sequel that there exists a compact saturated subset M ⊂ S,
saturated meaning that it is a union of leaves of F . We have in mind various
sources of examples.

Definition 1.1 (Levi-flat). A hypersurface M of class C2 in a complex
surface S inherits a unique distribution by complex lines called the Cauchy–
Riemann distribution. It is defined by the formula TM ∩ iTM where
i =
√
−1. The hypersurface M is called Levi-flat iff the Cauchy–Riemann
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distribution integrates in a foliation, called the Cauchy–Riemann folia-
tion and denoted by F . If the hypersurface M is Levi-flat and analytic,
then F can be extended in the neighborhood of M as a non singular
holomorphic foliation.

In analytic regularity, a more intrinsic view-point is the following

Example 1.2 (Foliated 3-manifolds). A 2-dimensional analytic foliation
of a compact 3-manifold equipped with an analytic complex structure on
its leaves can be embedded in a germ of foliated complex surface. Such a
complex structure can be built using a leafwise orientation plus an analytic
metric on TF , since Riemannian surfaces are conformally flat. In analytic
regularity, this is a theorem of Gauss, see [15, Théorème I.2.1].

Other examples are

Example 1.3 (Riemann-Hilbert correspondance). Let C be an algebraic
curve, and π1(C) → PSL(2,C) ' Aut(P1(C)) be a representation. We
define Sρ = C nρ P1(C) as the flat P1(C) bundle over C with monodromy

ρ. Recall that Sρ is defined as the quotient of C̃ × P1(C) by the action of
π1(C) given by

γ · (x, z) = (γ · x, ρ(γ) · z),

for every γ ∈ π1(C) and (x, z) ∈ C̃ × P1(C). Here C̃ denotes a universal
cover of C, and π1(C) the covering group of this covering. The horizontal

fibration on C̃ × P1(C) whose fibers are the subsets C̃ × z for z ∈ P1(C),
defines on Sρ a non singular holomorphic foliation Fρ.

Remark 1.4. In the case the representation ρ takes values in PSL(2,R),
the foliated surface (Sρ,Fρ) contains a Levi-flat, defined as the twisted
product C nρ P1(R).

1.2. Foliated harmonic currents

As before, let (S,F) be a foliated complex surface and let M be a compact
saturated subset of S. We denote by OF the sheaf of continuous functions
on M which are holomorphic along the leaves, and by C∞F the sheaf of func-
tions f which are smooth along the leaves and all whose leafwise derivatives
∂α+βf
∂xα∂xβ

in holomorphic foliated coordinates are continuous in (x, z). This
definition is independent of the chosen foliated coordinate system. We also

denote by ApF (resp. A
(p,q)
F ) the set of C∞F forms of degree p (resp. bidegree

(p, q)) on TF .
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Definition-Proposition 1.5. A foliated harmonic current is a linear
form T : A1,1

F → R which verifies ∂∂T = 0 in the weak sense (namely
T (∂∂f) = 0 for any smooth function f : S → R), and which is positive
on F (namely T (η) > 0 if η|F > 0). In foliated coordinates, a foliated
harmonic current takes the form

(1.6) T (η) =

∫
Dt

[∫
D×z

ϕ(x, z)η(dxdx)

]
ν(dzdz)

where ν is a Radon measure on the transversal Dt and ϕ ∈ L1(dxdx ⊗ ν)
is harmonic on ν-a.e. plaque D× z.

Proposition 1.7. A compact saturated subset supports a foliated har-
monic current.

Proof. The following proof is due to Ghys, see [36], following ideas of
Sullivan, see [68]. Let A1,1

c be the set of continuous (1, 1)-forms along the
leaves of M , P ⊂ A1,1

c denotes the open convex cone of positive ones, and
E be the set of uniform limits of forms of the type ∂∂f|M with f ∈ C∞(S).
By the maximal principle, P ∩ E = ∅, hence the Hahn-Banach separation
theorem concludes.

Remark 1.8. The existence of foliated harmonic current has been gener-
alized to singular holomorphic foliations by Berndtsson and Sibony. We
refer to [4, Theorem 1.4].

Definition-Proposition 1.9 (Foliation cycles). A foliation cycle is a fo-
liated harmonic current which is d-closed, namely it satisfies T (dη) = 0 for
every η ∈ A1

F . A foliation cycle is expressed locally as

(1.10) T (η) =

∫
Dt

[∫
D×z

η

]
ν(dzdz)

where ν is a Radon measure. The family of measures ν defines a transverse
invariant measure for the foliation (M,F).

Example 1.11 (Leaf closed at infinity). The basic example of foliation
cycle is the integration current on a leaf. A generalization of this is due
to Plante, see [62, Theorem 3.1]. Assume that An ⊂ Ln is a sequence of
compact domains contained in leaves Ln of M , and that we have

(1.12)
length(∂An)

area(An)
→n→∞ 0

where the length and area are measured w.r.t. to a hermitian metric along
the leaves. Then the family of currents Tn := 1

area(An)
[An] is relatively
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compact in the weak∗ topology, and moreover any limit limnk→∞ Tnk is a
foliation cycle. Sullivan generalized this construction, see [68, Theorem
II.8].

1.3. Uniformization

Other examples of foliation cycles or foliated harmonic currents come from
the uniformization of Riemann surfaces, which is stated as follows.

Theorem 1.13 (Poincaré-Koebe). Every Riemann surface is covered
resp. by P1(C),C or D. This trichotomy is exclusive. The Riemann surface
is resp. called elliptic, parabolic or hyperbolic.

We refer to the book [15] for the history and the various proofs of
this theorem.

Example 1.14 (Ahlfors). If L is a parabolic leaf contained in M , and
f : C→ L a uniformization of L, one can extract from the family of currents

(1.15) ∀η ∈ A1,1
F (M), Tr(η) :=

1

areaf∗g(Dr)

∫
Dr
f ∗η

a subsequence converging in the weak∗ topology towards a foliation cycle.
Here Dr := {x ∈ C | |x| < r}. We refer to [1] and [7, Lemme 0] for a proof
of this fact.

Let us now review what happens if the leaves are hyperbolic. We
begin by the following theorem of Verjovsky, generalized by Candel in the
context of general Riemann surface laminations. Recall that the unit disc
has a unique complete conformal metric of curvature −1, given by

(1.16) gP =
1

4

|dx|2

(1− |x|2)2
.

This metric is invariant under the group Aut(D) of automorphisms of the
unit disc, hence it defines a conformal metric on any hyperbolic Riemann
surface. We have

Theorem 1.17 (Verjovsky-Candel). Assume that all the leaves of M are
hyperbolic. Then the Poincaré metric on each of these leaves defines a
continuous metric on TF|M .

Example 1.18 (Fornaess-Sibony). Assume that all the leaves of M are
hyperbolic Riemann surfaces. Let f : D → L be the uniformization of one
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leaf of M . Then the family of currents

(1.19) ∀η ∈ A1,1(M), Tr(η) =

∫
Dr log

(
r
|x|

)
f ∗η(dxdx)∫

Dr log
(
r
|x|

)
vP (dxdx)

is relatively compact in the weak∗ topology and the limit of any convergent
subsequence Trn with rn → 1 is foliated harmonic. Here vP refers to the
volume element of the Poincaré metric.

1.4. Homology, intersection, and Chern-Candel classes

A foliation cycle being a closed current of dimension 2 on S, it naturally
defines a homology class [T ] ∈ H2(S,R) (by duality) by the formula

[T ] · [η] = T (η),

for every closed 2-form. In particular, one can consider the intersection
product [T ] · c1(E) if E → S is any complex line bundle over S, and c1(E)
denotes the first Chern class of E. We will denote it succintly by T · E.
One can compute this intersection by using differential geometry, namely

(1.20) T · E =
1

2π
T (ω)

where ω is the curvature form of any connexion ∇ on E. In fact, it is
sufficient to have a smooth connexion which is only defined along every
leaf of F , but we will not verify this here. All this makes sense since the
curvature forms of two different connexions on E differ by an exact 2-form.

This does not work this way if T is only assumed to be harmonic, since
in this case we only get a homology class in the dual of the Bott-Chern
cohomology group

(1.21) H1,1

∂∂
(S,C) = {closed (1, 1)-forms}/∂∂C∞(S).

Nevertheless, following an observation of Candel, one can define the inter-
section product of T with E when E is any holomorphic line bundle along
the leaves ofM (namely every element ofH1(M,O∗F)). This can be achieved
by the use of the Chern connexion of a hermitian metric on E, whose ex-
pression is on E, whose expression is given locally by

(1.22) ω‖·‖ =
1

i
∂∂ log‖s‖2,

where s is any local holomorphic section of E. One then defines

(1.23) T · E :=
1

2π
T (ω‖·‖),
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where ‖·‖ is any hermitian metric on E. Since T is harmonic, the definition
does not depend on the chosen hermitian metric on E.

This formula permits to define an important invariant of a harmonic
current: its Euler characteristic. This is the intersection of the harmonic
current with the tangent bundle of the foliation F . In what follows, we will
be more interested in the opposite of this number, namely the intersection
of T with the canonical bundle of F being defined by KF := T ∗F .

An interesting case is where S is a compact Kähler surface, since
under this assumption one knows that the group (1.21) is isomorphic to
the Dolbeaut cohomology group H1,1

∂
(S,C) ⊂ H2(S,C), by the ∂∂-lemma.

Thus we can define a homology class [T ] of T belonging to H2(S,C) (by
duality) in that case. Observe that if E → S is a holomorphic line bundle,
the number T ·E defined by (1.23) computes the cohomological intersection
[T ] · c1(E), where c1(E) is the Chern class of E.

1.5. Garnett’s theory

Here is the basic ingredient that will be needed in this lecture. Let (L, g) be
a complete Riemannian manifold with bounded curvature, and x ∈ L be a
point. Then there exists a unique measure W x, called the Wiener measure,
on the set Ωx of continuous paths ω : [0,∞) → L starting at ω(0) = x,
satisfying the following
(1.24)

W x({ω | ω(ti) ∈Bi}) =

∫
B1×···×Bk

k∏
j=1

p(xj−1,xj, tj − tj−1)vg(dx1) · · ·vg(dxk)

for every k ∈ N∗, every non decreasing sequence t0 = 0 ≤ t1 ≤ t2 ≤ · · · ≤
tk−1 ≤ tk, every family {Bj}j of Borel subsets of L, and the convention
x0 = x. Here, vg denotes the volume element, and p(x, y, t) is the heat
kernel on L (namely p(x, · , · ) satisfies the heat equation ∂u

∂t
= ∆u and

p(x, y, t)dy weakly tends to the Dirac mass δx at x). We refer to [13,
Chapter VI].

Let now (S,F) be a foliated complex surface, and M be a F -saturated
closed subset of S. Let g be a smooth hermitian metric on TF , defined
in a neighborhood of M , and ∆F the leafwise Laplacian associated to this
metric. A foliated harmonic measure on M is a probability measure which
satisfies in the weak sense the equation ∆Fµ = 0. Those are the measures

(1.25) µ := T ∧ vg

where T is a (conveniently normalized) foliated harmonic current and vg is
the leafwise volume element of the Riemannian tensor g. In particular, a
foliated harmonic measure always exists, by Proposition 1.7.
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Let Ω be the set of continuous paths ω : [0,∞) → M which are con-
tained in a leaf of M , and Ωw those conditioned to begin at ω(0) = w.
Shifting the time defines a semi-group σ = {σt}t≥0 of transformations act-
ing on Ω by the formula σt(ω)( · ) := ω(t+ · ). Given a probability measure
µ on M , let µ be the measure on Ω defined by µ :=

∫
M
Wwµ(dw). An easy

observation shows that if µ is harmonic, then the measure µ is σ-invariant.
We can then apply ergodic theory to the system (Ω, σ, µ). Garnett proved
the following version of the random ergodic theorem in this context:

Theorem 1.26 (Random Ergodic Theorem). If the foliated harmonic
measure µ is extremal in the compact convex set of harmonic measures,
then the system (Ω, σ, µ) is ergodic.

We refer to [34] and to the survey paper by Candel [12]. A foliated
harmonic measure satisfying the assumptions of the theorem will be called
ergodic. Observe that in particular, for a.e. point w w.r.t. a foliated ergodic
harmonic measure, Ww-a.e. Brownian path starting at x equidistributes
w.r.t. µ.

1.6. The foliated Lyapunov exponent

In this section, we endow the tangent bundle TF , resp. the normal bundle
NF , with smooth hermitian metrics. Recall that if ω : [0, t] → L is a con-
tinuous path in a leaf of L, there is a holonomy map hω : τω(0) → τω(t) from
a transversal τω(0) at ω(0) to a transversal τω(t) at ω(t). See the book [10]
for the definition of holonomy map. The derivative of hω at ω(0) ∈ τω(0)

will be denoted Dhω(ω(0)).

Definition-Proposition 1.27. Let T be an ergodic foliated harmonic
current on M , and µ = T ∧ vg the associated foliated harmonic measure.
There exists a number λ = λ(T ), such that for µ-a.e. point w ∈ M , and
Ww-almost every path ω : [0,∞)→ Lw starting at ω(0) = w, we have

(1.28)
1

t
log‖Dhω|[0,t](ω(0))‖ = λ.

The proof of this fact relies on the ergodic theorem applied to the cocyle

(1.29) Ht(ω) := log‖Dhω|[0,t](ω(0))‖,

which satisfies the relation Ht+s(ω) = Ht(ω) + Hs(σt(ω)) for every ω ∈
Ω and every s, t ≥ 0. To get the result one needs to verify that Ht is
µ-integrable. This relies on Cheng-Li-Yau estimates for the heat kernel:

p(x, y, t) ≤ C exp(−αd(x, y)2),
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where C, α > 0 are constant depending only on t and the local geometry of
the manifold. See [14].

In the case all the leaves of F are hyperbolic Riemann surfaces, one
can parametrize Brownian motions using the Poincaré metric. In this case,
the Lyapunov exponent depends on cohomological quantities.

Proposition 1.30 (Cohomological formula for the Lyapunov exponent).
Let (S,F) be a foliated complex surface and M be a minimal set. Assume
that the leaves of M are hyperbolic Riemann surfaces. We endow its tangent
bundle with the Poincaré metric. Then for every ergodic foliated harmonic
current T on M , we have

λ(T ) = −T ·NF
T ·KF

.

In this formula, NF = TS/TF and KF = T ∗F stand for the normal bundle
and the canonical bundle of F .

Proof. We repoduce here the proof given in [16, Appendice A]. Observe
that the formula depends only on T modulo multiplication by a positive
constant, so we can assume that the measure µ := T ∧ vg has mass one.
Introduce some coordinates (x, z) where the foliation is defined by dz = 0,
and consider the infinitesimal distance between leaves, namely the function∥∥ ∂
∂z

∥∥. This function depends on the foliated coordinates, but when changing
coordinates, it is multiplied by a positive function which is constant on
the leaves. In particular, the function ∆F log

∥∥ ∂
∂z

∥∥ is well-defined on M .

Similarly dF log
∥∥ ∂
∂z

∥∥ is a well-defined 1-form along the leaves of F .

Lemma 1.31. λ =
∫
M

∆F log
∥∥ ∂
∂z

∥∥ dµ.

Proof. The starting point of the proof relies on the fact that
∫
Htdµ =

λt, hence

λ =
d

dt |t=0

∫
Htdµ.

Now, we have ∫
Htdµ =

∫
X

[∫
Ωw
HtdW

w

]
µ(dw).

So we deduce

λ =

∫
X

[
d

dt |t=0

∫
Ωw
HtdW

w

]
µ(dw).

Fix w and introduce the universal covering L̃w of Lw, viewed as the set of
homotopy classes of paths ω : [0, 1]→ Lw starting at w with fixed extremi-
ties. Let ϕ be a primitive of the form dF log

∥∥ ∂
∂z

∥∥ which vanishes at w. The
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Laplacian of ϕ is invariant by the covering group and gives the function
∆F log

∥∥ ∂
∂z

∥∥ on the quotient. Moreover, we have Ht(ω) = ϕ(ω|[0,t]). Hence
we get

d

dt |t=0

∫
Ωw
HtdW

w =
d

dt |t=0
Ew(ϕ(ω(t))) = ∆Fϕ(w) = ∆F log

∥∥∥∥ ∂∂z
∥∥∥∥(w).

This proves the formula.

Proposition 1.30 follows from Lemma 1.31 and from the following ele-
mentary identity 2i∂∂ = ∆g · vg.

Remark 1.32. The existence of an analogous Lyapunov exponent for sin-
gular holomorphic foliations (say on algebraic surfaces) is not obvious at
all. Assume for instance we are in the following situation. Let (S,F) be a
singular holomorphic foliation of a compact complex surface, whose leaves
are hyperbolic Riemann surfaces, and whose singularities are linearizable.
Then the product T ∧ vP is finite, see [22], and Garnett’s theory can be
extended almost line by line, by using the fact that the Poincaré metric is
continuous in that case. The only problem to define the Lyapunov exponent
in this context is the integrability of the cocyle (1.29). The integrability
can be proved when the singularities are in the Siegel domain, namely con-
jugate to ones of the form xdy−αydx where α ∈ R. Then Proposition 1.30
holds with a correction term involving some indices defined at each singu-
larity. However, in the hyperbolic case =α 6= 0, the integrability remains
an open problem.

1.7. Unique ergodicity

A general principle is that foliated harmonic currents associated to minimal
sets are unique. This fact was already observed in the work of Garnett
(unique ergodicity of the weak stable foliation of the geodesic flow of a
compact surface of constant curvature −1, see [34, Proposition 5]). Here is
a general result that we obtained in collaboration with Victor Kleptsyn:

Theorem 1.33 (Unique ergodicity). Let (S,F) be a foliated complex sur-
face, and M be a minimal set. Assume that F does not support any foliation
cycle on M . Then there exists a unique harmonic current on M up to mul-
tiplication by a constant. Moreover, given a hermitian metric on TF , there
exists a number λ < 0 such that for every point w ∈M , and Ww-a.e. leaf-
wise Brownian path ω starting at w, the limit (1.28) exists and equal λ.

We refer to [21] for the proof of this result, the main step being the
existence of at least one harmonic current whose associated Lyapunov ex-
ponent is negative. This being done, a second step (the similarities between
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Brownian motions on different leaves) permits to infer unique ergodicity.
A weak version of the contraction statement was used by Thurston for the
construction of his universal circle theorem, see [70].

Observe that under the assumption of Theorem 1.33, the leaves of
M are hyperbolic Riemann surfaces since otherwise there would exist a
foliation cycle. In particular, for every uniformization f : D → L of a
leaf, the family of currents Tr defined by (1.19) converge to a certain har-
monic current T . In the context of flat P1-bundles over a compact curve
C, Bonatti and Gomez-Mont have obtained a much more precise equi-
distribution statement, namely that of large leafwise discs. See [5]. Recall
that a representation from an abstract group to PSL(2,C) is non elementary
iff it does not preserve any probability measure on P1(C).

Theorem 1.34 (Equidistribution of large leafwise discs). Let C be an al-
gebraic curve and ρ : π1(C) → PSL(2,C) be a representation sending the
peripheral curves to parabolic transformations. Assume that ρ is non ele-
mentary. Then for every sequence of points wn ∈ Sρ = C nρ P1, and every
sequence of positive numbers Rn tending to infinity, we have the following

(1.35)
1

V (Rn)
[BF(wn, Rn)]→n→∞ T,

where V (R) is the volume of a ball of radius R in hyperbolic plane, and T
is the unique harmonic current normalized so that

∫
T ∧ vP = 1.

Remark 1.36. Theorem 1.34 can be generalized when the base curve C is
a quasi-projective curve, but we will not state this version of the result here.

We end this lecture by insisting on the fact that the dynamical method
based on the Lyapunov exponent does not work to prove unique ergodic-
ity in the context of singular holomorphic foliations on compact complex
surfaces since, as was already mentioned, the definition of the Lyapunov
exponent is unclear in this case. Fornaess and Sibony succeeded proving
a similar unique ergodicity statement for generic singular holomorphic fo-
liations of the complex projective plane, see [27, 28]. Their proof is based
on a completely different approach (a computation of the self-intersection
of a foliated harmonic current together with Hodge index theorem), which
nevertheless does not extend to all compact complex surfaces: it necesitates
a non trivial automorphism group of the ambiant surface.
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2. Lecture 2: Topology of Levi-flats in algebraic
surfaces

2.1. A rough guide to complex algebraic surfaces

A smooth complex algebraic manifold is a compact complex manifold which
embeds holomorphically in a complex projective space PN(C) for some
N ≥ 1. By the GAGA principle, such a compact complex submanifold
is defined by algebraic homogeneous equations.

An important character in the understanding of an algebraic mani-
fold X is its canonical bundle, namely the bundle KX :=

∧d T ∗X, where
d is the dimension of X. The plurigenera of X are defined by the di-
mensions Pn(X) = h0(X,nKX) of the spaces of holomorphic sections of
the powers nKX of the canonical bundle (the tensor product of line bun-
dles is denoted additively in the sequel). Their asymptotics when n tends
to +∞ is governed by the Kodaira dimension k(X), which is defined by
k(X) := limn→∞

logPn
logn

. The Kodaira dimension can assume any value

k ∈ {−∞, 0, 1, . . . , d}, where by convention k(X) = −∞ means that the
plurigenera vanishes for every n.

As we have seen, algebraic curves can be classified into three classes,
depending upon the type of their universal covering: P1, C or D. This
trichotomy can be detected by the Kodaira dimension, being respectively
equal to −∞, 0 or 1.

Algebraic surfaces are more difficult to classify. The surfaces with
Kodaira dimension being −∞, 0, 1 are relatively well understood, thanks
to the classification of Enriques-Kodaira, and fall into eight classes: ra-
tional, ruled, K3, Enriques, Kodaira, toric, hyperelliptic, and properly
quasi-elliptic. We refer to [3] for a complete treatment of this topic. Con-
cerning the class of surfaces with Kodaira dimension 2, not much is known
about their classification, though many examples have been found. These
surfaces are called surfaces of general type, and in a sense, are the most
commun surfaces.

Examples of general type surfaces are smooth hypersurfaces of degree
d ≥ 5 in P3(C), quotients of bounded domains in C2, double covers of P2(C)
ramified along a non singular curve of even degree ≥ 8 etc. Surfaces with
a metric of negative holomorphic curvature are of general type. There is
a weak converse to this statement: a theorem of Mumford states that the
canonical bundle of a (minimal) surface of general type admits a metric
whose curvature is positive on all complex directions appart from a finite
union of (−2)-rational curves.
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2.2. Thurston’s eight geometries as Levi-flats in algebraic
surfaces

We will say that a 3-manifold possesses a geometry if it admits a complete
locally homogeneous metric (homogenous meaning that two different points
admit isometric neighborhoods). Thurston classified in eight classes the
compact 3-manifolds possessing a geometry, depending on the isometric
class of their universal cover among:

(2.1) S3, R3, H3, S2 × R, H2 × R, Nil, ˜SL(2,R), Sol.

The spaces Sp,Rp and Hp for p ∈ {2, 3} stand for the complete simply
connected Riemannian manifolds of dimension p of constant sectional cur-
vature, resp. 1, 0,−1. The last three models are Lie groups equipped with
left invariant metrics. We refer to the article of Scott [65] for a more com-
plete treatment. Let M be one of the eight simply connected manifolds in
the list (2.1). We say that a compact 3-manifold M carries the geometry
of M if M is the quotient of M by a discrete group of isometries of M.

All the geometries (2.1) are carried by Levi-flats in algebraic complex
surfaces, appart S3. The fact that S3 does not appear is an observation by
Inaba and Michshenko, see [46, Theorem 1], which relies on the Kähler prop-
erty for algebraic surfaces, together with the famous theorem of Novikov
on existence of Reeb components, see 2.5.

Proposition 2.2 (Inaba-Michshenko). A Levi-flat in a Kähler surface has
an infinite fundamental group. In particular, such a Levi-flat does not carry
the geometry S3.

Let us review the argument. We adopt the following definition:

Definition 2.3 (Reeb component). A Reeb component is a domain con-
tained in M which is saturated by the foliation and diffeomorphic to the
solid torus.

Recall that a Kähler form on a surface S is a closed (1, 1)-form ω which
is positive on complex lines of the tangent bundle, namely ω(u, iu) > 0 for
every u 6= 0 ∈ TS. A complex surface is called Kähler iff it admits a Kähler
form.

Lemma 2.4. The Cauchy–Riemann foliation of a Levi-flat in a Kähler
surface does not have any Reeb component.

Proof. By contradiction, the integral of ω on the boundary would both
be positive (by Kähler property) and zero (by Stokes formula).
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Hence, Proposition 2.2 is a consequence of Lemma 2.4 and of the
following result:

Theorem 2.5 (Novikov). Let M be a compact orientable 3-manifold
endowed with a transversally orientable 2-dimensional foliation F of class
C2. The following assertions are equivalent

(a) The foliation F contains a Reeb component.

(b) There exists a leaf L ∈ F such that the inclusion map π1(L)→ π1(M)
between the fundamental groups has a non-trivial kernel.

Moreover, if there exists a closed and homotopically trivial loop transverse
to F , then the foliation F contains a Reeb component. This occurs in
particular when the fundamental group of M is finite.

We now review examples showing that all of the geometries (2.1) except
S3 are carried by Levi-flats in algebraic surfaces. First we recall that the
geometries Nil, Sol and H3 are supported by non trivial surface bundles. A
surface bundle is the quotient of [0, 1]×Σ by the relation (0, x) ∼ (1,Φ(x)),
where Σ is a compact oriented surface and Φ is a diffeomorphism of Σ
preserving the orientation.

We shortly denote a surface bundle S1 nΦ Σ. Its monodromy is the
projection [Φ] of Φ in the mapping class group MCG(Σ). An element
[Φ] ∈ MCG(Σ) is called elliptic if its order is finite, reducible if there is a
finite collection of pairwise disjoint simple closed curves in Σ whose union
is invariant by a diffeomorphism in [Φ], and pseudo-Anosov in the other
cases, see [69, Section 2].

If Σ has genus 1, the surface bundle is called a torus bundle. The
group SL(2,Z) acts on Σ ' R2/Z2 by linear transformations and captures
all the classes of MCG(Σ). A unipotent torus bundle is a torus bundle
whose monodromy comes from a unipotent matrix in SL(2,Z) (reducible
monodromy), it carries the Nil geometry. A hyperbolic torus bundle is a
torus bundle whose monodromy comes from a hyperbolic matrix in SL(2,Z)
(pseudo-Anosov monodromy), it carries the Sol geometry.

We shall realize such surface bundles in singular holomorphic fibrations.
Such a fibration stands for a holomorphic map f : S → B where S is a
complex surface and B is a compact Riemann surface, see [3, Chapter V].
Let p1, . . . , pn be the singular values of f (it may be empty). A fibered
Levi-flat hypersurface is a Levi-flat hypersurface of the form f−1(γ), where
f : S → B is a singular holomorphic fibration and γ ⊂ B \ {p1, . . . , pn}
is a simple closed path. Such hypersurfaces were already considered by
Poincaré in his study of cycles on algebraic surfaces, see [63].

Proposition 2.6. Every geometry R3, H3, S2 × R, H2 × R, Nil or Sol is
carried by a fibered Levi-flat hypersurface. Moreover, H3 and H2 × R are
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carried by fibered Levi-flat hypersurfaces in surfaces of general type.

We give the sketch of proof of this fact. It is easy to realize R3, S2×R
and H2 × R by using products of compact Riemann surfaces S = Σ × B.
To exhibit fibered Levi-flat hypersurfaces with the geometries Nil and Sol,
we use the following classical proposition, see [31, Chapter II, Section 2.3].
Here the complex surface S comes from a singular holomorphic fibration
by elliptic curves over the Riemann sphere.

Proposition 2.7. Let f : S → P1(C) be a singular elliptic fibration. Let
p1, . . . , pn be the singular values of f , assume that this set is not empty.
Then the monodromy representation from the fundamental group of P1(C)\
{p1, . . . , pn} to SL(2,Z) is surjective.

Using this proposition, one easily constructs Levi-flat hypersurfaces of
the form f−1(γ) (up to finite coverings of f) carrying the geometries Nil or
Sol. We refer to [20]. To realize H3 we use Thurston’s theorem, see [69,
Theorem 0.1].

Theorem 2.8 (Thurston). Let Σ be a compact oriented surface of genus
g ≥ 2. A surface bundle S1 nΦ Σ carries the geometry H3 if and only if its
monodromy [Φ] is pseudo-Anosov.

By using the same arguments as before, the following theorem provides
fibered Levi-flat hypersurfaces modelled on H3, see [67, Corollary 1].

Theorem 2.9 (Shiga). Let B be a compact Riemann surface with genus
larger than or equal to 2. Let f : S → B be a singular holomorphic fibration,
such that the generic fiber has genus ≥ 2 and its modulus is not locally
constant (e.g. a Kodaira fibration). Let p1, . . . , pn be the critical values of
f . Then there exists an immersed simple closed curve γ in B \ {p1, . . . , pn}
whose monodromy is pseudo-Anosov.

Note that the surface S in this theorem is of general type, since the
genus of the base and the fibers of f is larger than 1, see [3, Chapter 3,
Theorem 18.4]. This completes the proof of Proposition 2.6.

It remains to treat the geometry of ˜SL(2,R). This geometry is sup-
ported for instance by non-trivial circle bundles over compact oriented
surfaces of genus g ≥ 2, see [65, Theorem 5.3]. There exists Levi-flat hyper-
surfaces with this topology in flat P1(C)-bundles over compact Riemann
surfaces. Namely, we consider a representation ρ : π1(C) → PSL(2,C),
and the flat P1(C) bundle Sρ = C nρ P1(C), see 1.3; the subset Mρ :=
Cnρ P1(R) ⊂ Sρ is an analytic Levi-flat hypersurface, having the structure
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of an oriented circle bundle over C. We denote e the Euler class of Mρ.
We recall that this invariant belongs to H2(C,Z) ' Z and characterizes
the circle bundle up to isomorphism, see e.g. [57, Section 2]. Note that
|e| = 2g − 2 if and only if ρ is an isomorphism between π1(C) and a Fuch-
sian group. In this case Mρ is diffeomorphic to the unitary tangent bundle
of C, see [72, Proposition 6.2].

Proposition 2.10. Let C be a compact oriented surface of genus g ≥ 2
and let e ∈ Z satisfying |e| ≤ 2g − 2. There exists a flat P1(C)-bundle S
over C and a Levi-flat hypersurface M ⊂ S which is diffeomorphic to a
circle bundle over C with Euler class e.

Proof. If |e| ≤ 2g − 2 then there exists a representation ρ : π1(C) →
PSL(2,R) such that Mρ has Euler class e, see [38, Theorems A and B].

2.3. Levi-flat circle bundles in surfaces of general type

We begin with an upper bound on the Euler class of Levi-flat circle bundles.

Proposition 2.11. Let S be a surface of general type and M be a Levi-flat
hypersurface of class C2 in S. Assume that M is an oriented circle bundle
over a compact oriented surface C of genus g ≥ 2. Then the Euler class of
M satisfies |e| ≤ 2g − 2.

Sketch of proof. We can assume e 6= 0. We first prove that the Cauchy–
Riemann foliation has no compact leaf. As we will see later, see 2.4, the
general type assumption implies that every leaf is hyperbolic. Assuming
by contradiction that there exists a compact leaf L, it would have genus
g ≥ 2, and the Euler class being different from 0, it is easy to see that
L would be compressible, namely the map π1(L) → π1(M) would not be
injective. Novikov’s theorem would then provide a Reeb component, which
contradicts the fact that the surface is Kähler. Hence, there are no compact
leaves, and the result follows from the combination of the next two results.

Theorem 2.12 (Thurston). Let M be an oriented circle bundle over a
compact oriented surface Σ of genus g ≥ 2. Assume that F is an ori-
ented 2-dimensional foliation on M of class C2, and that F does not have
any compact leaf. Then there exists a diffeomorphism Ψ of M of class C2

isotopic to the identity such that Ψ∗F is transverse to the circle fibration.

Theorem 2.13 (Milnor-Wood). Let M be an oriented circle bundle over
a compact oriented surface Σ of genus g ≥ 2. If M supports a transversally
oriented 2-dimensional foliation which is transverse to the circle fibration,
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then its Euler class satisfies |e| ≤ 2g − 2.

Remark 2.14. The question of the existence of Levi-flats in algebraic sur-
faces diffeomorphic to circle bundles over hyperbolic compact surface with
arbitrarily large Euler class, obtained by the technique called in french
“tourbillonement de Reeb”, remains open.

The following result provides a construction of Levi-flat hypersurfaces
in surfaces of general type with a non trivial Euler class.

Theorem 2.15. For every ε > 0 there exist a surface of general type Sε
and a Levi-flat hypersurface Mε ⊂ Sε which is diffeomorphic to an oriented
circle bundle Mε over a compact oriented surface Cε of genus ≥ 2. We have
|e(Mε)/χ(Cε)| ∈ [1/5 − ε, 1/5], where e(Mε) denotes the Euler class of Mε

and Eu(Cε) denotes the Euler characteristic of Cε.

Sketch of proof. Here we only prove that there exists a Levi-flat in a
surface of general type which is diffeomorphic to a non trivial circle bun-

dle, hence carrying the geometry ˜SL(2,R). Let C be a compact algebraic
curve of genus g ≥ 2. By the uniformization theorem, see 1.13, there is a

biholomorphism D : C̃ → H which is equivariant w.r.t. some representation
ρ : π1(C) → Aut(H) ⊂ Aut(P1(C)). Let (Sρ,Fρ) be the flat P1(C)-bundle
over C of monodromy ρ, defined as in 1.3. There is a Levi-flat defined by
Mρ = C n P1(R), which is diffeomorphic to the unitary tangent bundle of
the surface C equipped with e.g. its Poincaré metric. The bundle Sρ → C
has a holomorphic section s : C → Sρ defined as the level of the universal
covers by s(x) = (x,D(x)). Of course we are not done since the Kodaira
dimension of Sρ is −∞, hence Sρ is not of general type.

We construct (Sε,Mε) as a double ramified covering of (Sρ,Mρ). To
define such a ramified cover, let E → Sρ be a holomorphic line bundle and
h : Sρ → 2E (recall our additive notation for tensor product of line bundles)
be a holomorphic section, whose zero divisor h−1(0) is a smooth reduced
algebraic curve in Sρ. The algebraic surface

(2.16) Sε = {(w, ζ) ∈ E | ζ2 = h(w)}.

is a 2 : 1 ramified cover (defined by π(x, ζ) = x), ramifying over h−1(0). We
easily verify that the pull-back of Fρ is a singular holomorphic foliation Fε
whose singularities are the pull-back in Sε of the points of tangency between
Fρ and h−1(0). Hence assuming that h−1(0) intersects Mρ transversally,
the set Mε = π−1(Mρ) is a Levi-flat hypersurface of Sε. To understand its
topology, one has to understand the topology of the link h−1(0)∩Mρ in Mρ.



21

It is well-known that if E is sufficiently ample1 then the surface Sε
constructed above is of general type (e.g. if F is ample, then the sufficiently
large powers of F will work). For such a line bundle, choosing at random
the section h of its square would probably lead to a hyperbolic manifold
Mε. Hence we will need to make a very particular choice. Define F =
O
(
ks +

∑
j∈J fj

)
where k is an integer, and fj are distinct fibers of the

fibration Sρ → C. If we assume furthermore that k and the number |J | of
fibers fj are both even, then it is possible to find a line bundle E such that
2E = F . By definition of F there exists a holomorphic section h0 : Sρ → F
such that h−1

0 (0) = s ∪
⋃
j fj. Observe that the zero set of h0 is transverse

to Mρ and that its intersection with Mρ is a union of |J | fibers of the
circle fibration Mρ → C, hence is a quite simple link. The section h0 is
not convenient for our purpose, since its zero set is not smooth (at the
intersection points of fj and s). Nevertheless, we can show that if k and
|J | are large enough, the line bundle E is ample, and one can make a small
perturbation h of h0 with a smooth zero set. For such a choice, the couple
(E, h) yields the desired Levi-flat Mε ⊂ Sε diffeomorphic to a non trivial
circle bundle. See details in [20].

The sup of the ratios |e(M)/Eu(C)|, where M is a Levi-flat in a surface
of general type diffeomorphic to a circle bundle of Euler class e(M) over a
hyperbolic compact surface C, is unknown. The following result shows that
the value |e(M)/Eu(C)| = 1 (the maximal permitted by Proposition 2.11)
is not reached:

Theorem 2.17. A Levi-flat hypersurface of class C2 in a surface of gen-
eral type is not diffeomorphic to the unitary tangent bundle of a hyperbolic
compact two dimensional orbifold.

The proof of this result uses a foliated Lyapunov exponent associated to
the Cauchy–Riemann foliation and its sketch is postponed to Corollary 2.25.
See [20] for details.

2.4. Hyperbolicity and topological consequences

The following result will be crucial for studying the topology of Levi-flats
in surfaces of general type.

Proposition 2.18. Let M be a Levi-flat of class C2 in a surface of general
type. Then the Cauchy–Riemann foliation of F has hyperbolic leaves.

1Ample means that it carries a metric of positive curvature.
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Sketch of proof. We prove Proposition 2.18 under the assumption that
KS is ample, namely that it has a metric of positive curvature. Assume
that F has a compact leaf L. Adjunction formula then gives

Eu(L) = −L ·KS − L ·NL.

The first term of the right hand side is < 0 because KS has a metric of
positive curvature, and the second one is zero because the normal bundle
of L has a flat connexion (the Bott connexion induced by the foliation),
hence C is hyperbolic.

Assume now that there exists a parabolic leaf L. A theorem of Candel
shows that there exists an Ahlfors current T such that T ·KF = 0 (see [11]).
Using the leafwise adjunction formula we obtain

T ·KF = T ·KS + T ·NF

The right hand side is > 0 for the same reason as before (take the Bott
connexion on NF in equation (1.20)). This yields a contradiction.

We deduce the following application:

Theorem 2.19. Let S be a surface of general type and let M be an im-
mersed Levi-flat hypersurface of class C2 in S. Then the fundamental group
of M has exponential growth. In particular M does not carry the geometries
S3, S2 × R, R3 nor Nil.

Sketch of proof. Since there is no Reeb component, Novikov’s theory
shows that the leaves of the pull-back of the Cauchy–Riemann foliation in
the universal cover of M are simply connected, and that moreover they are

quasi-isometrically embedded in M̃ . Hence, M̃ has exponential growth, by
Proposition 2.18 and by Verjovsky-Candel result on the continuity of the
Poincaré metric, see 1.17.

Remark 2.20. The hyperbolicity of the Cauchy–Riemann foliation is re-
lated to the following open conjecture.

Conjecture 2.21 (Green-Griffiths). Let S be a surface of general type.
There exists a proper subvariety Y ⊂ S such that every entire curve f : C→
S satisfies f(C) ⊂ Y .

This problem was solved by McQuillan [59] for surfaces of general type
satisfying c2

1(S) > c2(S). He proved that every non-degenerate entire curve
f : C → S is tangent to a singular holomorphic foliation on (a finite cover
of) S. A contradiction is deduced from positivity properties of the tangent
bundle of the foliation. Brunella provided an alternative proof in [7] by
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using the normal bundle of the foliation. An important difficulty in these
works is that f(C) can contain a singular point of the foliation. In our non-
singular context the proof is simpler because we directly use adjunction
formula. We refer to the survey [23] for recent results concerning Green-
Griffiths conjecture.

2.5. The Anosov property and application to the topology of
Levi-flats

A Levi-flat M ⊂ S in a complex surface is called Anosov if its Cauchy–
Riemann foliation is topologically conjugate to the weak unstable foliation
of a 3-dimensional Anosov flow on some compact 3-manifold N . Classical
examples of Anosov flows are the geodesic flow on the unitary tangent
bundle of compact orientable surfaces of genus ≥ 2 and the horizontal flow
on hyperbolic torus bundles. There are many other examples, for instance
on hyperbolic 3-manifolds and graph 3-manifolds, see [30, 39, 41]. One
can verify that Anosov Levi-flat hypersurfaces do not have any transverse
invariant measure, their foliation F is therefore hyperbolic. We have the
following upper bound for the Lyapunov exponent.

Theorem 2.22. Let S be a complex surface and M be an immersed Anosov
Levi-flat hypersurface in S. We endow the leaves of the Cauchy–Riemann
foliation F with the Poincaré metric gP . Let T be an ergodic foliated har-
monic current of F . Then the Lyapunov exponent of T satisfies λ(T ) ≤ −1.

Sketch of proof. We use that the trajectories of the Anosov flow in the
hyperbolic uniformizations of the leaves are quasigeodesics for the Poincaré
metric, to produce a new flow by stretching these trajectories to geodesics.
We obtain a continuous flow on M whose orbits are leafwise geodesics for
the Poincaré metric. Let vP the leafwise Poincaré volume form. Since
the result does not depend the projective class of T , we can assume that
the foliated harmonic measure T ∧ vP has mass one. This latter is shown
to be a SRB measure for the stretched flow. Moreover, the Lyapunov
exponents of this measure are 1, 0, λ. (The Lyapunov exponents are not
a priori defined since the stretched flow is only continuous. However, it is
smooth along the leaves, which gives the exponents 1 and 0, and using the
C1 transverse structure of the foliation we can define another exponent,
which we identify with λ). The ingredients for this computation involve
the shadowing property of geodesics by Brownian paths due to Ancona, see
[2, théorème 7.3, p. 103]. The bound λ(T ) + 1 ≤ 0 to be proved then relies
on volume estimates in the spirit of Margulis-Ruelle’s inequality.

Corollary 2.23. Let S be a surface of general type and let M be an im-
mersed Levi-flat hypersurface in S. Then M is not Anosov.
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Sketch of proof. We indicate the proof when KS has a metric of positive
curvature. The proof then relies on the leafwise adjunction formula, which
gives T ·KF = T · NF + T ·KS > T · NF . We deduce that the Lyapunov
exponent verifies the following pinching estimates

(2.24) −1 < λ(T ) ≤ 0

which is contradictory with being Anosov by Theorem 2.22.

Corollary 2.25. A Levi-flat in a surface of general type is not diffeo-
morphic to a quotient of the Lie groups Sol or PSL(2,R) by a cocom-
pact lattice.

Sketch of proof. The proof is by contradiction. Assuming that a Levi-
flat is diffeomorphic to one of those manifolds, we use deep results of
resp. Ghys/Sergiescu, see [37], and Matsumoto, see [57], which enable to
prove that the Levi-flat is Anosov. Hence the contradiction comes from
Corollary 2.23. In order to apply the mentioned theorems, one needs to
verify that the Cauchy–Riemann foliation has no compact leaf, which is
done by using the hyperbolicity of the leaves together with Novikov’s the-
ory.

3. Lecture 3 – Complex projective structures:
Lyapunov exponent, degree and harmonic measure

3.1. A rough guide to complex projective structures

Let C be a smooth complex quasi-projective curve of negative Euler char-
acteristic. We denote by g its genus and by n its number of punctures. A
complex projective structure on C is a maximal atlas of holomorphic charts
zj : Uj ⊂ C → P1(C) (called projective charts) which overlap as

zj =
azk + b

czk + d
,

on the intersection Uj ∩ Uk, where a, b, c, d are complex numbers such that
ad − bc 6= 0. We will denote P1 = P1(C), and will refer to P1-structures
instead of complex projective structures. Two P1-structures on C are equiv-
alent if they define the same atlas of projective charts.

It is convenient to define a P1-structure on C in terms of the so-called
development-holonomy pair (dev, hol). Each projective chart can be ex-

tended analytically as a locally injective meromorphic map dev : C̃ → P1,
satisfying the equivariance property dev ◦ γ = hol(γ) ◦ dev, where hol is
a representation π1(C) → PSL(2,C). A development-holonomy pair is
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not unique for a given projective structure. Namely, if A ∈ PSL(2,C),
(A ◦ dev, A ◦ hol ◦A−1) gives another development-holonomy pair. We refer
here to the survey paper by Dumas, see [24] for a comprehensive treatment
of this notion.

When the surface C is not compact (hence by assumption it is biholo-
morphic to a compact Riemann surface punctured at a finite set), we restrict
ourselves to the subclass of parabolic P1-structures. Such a structure has
the following well-defined local model around the punctures: each puncture
has a neighborhood which is projectively equivalent to the quotient of the
upper half plane by the translation z 7→ z + 1.

A P1-structure on C can be understood by the way of the Schwarzian
derivative. Indeed, introduce the following differential operator called the
Schwarzian:

(3.1) S(f) := {f, z}dz2 where {f, z} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

for every holomorphic local diffeomorphism f : U ⊂ C → C. We have the
following two fundamental properties

(1) S(g ◦ f) = S(f) + f ∗S(g) for every local diffeomorphisms f : U ⊂
C→ V ⊂ C and g : V ⊂ C→ W ⊂ C.

(2) S(f) = 0 iff f(z) = az+b
cz+d

for some complex numbers a, b, c, d such that
ad− bc 6= 0.

In particular, let σ1 and σ2 be two P1-structures on C. Pick projective
charts z1 and z2 defined on some commun open set U ⊂ C of σ1 and
σ2 respectively, and define the holomorphic quadratic differential qσ1,σ2 =
{z2, z1}dz2

1 . Properties (1) and (2) show that qσ1,σ2 does not depend on
the chosen projective charts z1 and z2, and thus defines a holomorphic
quadratic differential on the curve C. Reciprocally, given a P1-structure
σ1 and a holomorphic quadratic differential q on C, there exists a unique
P1-structure σ2 on C such that q = qσ1,σ2 . In particular, at least when C is
compact, the set of projective structures on C is an affine space directed by
the vector space of holomorphic quadratic differentials on C. This shows
that the set P (C) of P1-structures on a compact algebraic curve of genus
g ≥ 2 is isomorphic to C3g−3. We will not discuss here the analogous
computation in the punctured case, which relies on results of Fuchs and
Schwarz, but we state the result: the set P (C) of parabolic P1-structures
on C is isomorphic to C3g−3+n.

One of the interests in studying complex projective structures comes
from their relations to uniformization problems in two or three dimen-
sions. The main illustration of this is certainly given by the uniformization
theorem of Poincaré-Koebe, which in particular defines a canonical projec-
tive structure σFuchs (by viewing C as a quotient of H under a Fuchsian
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group). Other kind of uniformizations have been considered, e.g. Schottky
uniformizations, and lead to parabolic P1-structures as well. More gener-
ally, the Ahlfors finiteness theorem provides many examples of parabolic
P1-structures:

Theorem 3.2 (Ahlfors finiteness theorem). Let Γ be a finitely generated
discrete subgroup of PSL(2,C). Then the quotient of the discontinuity set
Ω ⊂ P1 by Γ is a finite type Riemann surface. Moreover, if Γ is torsion
free, the natural P1-structure that it inherits is parabolic.

The last (less known) part of the theorem is proved in [1, Lemma 1].
The structures produced by Theorem 3.2 have been known as covering
projective structures, because they are characterized by the fact that the
developing map is a covering onto its image [49, 50]. A particular example
is given by quasi-Fuchsian deformations of the canonical structure σFuchs.
These structures play an important role in Teichmüller theory. Recall that
the Teichmüller space T (C) is defined as the set of equivalence classes of
couples (D, [Ψ]) where D is a Riemann surface and [Ψ] is a homotopy class
of diffeomorphism between C and D. Two couples (D1, [Ψ1]) and (D2, [Ψ2])
are considered as equivalent if Ψ2 ◦Ψ−1

1 is homotopic to a biholomorphism
from D1 to D2. Recall the following important result.

Theorem 3.3 (Bers simultaneous uniformization theorem). For every
(D, [Ψ]) ∈ T (C), there exists a unique representation ρ from π1(C) to
PSL(2,C) (up to conjugation) preserving a partition P1 = DC ∪ Λ ∪ DD,
where Λ is a topological circle, and DC (resp. DD) is the image of a ρ-

equivariant univalent holomorphic (resp. anti-holomorphic) map from C̃

(resp. D̃, observe that we have an identification of π1(D) with π1(C) in-
duced by Ψ) to P1.

Let P (C) be the set of (parabolic) P1-structures on C. Observe that
for every (D, [Ψ]) ∈ T (C), the holomorphic univalent ρ-equivariant map-
ping given by Theorem 3.3 produces a (parabolic) P1-structure, and that
this later determines the element (D, [Ψ]). This defines an embedding
B : T (C) → P (C), called the Bers embedding. Bers proved that the map
B is holomorphic, and that its image B(C) is relatively compact in P (C).
This later is called the Bers slice.

There are many other examples of parabolic P1-structures. For instance
surgery operations such as grafting (see Hejhal’s original construction in
[42]) may produce a parabolic P1-structure with holonomy a Kleinian group
that is not of covering type.

Theorem 3.4 (Hejhal). There exist P1-structures on compact curves such
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that the developing map is not a covering onto its image, but whose holon-
omy has image a discrete subgroup of PSL(2,C).

Such projective structures are usually called exotic. The prototype of
such an exotic projective structure is obtained by inserting a Hopf annulus
after cutting a given P1-structure along a simple closed curve. More pre-
cisely start with the quotient Cu of H by a lattice Γ ⊂ PSL(2,R) containing
as a primitive element the hyperbolic transformation γ(z) = αz for α > 1,
and consider

C =
(
Cu \ γu ∪H \ γH

)
/{γ±u ' γ∓H},

where γu = α\iR+∗ ⊂ Cu, H = α\C∗ is the Hopf torus, and γH = α\iR+∗ ⊂
H. The set of exotic P1-structures in P (C) is organized as a countable union
of non empty connected open subsets called exotic components.

Using the point of view of the Schwarzian derivative, one can construct
yet other examples of P1-structures on C. For instance, one can prove that
there exists a non empty open subset of P (C) formed by P1-structures on
C whose holonomy has image a dense subgroup of PSL(2,C). We refer to
[9] for a proof of this fact in the case of the fourth punctured sphere, which
readily extends to all algebraic curves.

There are nice pictures of the decomposition of P (C) into the vari-
ous subsets described above: Bers slice, exotic components, etc. We refer
e.g. to [48].

3.2. The degree of a P1-structure

Let gP be the unique complete conformal metric of curvature −1 on C. It
is well known that when C is of finite type, the hyperbolic metric has finite
volume. Recall that a representation π1(C)→ PSL(2,C) is non elementary
if it does not preserve any probability measure on the Riemann sphere. The
holonomy of a parabolic projective structure always non elementary: see
[33, Theorem 11.6.1, p. 695] for the compact case, and [9, Lemma 10] for
the punctured case.

If σ is a parabolic projective structure, we want to define δ(σ) as a
nonnegative number counting the average asymptotic covering degree of

devσ : C̃ → P1. For any x ∈ C̃ we denote by B(x,R) the ball centered at x
of radius R in the Poincaré metric, and by vol the hyperbolic volume.

Definition-Proposition 3.5. Let C be a Riemann surface of finite type
and σ be a parabolic P1-structure on X. Choose a universal convering

c : C̃ → C, and a developing map dev : C̃ → P1. Let (xn) be a sequence of

points in C̃ whose projections c(xn) stay in a compact subset of C, Rn be
a sequence of radii tending to infinity, and (zn) be an arbitrary sequence in
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P1. Then the limit

(3.6) δ = lim
n→∞

#B(xn, Rn) ∩ dev−1(zn)

vol(B(xn, Rn))

exists, and does not depend on the chosen sequences (xn), (Rn) nor on the
developing map dev. The number δ is invariant by taking finite coverings,
so does not behave like a degree. We define deg(σ) = vol(C)δ, and call this
number the degree of the P1-structure.

The very reason for the normalization deg(σ) = vol(X)δ is clearer when
dealing with branched projective structures. Such structures are defined by
non constant equivariant meromorphic maps defined on the universal cover
w.r.t. a representation of the covering group to PSL(2,C). The most basic
example of a branched projective structure is a non constant meromorphic
function f : C → P1. For such a structure, one verifies that the limit (3.6)
exists, and that the average degree in the sense of 3.5 coincides with the
topological degree of the map f .

The existence of the limit in (3.6) is not obvious, in particular due
to the possibility of boundary effects. The proof ultimately relies on the
equidistribution theorem of Bonatti and Gomez-Mont [5] mentioned in the
first lecture, Theorem 1.34.

It also makes use of the following dictionary between projective struc-
tures on curves and transverse sections of flat P1-bundles over curves, which
was developped in depth in [53].

Suppose that σ is a P1-structure. Introduce the flat P1-bundle
(Shol,Fhol), see 1.3, where (dev, hol) is a development-holonomy pair for
the structure σ. Observe that the bundle map Shol → C has a section
s : C → Shol defined at the level of the universal covers by x 7→ (x, dev(x)).
This section – we identify the section and its image here – is transverse to
the foliation Fhol.

Reciprocally, if ρ : π1(C) → PSL(2,C) is any representation, a section
of Sρ transverse to the foliation Fρ gives rise to a projective structure on
C, by restricting the transverse projective structure of the foliation Fρ
to the section. This operation is the inverse of the one described in the
last paragraph.

Sketch of proof of 3.5. After these preliminaries, let us sketch the proof
of the convergence (3.6). We will give the proof only in the case C is com-
pact. The punctured case necesitates a separate technical analysis. We
refer to [19] for the details. Let σ a P1-structure and s its corresponding
section of Shol. We denote by T a foliated harmonic current on (Shol,Fhol)
normalized so that its product with the Poincaré volume form is 1. The
number #B(xn, Rn) ∩ dev−1(zn) is easily seen to be the number of inter-
section of points of the leafwise ball BF(wn, Rn) with s, where wn is the
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projection in Sρ of the point (xn, zn). Hence since the leafwise balls nor-
malized by their volume (considered as currents) tend to T (Theorem 1.34),

one shows (with a little additional technical work) that #B(xn,Rn)∩dev−1(zn)
vol(B(xn,Rn))

tends to the geometric intersection product of T with s. This product is
defined in the following way: T can be thought of as a family of transverse
measures for the foliation Fρ, and it induces a Radon measure on any curve
of Sρ. The mass of this measure is by definition the intersection product of
T with s and is denoted T ∧̇ s.

A corollary from the proof of 3.5 yields the following.

Corollary 3.7. The degree vanishes iff σ is a covering projective structure.

3.3. Lyapunov exponent of P1-structures

Fix a basepoint ? ∈ C, in particular an identification between the covering
group π1(C) and the usual fundamental group π1(C, ?). As C is endowed
with its Poincaré metric, Brownian motion on C is well-defined. Let W? be
the Wiener measure on the set of continuous paths ω : [0,∞)→ X starting
at ω(0) = ?.

Definition-Proposition 3.8. Let C and σ be as above. Define a family
of loops as follows: for t > 0, consider a Brownian path ω issued from ?,
and concatenate ω|[0,t] with a shortest geodesic joining ω(t) and ?, thus
obtaining a closed loop ω̃t. Then for W? a.e. Brownian path ω the limit

(3.9) χ(σ) = lim
t→∞

1

t
log ‖hol (ω̃t)‖

exists and does not depend on ω. This number is by definition the Lyapunov
exponent of σ.

Here ‖ · ‖ is any matrix norm on PSL(2,C). The existence of the limit
in (3.9) was established in [18, Definition-Proposition 2.1]. As expected
it is a consequence of the subadditive ergodic theorem. In the notation
of [18], χ(σ) = χBrown(hol). Another way to define χ(σ) goes as follows
(see [18, Remark 3.7]: identify π1(C) with a Fuchsian group Γ and choose
independently random elements γn ∈ Γ∩BH(0, Rn), relative to the counting
measure. Here (Rn) is a sequence tending to infinity as fast as, say nα for
α > 0. Then almost surely

1

dH(0, γn(0))
log ‖hol(γn)‖ −→

n→∞
χ(σ).

The following formula relates the Lyapunov exponent χ(σ) to the de-
gree defined in the last subsection.
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Theorem 3.10. Let σ be a parabolic holomorphic P1 structure on C. Let
as above χ(σ), δ(σ), and deg(σ) respectively denote the Lyapunov expo-
nent, the unnormalized degree and the degree of σ. Then the following
formula holds:

(3.11) χ(σ) =
1

2
+ 2πδ(σ) =

1

2
+

deg(σ)

|eu(X)|
.

Theorem 3.10 could be understood as the analogue of the familiar
Manning-Przytycki formula [55, 64] for the Lyapunov exponent of the max-
imal entropy measure of a polynomial. Recall that this formula states that
for a polynomial P of degree d in one variable

χ = log d+
∑

P ′(c)=0

G(c),

where G is the Green function. See [55, 64]. The term log d is constant
on parameter space (equal to the entropy of the polynomial P ), as the
term 1

2
in formula (3.11), and the term

∑
cG(c) is non negative, as well as

the degree.
This reinforces an analogy between Mandelbrot sets and Bers slices that

was brought to light by McMullen [58]. Namely, the Lyapunov exponent is
minimal on these sets (equal to log d for the Mandelbrot set and to 1/2 for
the Bers slice). We will develop more on this analogy later on.

Sketch of proof. Surprisingly enough, the proof is based on the ergodic
theory of holomorphic foliations. Again we will indicate the proof only when
C is compact, and refer to [19] for the punctured case. Recall that there is a
dictionary between P1-structures and transverse sections of flat P1-bundles.
In this dictionary, there is a simple relation between the Lypaunov exponent
χ defined in 3.8 and the foliated Lyapunov exponent defined in 1.6.

Lemma 3.12. Let σ be a P1-structure, (dev, hol) a development-holonomy
pair, and λ(σ) be the Lyapunov exponent of the foliated complex surface
(Shol,Fhol) computed w.r.t. the leafwise Poincaré metric. Then χ(σ) =
−2λ(σ).

The proof of this lemma essentially follows from the formula of the
derivative of a Moebius map in the spherical metric, namely if h(z) = az+b

cz+d
,

then ‖Dh(z)‖ = |ad−bc|
|az+b|2+|cz+d|2 . We refer to [19] for the detailed proof of

Lemma 3.12.
Next, the proof of Theorem 3.10 relies on cohomological computations

in H1,1(Shol,C). Recall that a P1-bundle is an algebraic surface, by the
GAGA principle, and in particular is Kähler. Also recall that by the ∂∂-
lemma, in a Kähler compact surface, a closed (1, 1)-form is exact iff it is
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∂∂-exact. This means that T · E = T · F if E and F have the same Chern
classes, see 1.4.

The cohomology of Shol is easy to compute. Indeed, a P1-bundle over
a curve is diffeomorphic to a product as soon as there exists a section of
even self-intersection. In our situation, we have such a section at hand: the
section s being (at the level of the universal covers) the graph of dev. We
claim: s2 = Eu(C). This is due to the fact that there is an isomorphism
between the tangent bundle of C and its normal bundle, since C is both
transverse to the foliation Fhol and to the fibration Shol → C. In particular,
we infer H1,1(Shol,C) = C[s] ⊕ C[f ], where f is any fiber of the fibration.
The intersection product on H1,1(Shol,C) is given by s2 = Eu(C), f 2 = 0,
and f · s = 1.

After these preliminaries, let us use the combination of Lemma 3.12
and Proposition 1.30, to get

χ =
1

2

T ·NF
T ·KF

.

We have NF ·f = 2 and NF ·s = Eu(C). So we infer [NF ] = 2[s]−Eu(C)[f ].
Let T be the unique harmonic current whose product with the Poincaré

volume form is equal to 1. We then have T ·f = 1
vol(C)

and T ·KF = |Eu(C)|
vol(C)

.

This gives

χ =
vol(C)

2Eu(C)
(2 T · s+ |Eu(C)| T · f) = 2π T · s+

1

2
.

The proof is completed by showing that the cohomological intersection T ·s
coincides with the geometric intersection δ = T ∧̇ s. This last fact is not
immediate since one cannot regularize the current of integration on s (recall
s2 < 0) but this is done by hand. We refer to [19] for more details.

3.4. Harmonic measures of P1-structures

Let C be a smooth quasi-projective curve of negative Euler characteristic
and σ a parabolic type projective structure on C. As before, we endow C
and its universal covering with the Poincaré metric. We associate to σ a
family of harmonic measures {νx}x∈X̃ on the Riemann sphere, indexed by

C̃. It can be defined in several ways. The following appealing presentation
was introduced by Hussenot in his PhD thesis [45]:

Definition-Proposition 3.13 (Hussenot). Let C be a Riemann surface
of finite type and σ be a parabolic projective structure on C. Choose a

representing pair (dev, hol). Then for every x ∈ C̃, and Wx a.e. Brownian
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path starting at ω(0) = x, there exists a point e(ω) on P1 defined by the
property that

1

t

∫ t

0

dev∗
(
δω(s)

)
ds −→

t→+∞
δe(ω).

The distribution of the point e(ω) subject to the condition that ω(0) = x is
the measure νx. In particular, due to the conformal invariance of Brownian
motion, for a covering P1-structure, we recognize the classical harmonic
measures on the limit set of a Kleinian group.

Another definition of the harmonic measures is based on the so-called
Furstenberg boundary map, which was designed in [32], based on the dis-
cretization of Brownian motion in the hyperbolic plane H (see also Margulis
[56, Theorem 3] for a different approach). Furstenberg showed that if Γ is a
cofinite Fuchsian group and ρ : Γ→ PSL(2,C) is a non-elementary represen-
tation, there exists a unique measurable equivariant mapping θ : P1(R) →
P1 defined a.e. with respect to Lebesgue measure. Choose a biholomor-

phism C̃ ' H, thereby identifying π1(C) with a cofinite Fuchsian group.
For every x ∈ H, let mx be the classical harmonic measure (i.e. the exit dis-
tribution of Brownian paths issued from x), which is a probability measure
with smooth density on P1(R). The harmonic measure νx is then defined
by νx = θ∗mx. From this perspective it is clear that, the measures νx are
mutually absolutely continuous and depend harmonically on x.

Theorem 3.14. Let C be compact algebraic curve and σ be a parabolic
projective structure on C. Let as above χ be its Lyapunov exponent and
(νx)x∈X̃ be the associated family of harmonic measures. Then for every x,

dimH(νx) ≤
1

2χ
≤ 1.

Furthermore dimH(νx) = 1 if and only if the developing maps are injective.

So, as in the polynomial case, formula (3.11) provides an alternate
approach to the classical bound dimH(ν) ≤ 1 for the harmonic measure on
boundary of discontinuity components of finitely generated Kleinian groups,
which follows from the famous results of Makarov [54] and Jones–Wolff [47].
In addition, with this method we are also able to show that dimH(ν) < 1
when the component is not simply connected. Indeed we have the more
precise bound dimH(ν) ≤ A

2χ
, where 0 ≤ A ≤ 1 is an invariant of the flat

foliation, and A < 1 when hol is not injective. This A has been defined by
Frankel and is called the action, see [29].

We also see that the value of the dimension of the harmonic measures
detects exotic quasifuchsian structures, that is, projective structures with
quasifuchsian holonomy which do not belong to the Bers slice.
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Sketch of proof. The curve C will be assumed to be compact, we refer
to [19] for the punctured case. The main observation is to see the family of
harmonic measures of a P1-structure as a foliated harmonic current. This
is summarized in the following statement.

Proposition 3.15. Let σ be a P1-structure on a compact C, and let
(dev, hol) be a development-holonomy pair. Let (Shol,Fhol) be the flat P1-
bundle constructed in 1.3. Let T ′ be the unique foliated harmonic current
whose intersection with the fibers of Shol is 1. The family of harmonic mea-

sures of σ is the family of desintegration of a (lift) of T ′ to C̃ × P1 on the
fibers x× P1.

Observe that the current T ′ in this proposition is equal to T ′ = vol(C)T ,
where T is the current such that the foliated harmonic measure µ = T ∧ vP
has mass one. The proof of proposition relies on the fact that the map
x 7→ νx is harmonic, which is clear from the Furstenberg/Margulis point
of view.

We now review an invariant of the harmonic current T that was intro-
duced by Frankel, under the name of action. See [29]. It is defined as the
non negative number

(3.16) A = A(T ) =

∫
Shol

‖∇F logϕ‖2 dµ,

where the functions ϕ are the densities of the desintegration of T along
the leaves. The function ϕ are positive harmonic functions, so that the
integral (3.16) is convergent. More precisely, by observing that the functions
ϕ can be extended analytically on the universal cover of the leaves, and
applying the Schwarz Pick lemma, one shows that A(T ) ≤ 1. See [16] for
more details.

Using the fact that ϕ is harmonic, one finds the formula ‖∇ logϕ‖2 =
−∆ logϕ, so that ∫

Shol

∆(logϕ) dµ = −A.

Using exactly the same argument as in the proof of Lemma 1.31, we infer
the following result:

Lemma 3.17. For µ-a.e. w ∈ Shol, and Ww-a.e. leafwise Brownian path
ω starting at w, we have

lim
t→∞

1

t
logDT (hω|[0,t])(w) = −A,

where DTh :=
h−1νω(t)

νω(0)
is the Radon-Nikodyn derivative with respect to the

measure induced by T on P1-fibers, namely the family of harmonic measures.
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Hence, for every ε > 0, the maps hω|[0,t] contract conformally the spheri-

cal distances by the factor exp((λ±ε)t), whereas they contract the harmonic
measures by the factor exp((−A(T )± ε)t). We deduce the heuristic

dim(νx) =
A

|λ|
=

A

2χ
≤ 1

2χ
.

Using a weak notion of dimension, the so-called essential dimension (de-
noted by dimess), one can prove part of this heuristic, namely the inequality

(3.18) dimess(νx) ≤
A

2χ
.

This uses an argument of Ledrappier [52, Thm 1] in the context of random
product of matrices that we adapt to our setting. The proof of Theorem
3.14 then follows from (3.18) and the fact that the Hausdorff dimension is
bounded by the essential dimension.

3.5. Geometry of Bers slices

As another application of formula (3.11), we recover a result due to Shiga [66].

Theorem 3.19 (Shiga). Let C be a hyperbolic Riemann surface of finite
type (of genus g with n punctures). The closure of the Bers embedding
B(C) is a polynomially convex compact subset of the space P (C) ' C3g−3+n

of holomorphic projective structures on C. As a consequence, B(C) is a
polynomially convex (or Runge) domain.

Recall that a compact set K in CN is polynomially convex if K̂ =
K, where

K̂ =

{
z ∈ CN , |P (z)| ≤ sup

K
|P | for every polynomial P

}
.

An open set U ⊂ CN is said to be polynomially convex (or Runge) if

for every K b U , K̂ ⊂ U . The theorem may be reformulated by saying
that B(C) is defined by countably many polynomial inequalities of the
form |P | ≤ 1. This is not an intrinsic property of Teichmüller space, but
rather a property of its embedding into the space P (C) of holomorphic
projective structures on C (as opposed to the Bers-Ehrenpreis theorem
that Teichmüller is holomorphically convex).

Shiga’s proof is based on the Grunsky inequality on univalent func-
tions. Only the polynomial convexity of B(C) is asserted in [66], but the

proof covers the case of B(C) as well. Our approach is based on the ele-
mentary fact that the locus of minima of a global psh function on CN is
polynomially convex.
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Sketch of proof. We just prove here the polynomial convexity of the Bers
slice B(C). The polynomial convexity of B(C) is more involved, we refer
to [19]. It was shown in [18] that σ 7→ χ(σ) is a continuous (Hölder)
plurisubharmonic (psh for short) function on P (X), hence it follows from
formula 3.11 that deg is continuous and psh, too. In addition we see that
χ(σ) reaches its minimal value 1

2
exactly when deg(σ) = 0, see 3.7. This

already proves that the interior of {δ = 0}, namely the set of covering
P1-structures, is polynomially convex. But this set is exactly the Bers slice,
so we are done.

We finish this lecture by reviewing yet another application of formula
(3.11) to equidistribution properties in P (C). In [18] we showed that Tbif :=
ddcχ is a bifurcation current, in the sense that its support is precisely the
set of projective structures whose holonomy representation is not locally
structurally stable in P (X). The support of this current is the exterior of
the Bers slice B(C).

Analogous bifurcation currents have been defined for families of rational
mappings on P1. It turns out that the exterior powers T kbif are interesting
and rather well understood objects in that context (see [26] for an account).
In particular, in the space of polynomials of degree d, the maximal exte-
rior power T d−1

bif is a positive measure supported on the boundary of the
connectedness locus, which is the right analogue in higher degree of the
harmonic measure of the Mandelbrot set [25].

For bifurcation currents associated to spaces of representations, nothing
is known in general about the exterior powers T kbif . In our situation, we are
able to obtain some information.

Theorem 3.20. Let C be a compact Riemann surface of genus g ≥ 2. Let
Tbif = ddcχ be the natural bifurcation current on P (C). Then ∂B(C) is
contained in Supp(T 3g−3

bif ).

Notice that 3g − 3 is the maximum possible exponent. It is likely
that the support of T 3g−3

bif is much larger than ∂B(C). The reason for the
compactness assumption here is that the proof requires some results of Otal
[61] and Hejhal [43] that are known to hold only when X is compact.

If γ is a geodesic on C w.r.t. to the Poincaré metric, we let Z(γ)
be the subvariety of P (C) defined by the property that tr2(hol(γ)) = 4
(i.e. hol(γ) is parabolic or the identity). As a consequence of Theorem 3.20
and of the equidistribution theorems of [18] we obtain the following result,
which contrasts with the description of ∂B(C) “from the inside” in terms of
maximal cusps and ending laminations ([60, 6], see [51] for a nice account).
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Corollary 3.21. For every ε > 0 there exist 3g−3 closed geodesics γ1, . . . ,
γ3g−3 on C such that ∂B(C) is contained in the ε-neighborhood of Z(γ1) ∩
· · · ∩ Z(γ3g−3).

We observe that the value 4 for the squared trace is irrelevant here. As
the proof will show, the result holds a.s. when γ1, . . . , γk are independent
random closed geodesics of length tending to infinity.
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complexes (Lyon, 1997), ix, xi, 49–95, Panor. Synthèses, 8, Soc. Math. France,
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Université de Paris Sud, 91405 Orsay cedex, France
E-mail: bertrand.deroin@math.u-psud.fr





Talks





Geometry and Foliations 2013
Komaba, Tokyo, Japan

On the uniformly perfectness of
diffeomorphism groups preserving a

submanifold and its applications
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1. Introduction

In this talk we shall describe the recent results on the uniformly perfectness
of diffeomorphism groups of smooth manifolds preserving a submanifold.

Let M be a smooth connected manifold without boundary. Let D∞(M)
denote the group of C∞-diffeomorphisms of M with compact support which
are isotopic to the identity through C∞-diffeomorphisms with compact sup-
port. It is known that M.Herman [5] and W.Thurston [6] proved D∞(M)
is perfect.

Let (M,N) be a manifold pair and D∞(M,N) be the group of C∞-
diffeomorphisms of M preserving N which are isotopic to the identity
through compactly supported C∞-diffeomorphisms preserving N . In [1],
we proved that the group D∞(M,N) is perfect if the dimension of N is
positive. In this talk we consider the conditions for D∞(M,N) to be uni-
formly perfect. A group G is said to be uniformly perfect if each element
of G is represented as a product of a bounded number of commutators of
elements in G.

In [7], [8] T.Tsuboi obtained an excellent results on the uniform per-
fectness of the group Dr(M). He proved that it is uniformly perfect 1 ≤
r ≤ ∞ (r 6= dimM + 1) when M is an odd dimensional manifold or an
even dimensional manifold with the appropriate conditions.

In [1], [2] we studied the conditions for D∞(M,N) to be uniformly
perfect when M is a compact manifold. If the group D∞(M,N) is uniformly
perfect, then both D∞(N) and D∞(M−N) are uniformly perfect. We need
the another conditions for the converse. Let p : D∞(M,N) → D∞(N) be
the map given by the restriction. If the connected components of ker p are
finite, then D∞(M,N) is a uniformly perfect group for n ≥ 1. There exist
many examples satisfying this condition.

If N is the union of circles in M and the connected components of ker p
are infinite, then we can prove that D∞(M,N) is not a uniformly perfect
group. We can apply the result for various cases. If M is an oriented surface
and N a disjoint union of circles in M , we can determine the uniformly
perfectness of the group D∞(M,N) ([2]). Finally we consider the case
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when M = S3 and N is a knot in S3, Then we prove that D∞(S3, N) is
uniformly perfect if and only if N is a torus knot.

2. Statement of the main results

Let (M,N) be a manifold pair. Then D∞(M,N) is perfect only if dimN ≥
1 ([1], Theorem 1.1). Thus we assume that dimN ≥ 1 and investigate the
conditions that D∞(M,N) is uniformly perfect.

Theorem 2.1 ([1], [2]). Let M be an m-dimensional compact manifold
without boundary and N an n-dimensional C∞-submanifold such that both
groups D∞(M − N) and D∞(N) are uniformly perfect. If the connected
components of ker p are finite, then D∞(M,N) is a uniformly perfect group
for n ≥ 1.

The converse of Theorem 2.1 is valid when N is a disjoint union of
circles in M .

Theorem 2.2 ([2]). Let M be an m-dimensional compact manifold with-
out boundary and N be a disjoint union of circles in M . If the connected
components of ker p are infinite, then D∞(M,N) is not a uniformly perfect
group.

Now we apply Theorem 2.1 and Theorem 2.2 for studying the uniformly
perfectness of the group D∞(M,N) when M is an orientable surface and
N is a disjoint union of circles.

Theorem 2.3 ([3]). D∞(M,N) is uniformly perfect if and only if
(1) M = S2 and k = 1 and,
(2) M = T 2, k = 1 and N represents a non-trivial element of π1(T 2).

Finally we consider the case where K is a knot in S3. Using the result
by G. Burde and H. Zieschang [4], we have the following.

Theorem 2.4. D∞(S3, K) is uniformly perfect if and only if K is a torus
knot.
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On the ampleness of positive CR line
bundles over Levi-flat manifolds

Masanori ADACHI

1. Background

A closed real hypersurface M in a complex manifold X is said to be Levi-
flat if M has a foliation F (called the Levi foliation) whose leaves are
non-singular complex hypersurfaces of X. By the Frobenius theorem, this
definition is equivalent to saying that M is locally pseudoconvex from both
sides. Therefore, by its definition, the study of Levi-flat real hypersurfaces
is of two natures: intrinsic one of the theory of foliations, and extrinsic one
of function theory of several complex variables.

A problem in the study of Levi-flat real hypersurfaces is to understand
the interplay between complexity of the Levi foliation F and pseudocon-
vexity of the complement X \M , which was first pointed out explicitly by
Barrett [2]. He studied several explicit families of Levi-flat real hypersur-
faces in compact complex surfaces, and showed that, in these examples, the
existence of a leaf with non-trivial holonomy corresponds to the 1-convexity
of the complement. Our motivation of this study is to refine this suggested
connection and to describe it in quantitative way.

On the other hand, complexity of the Levi foliation F should also
be reflected on transverse regularity of leafwise meromorphic functions on
M . Here, what we mean by a leafwise meromorphic function is a leafwise
holomorphic section of a C∞ CR line bundle L over M (a C∞ C-line bundle
overM with C∞ leafwise holomorphic transition functions) and when we say
leafwise holomorphic, it is in the distribution sense. If the Levi foliation F
is enough complicated, leafwise meromorphic functions may lose transverse
regularity since they are analytically continued along leaves and can behave
wildly in the transverse direction. Actually, Inaba [4] showed that if we
impose continuity on leafwise holomorphic functions on compact Levi-flat
manifolds, they must be constant along leaves.

In this note, we take the latter viewpoint and focus on the following

Question 1.1. How does pseudoconvexity of the complement X\M affect
transverse regularity of leafwise meromorphic functions on M?

This short note is an announcement of [1], to which we refer the reader
for the details.

c© 2013 Masanori Adachi
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2. Results

First we recall a Kodaira type embedding theorem of Ohsawa and Sibony,
which holds for not only compact Levi-flat hypersurfaces but also abstract
compact Levi-flat manifolds.

Theorem 2.1 ([7] Theorem 3, refined in [5]). Let M be a compact C∞ Levi-
flat manifold equipped with a C∞ CR line bundle L. Suppose L is positive
along leaves, i.e., there exists a C∞ hermitian metric on L such that the
restriction of the curvature form to each leaf is everywhere positive definite.
Then, for any κ ∈ N, L is Cκ-ample, i.e., there exists n0 ∈ N such that one
can find leafwise holomorphic sections s0, · · · , sN of L⊗n, of class Cκ, for
any n ≥ n0, such that the ratio (s0 : · · · : sN) embeds M into CPN .

For arbitrarily large κ ∈ N, by taking n0 sufficiently large depending on
κ, we can obtain so many Cκ leafwise holomorphic sections of L⊗n0 ; in fact,
they form an infinite dimensional vector space. Note that the existence
of a positive-along-leaves C∞ CR line bundle over M is equivalent to the
tautness of the Levi foliation of M ; our setting is not too restrictive.

A natural question on the Ohsawa–Sibony embedding theorem is whether
or not we can improve the regularity to κ = ∞. This question asks the
dependence of n0 on κ as κ → ∞, and at this point we will face a subtle
interplay between transverse regularity of leafwise meromorphic functions,
and complexity of the Levi foliation or pseudoconvexity of the complement.

Now we introduce a notion of pseudoconvexity that we are going to
focus on.

Definition 2.2 (Takeuchi 1-complete space). Let D be a relatively com-
pact domain in a complex manifold X with C2 boundary. We say that D is
Takeuchi 1-complete if there exists a C2 defining function r of ∂D defined on
a neighborhood of D with D = {z | r(z) < 0} such that, with respect to a
hermitian metric on X, all of the eigenvalues of the Levi form of − log(−r)
are bounded from below by a strictly positive constant entire on D.

Takeuchi 1-completeness not only implies that the domain is Stein, but
also implies that it behaves as if it is in complex Euclidean space.

Theorem 2.3 (cf. [6] Theorem 1.1). Let D be a Takeuchi 1-complete do-
main with defining function r. Then, −∂∂ log(−r) gives a complete Kähler
metric on D, and it follows that −(−r)ε with sufficiently small ε > 0 be-
comes a strictly plurisubharmonic bounded exhaustion function on D, i.e.,
D is hyperconvex.
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We do not have any compact Levi-flat real hypersurface in Cn if n ≥ 2.
Nevertheless, there exist compact Levi-flat real hypersurfaces in compact
complex surfaces whose complements are Takeuchi 1-complete.

Theorem 2.4 ([1]). Let Σ be a compact Riemann surface of genus ≥ 2
and ρ : π1(Σ) → PSU(1, 1) = Aut(D) a group homomorphism. Denote by
Dρ = Σ×ρD the holomorphic unit disc bundle obtained by the suspension of
ρ over Σ. Suppose there exists a unique non-holomorphic harmonic section
h : Σ → Dρ whose rankR dh = 2 on a non-empty open set. Then, Dρ is
Takeuchi 1-complete in its associated CP1-bundle Xρ = Σ×ρ CP1.

The boundary of Dρ is a flat S1-bundle Mρ = Σ×ρS1, thus, a Levi-flat
real hypersurface. The assumption is fulfilled for any non-trivial quasicon-
formal deformation ρ of Γ where Γ is a Fuchsian representation of Σ = D/Γ.

The proof of Theorem 2.4 is by explicitly constructing a suitable defin-
ing function, in which the harmonic section h is the essential ingredient.
This technique originates in the work of Diederich and Ohsawa [3].

We can observe the following Bochner–Hartogs type phenomenon for
Levi-flat real hypersurfaces with Takeuchi 1-complete complements.

Theorem 2.5. Let X be a compact complex surface, L a holomorphic line
bundle over X, and M a C∞ compact Levi-flat real hypersurface of X which
splits X into two Takeuchi 1-complete domains D tD′. Then, there exists
κ ∈ N such that any Cκ leafwise holomorphic section of L|M extends to a
holomorphic section of L.

This theorem tells us that the space of Cκ leafwise holomorphic sections
of L|M is finite dimensional for sufficiently large κ; in particular, the space
of C∞ leafwise holomorphic sections of L|M is always finite dimensional.
This description is a qualitative answer to Question 1.1 for Levi-flat real
hypersurfaces with Takeuchi 1-complete complements.

The proof of Theorem 2.5 can be done with established techniques in
function theory of several complex variables. A simple proof is given in [1].

As a corollary, we give an example that shows that the Ohsawa–Sibony
embedding theorem cannot hold for κ =∞ in general.

Corollary 2.6 ([1]). Let Σ be a compact Riemann surface of genus ≥ 2,
and ρ : π1(Σ) → PSU(1, 1) = Aut(D) a group homomorphism. Denote the
suspended CP1 bundle by π : Xρ → Σ. Take a positive line bundle L over
Σ. Suppose Dρ has a unique non ±holomorphic harmonic section h whose
rankR dh = 2, then π∗L|Mρ is positive along leaves, but never C∞ ample.
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3. Further Questions

We conclude this short note with further questions. The following notion
is a quantitative version of Takeuchi 1-completeness according to Theorem
2.3.

Definition 3.1. Let D be a Takeuchi 1-complete domain with defining
function r. We denote by εDF (r) the supremum of ε ∈ (0, 1) such that
−(−r)ε is a strictly plurisubharmonic bounded exhaustion function on D,
and call it the Diederich–Fornaess exponent of the defining function r.

Our questions are quantitative or intrinsic versions of Question 1.1.

Question 3.2. Can we estimate the κ in Theorem 2.5 in terms of the
Diederich–Fornaess exponent of some defining function?

Question 3.3. What is the counterpart of the Diederich–Fornaess expo-
nent in the theory of foliations? By using it, can we prove Corollary 2.6
without looking the natural Stein filling Dρ?
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A cocycle rigidity lemma for
Baumslag-Solitar actions and its applications

Masayuki ASAOKA

1. A cocycle rigidity lemma

Let Diff(Rn, 0) be the group of local diffeomorphisms of Rn at the origin.
In many situations in study of foliations, we encounter with Diff(Rn, 0)-
valued cocycles over a group action. A typical case is the following. Con-
sider an action of simply connected Lie group whose orbits form a smooth
codimension-n foliation with trivial normal bundle. Then, the holonomy
map of the foliation with respect to a fixed family of transverse coordinates
defines a Diff(Rn, 0)-valued cocycle. In this case, the existence of a trans-
verse geometric structure is equivalent to the condition that the cocycle
can be reduced to a subgroup of Diff(Rn, 0) which preserves the geometric
structure.

In this talk, we show a rigidity lemma for Diff(Rn, 0)-valued cocycle
over actions of the Baumslag-Solitar group BS(1, k). We also apply it to
rigidity problem of several group actions.

For integers k ≥ 2, the Baumslag-Solitar group BS(1, k) is the
group presented as

〈a, b | aba−1 = bk〉.
There are many copies of BS(1, k) is contained in the group CAff(Rn) of
conformal affine transformations of Rn. In fact, let fk and gv be elements of
CAff(Rn) given by fk(x) = kx and gv(b) = x+v. Then, the correspondence
a 7→ fk and b 7→ gv gives an inclusion from BS(1, k) to CAff(Rn).

Let Γ and H be topological groups and X a topological space. For a
given action ρ : Γ×X → X, a map α : Γ×X → H is called a cocycle over
ρ if α(1Γ, x) = x and α(γγ′, x) = α(γ, γ′x) · α(γ′, x) for any γ, γ′ ∈ G and
x ∈ X (1Γ is the unit element of Γ). The space of H-valued cocycle over ρ
admits a topology as a subspace of C0(Γ×X,H). Let H ′ be a subgroup of
H. Two H-valued cocycles α and β over ρ are H ′-equivalent if there exists
h ∈ H ′ such that β(γ, x) = h · α(γ, x) · h−1 for any γ ∈ Γ and x ∈ X.

For an element F of Diff(Rn0), we denote the r-jet of F at the origin
by jr0F . Let jr Diff(Rn, 0) is the group of r-jets of elements of Diff(Rn, 0)
at the origin. The group Diff(Rn, 0) is endowed with the weakest topology
such that the projection to jr Diff(Rn, 0) is continuous for any r ≥ 1 (it is
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not Hausdorff). We denote the identity map of Rn by Id. For r ≥ 1, let
G(r) be the subgroup of Diff(Rn, 0) consisting of elements with trivial r-jet.

Cocycle Rigidity Lemma There exists a universal constant εk > 0
such that the following assertion holds: Let X be a topological space, ρ :
BS(1, k) × X → X a continuous BS(1, k)-action. If continuous cocycles
α, β : BS(1, k)×X → Diff(Rn, 0) over ρ satisfies that

1. j2
0(α(γ, x)) = j2

0(β(γ, x)) for any γ ∈ BS(1, k) and x ∈ X, and

2. ‖j1
0(α(a, x)) − (1/k) Id ‖ < εk and ‖j1

0(α(b, x)) − Id ‖ < εk, where Id
is the identity map on Rn,

then two cocycles α and β are G(2)-equivalent. If α(a, ·) = β(a, ·) in addition
then α and β coincide as cocycles.

In other words, a cocycle whose linear part is close to the linear represen-
tation given by a 7→ (1/k)I and b 7→ I is determined by its 2-jet up to
G(2)-equivalence.

2. Applications

The first application of the above cocycle rigidity lemma is rigidity of certain
conformal local action of a Baumslag-Solitar-like group. For k ≥ 2 and
n ≥ 1, let Γn,k be the discrete group presented as

〈a, b1, . . . , bn | abia−1 = bki , bibj = bjbi (i, j = 1, . . . , n)〉.

Each subgroup generated by a and bi is isomorphic to BS(1, k). Let fk
and gv be conformal affine maps on Rn given in the previous section. They
naturally extends to the sphere Sn = Rn∪{∞}. For a basisB = (v1, . . . , vn)
of Rn, we define a smooth Γn,k-action ρB on Sn (i.e. a homomorphism from
Γn,k to Diff(Sn)) by ρB(a) = fk and ρB(bi) = gvi . Let φ : Sn \{0} → Rn be
a coordinate at∞ given by φ(x) = x/‖x‖2. We define a local Γn,k-action PB
(i.e. a homomorphism from Γn,k to Diff(Rn, 0)) by PB(γ) = φ · ρB(γ) ·φ−1.
Remark that the local action PB preserves the standard conformal structure
on Rn.

Theorem 2.1 ([1]). If a local action P : Γn,k → Diff(Rn, 0) is sufficiently
close to PB, then there exists a basis B′ of Rn and a local diffeomorphism
H ∈ Diff(Rn, 0) such that P (γ) = H · PB′(γ) · H−1 for any γ ∈ Γn,k. In
particular, the local Γn,k-action P preserves a smooth conformal structure
on Rn.

Outline of Proof. Notice that a local action is a Diff(Rn, 0)-cocycle over
the trivial action on a point. We can check that the sub-action generated
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by a and bi satisfies the assumptions of the rigidity lemma. So, it is suf-
ficient to show that P coincides with a conjugate of some PB′ up to 2-jet.
Finding the basis B′ can be done using a variant of Weil’s rigidity theorem
of homomorphisms between Lie groups [5].

Using the persistence of global fixed point∞, we can derive a global rigidity
theorem from the above theorem.

Theorem 2.2 ([1]). If a smooth Γn,k-action ρ is sufficiently close to ρB,
then there exists a basis B′ of Rn and a diffeomorphism h of Sn such that
ρ(γ) = h · ρB′(γ) · h−1.

A similar local or global rigidity theorem can be shown for a Γn,k-action
on the n-dimensional torus Tn. We identify Tn with (R ∪ {∞})n. For a
basis B = (v1, . . . , vn) of Rn, we define a Γn,k-action σB on Tn by

σB(a)(x1, . . . , xn) = (kx1, . . . , kxn)

σB(bi)(x1, . . . , xn) = (x1, . . . , xi−1, xi + vi, xi+1, . . . , xn).

By the same way as above, we can show a rigidity result for this action.

Theorem 2.3. If a smooth Γn,k-action σ is sufficiently close to σB, then
there exists a basis B′ of Rn and a diffeomorphism h of Tn such that σ(γ) =
h · σB′(γ) · h−1.

The second application is another proof of Ghys’s local rigidity theo-
rem on Fuchsian action on RP 1. Let Γ be a cocompact lattice of PSL(2,R)
Since PSL(2,R) acts on RP 1 naturally, Γ acts on RP 1 as a subgroup of
PSL(2,R). We denote this action by ρΓ. More generally, when a homo-
morphism π : Γ→ PSL(2,R) is given, we can define a Γ-action ρπ on RP 1

by ρπ(γ)(x) = π(γ) · x.

Theorem 2.4 (Ghys [2]). If a Γ-action ρ on RP 1 is sufficiently close to
ρΓ, then there exists an homomorphism π : Γ → PSL(2,R) and a diffeo-
morphism h of S1 such that ρ(γ) = h · ρπ(ρ) · h−1 for any γ ∈ Γ.

All known proofs ([2, 3, 4]) use the Schwarzian derivative, but our proof
does not. We use that fact that any j2 Diff(R, 0)-cocycle can be extended
to a cocycle valued in projective transformations of (R, 0)

Outline of our proof. Let P be the subgroup of PSL(2,R) that consists
of lower triangular elements. It is generated by one-parameter subgroups
A = (at)t∈R and N = (bs)s∈R with a relation atbsa−t = bs exp t. Define a
smooth right P -action ρP on Γ\PSL(2,R) by ρP (Γg, p) = Γ(gp), and de-
note the orbit foliation of ρP by FP . As Ghys proved, it is sufficient to
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show that any foliation F sufficiently close to FP admits a smooth trans-
versely projective structure. Since the restriction of ρP to A is an Anosov
flow and FP is its unstable foliation, we can find a homeomorphism of M
which sends each leaf of FP to that of F . This homeomorphism induces a
continuous P -action ρ whose orbit foliation is F . The holonomy map of F
gives a Diff(R, 0)-valued cocycle ᾱ over ρ.

The group P naturally contains BS(1, k) as a subgroup. Let α be the
restriction of the cocycle ᾱ to BS(1, k). To show that F is transversely
projective, it is enough to see that ᾱ is Diff(R, 0)-equivalent to a cocycle
whose values are projective transformation. But, it is an easy consequence
of the rigidity lemma. In fact, as mentioned above. any j2 Diff(R, 0)-
valued cocycle can be extended to a cocycle whose values are projective
transformations in one-dimension (it is not true for higher dimension). So,
the rigidity lemma implies that α is G(2)-equivalent to such a cocycle.
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On Fatou-Julia decompositions of complex
dynamical systems

Taro ASUKE

1. Introduction

A Fatou-Julia decomposition for transversely holomorphic, complex co-
dimension-one foliations is introduced by Ghys, Gomez-Mont and Saludes
[4] (and in [6]) in terms of deformations of holomorphic structures. Another
decomposition is introduced in [2] in terms of normal families. These de-
compositions enjoy some properties similar to those of classical Fatou-Julia
decomposition and also to the decomposition of the sphere into the domains
of discontinuity and the limit sets (of Kleinian groups). In [3], a Fatou-Julia
decomposition is introduced for pseudosemigroups. The decomposition is
still difficult to study, however, it provides a natural unification of the no-
tions of Fatou-Julia decomposition of mapping iterations, foliations and the
decomposition of sphere with respect to the action of Kleinian groups. In
this article, we will introduce pseudosemigroups and the Fatou-Julia de-
composition, and explain how decompositions are unified (Theorem 2.16)
after [2] and [3].

2. Pseudosemigroups and Fatou-Julia decompositions

We first introduce notions of pseudosemigroups and their Fatou-Julia de-
compositions. The notion of pseudosemigroups has already appeared (cf. [8],
[11] and [7]). We will make use of a similar but different one.

In what follows, we consider holomorphic mappings unless otherwise
mentioned, although pseudosemigroups can be considered in much more
generalities.

In short, a pseudosemigroup is a pseudogroup but the inverse is not
necessarily defined.

Definition 2.1. Let T be an open subset (not necessarily connected) of
Cn and Γ be a family of mappings from open subsets of T into T (we
call such mappings local mappings). Then, Γ is a (holomorphic) pseudo-
semigroup (psg for short) if the following conditions are satisfied.

1) idT ∈ Γ , where idT denotes the identity map of T .
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2) If γ ∈ Γ , then γ|U ∈ Γ for any open subset U of dom γ.

3) If γ1, γ2 ∈ Γ and range γ1 ⊂ dom γ2, then γ2 ◦ γ1 ∈ Γ , where dom γ
and range γ denotes the domain and the range of γ, respectively.

4) Let U be an open subset of T and γ continuous mapping defined on
U . If for each x ∈ U , there is an open neighborhood, say Ux, of x
such that γ|Ux belongs to Γ , then γ ∈ Γ .

If in addition Γ consists of local homeomorphisms, namely, homeomor-
phisms from domains to ranges, then Γ is a pseudogroup (pg for short) if
Γ satisfies 1), 2), 3) and the following conditions.

4′) Let U be an open subset of T and γ a homeomorphism from U to
γ(U). If for each x ∈ U , there is an open neighborhood, say Ux, of x
such that γ|Ux belongs to Γ , then γ ∈ Γ .

5) If γ ∈ Γ , then γ−1 ∈ Γ .

If Γ is either a psg or pg, then we set for x ∈ T

Γx = {γx |x ∈ dom γ}.

By abuse of notation, an element of Γx is considered as an element of Γ
defined on a neighborhood of x.

One might expect that a pg is a psg but it is not always the case.

Example 2.2. Let T = CP 1 = C ∪ {∞} and define an automorphism f
of CP 1 by f(z) = −z. We denote by Γ the pg generated by f , that is, the
smallest pg which contains f . Let U = {z ∈ C | |z − 2| < 1} and V = f(U).
If we set γ = f |V , then γ ∪ id : V ∪U → U is not an element of Γ , because
γ ∪ id is not a homeomorphism. If Γ were a psg, then γ ∪ id ∈ Γ by the
condition 4).

Definition 2.3. We denote by Γ×0 the subset of Γ which consists of in-
vertible elements, namely,

Γ×0 = {γ ∈ Γ | γ−1 ∈ Γ}.

We denote by Γ× the subset of Γ which consists of locally invertible elem-
ents, namely,

Γ× =

{
γ ∈ Γ ∃ an open covering {Uλ}λ∈Λ of dom f

such that (γ|Uλ)−1 ∈ Γ

}
.

Note that Γ×0 is a pseudogroup.

Definition 2.4. Let (Γ, T ) be a psg. We denote by T the family of
relatively compact open subsets of T . If T ′ ∈ T , then the restriction of Γ
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to T ′ is defined by

ΓT ′ = {γ ∈ Γ | dom γ ⊂ T ′ and range γ ⊂ T ′}.

The notion of compact generation [6] is also significant for psg’s. The
notions of morphisms and equivalences are given as follows.

Definition 2.5. Let (Γ, T ) and (∆,S) be psg’s. A (holomorphic) mor-
phism Φ: Γ → ∆ is a collection Φ of local mappings from T to S with the
following properties.

1) {domφ |φ ∈ Φ} is an open covering of T .

2) If φ ∈ Φ, then any restriction of φ to an open set of domφ also belongs
to Φ.

3) Let U be an open subset of T and φ a mapping from U to S. If
for any x ∈ U , there exists an open neighborhood Ux of x such that
φ|Ux ∈ Φ, then φ ∈ Φ.

4) If φ ∈ Φ, γ ∈ Γ× and δ ∈ ∆×, then δ ◦ φ ◦ γ ∈ Φ.

5) Suppose that γ ∈ Γ and x ∈ dom γ. If x ∈ domφ and γ(x) ∈ domφ′,
where φ, φ′ ∈ Φ, then there is an element δ ∈ ∆ such that φ(x) ∈
dom δ, and δ ◦ φ = φ′ ◦ γ on a neighborhood of x.

A morphism from (Γ, T ) to itself is called an endomorphism of (Γ, T ).

Definition 2.6. Let (Γ, T ) and (∆,S) be psg’s and Φ a morphism from
Γ to ∆.

1) Φ is called an étale morphism if Φ consists of étale mappings, namely,
mappings of which the restriction to sufficiently small open sets are
homeomorphisms.

2) Suppose that Γ and ∆ are psg’s on complex one-dimensional mani-
folds. A morphism is said to be ramified if φ ∈ Φ and x ∈ domφ,
then there exists an open neighborhood Ux of x such that φ|Ux is the
restriction of the composite of ramified coverings and holomorphic
étale mappings.

Definition 2.7. Let (Γ, T ) and (∆,S) be psg’s. A collection Φ of local
homeomorphisms from T to S is an étale morphism of pg’s if Φ satisfies
the conditions in Definition 2.5 but ‘a continuous map from U to S’ in 3)
is replaced by ‘a local homeomorphism from T to S’.

Definition 2.8. Let A be a set which consists of local mappings on T . A
psg Γ is said to be generated by A if Γ contains A and is the smallest with
respect to inclusions. The psg generated by A is denoted by 〈A〉. Similarly,
we consider morphisms generated by local mappings from T to S.
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Definition 2.9. If Φ1 : Γ1 → Γ2 and Φ2 : Γ2 → Γ3 are morphisms of psg’s,
then the composite Φ2 ◦ Φ1 is defined by

Φ2 ◦ Φ1 = 〈φ2 ◦ φ1 |φ1 ∈ Φ1, φ2 ∈ Φ2, rangeφ1 ⊂ domφ2〉.

Definition 2.10. An étale morphism Φ: Γ → ∆ is an equivalence if there
is an étale morphism Ψ: ∆ → Γ such that Ψ ◦ Φ = Γ× and Φ ◦ Ψ = ∆×.
Such a Ψ is unique so that it is denoted by Φ−1. We call Φ−1 the inverse
morphism of Φ. An equivalence from (Γ, T ) to itself is called automorphism.

If Φ1 and Φ2 are equivalences, then Φ2 ◦ Φ1 is also an equivalence.

Definition 2.11. A psg (Γ, T ) is compactly generated if there is a rela-
tively compact open set T ′ in T , and a finite subset {γ1, . . . , γr} of Γ such
that the domains and the ranges are contained in T ′ and that

1) if we denote by ΓT ′ the restriction of Γ to T ′, then ΓT ′ is generated
by {γ1, . . . , γr},

2) for each γi, there exists an element γ̃i of Γ such that dom γ̃i con-
tains the closure of dom γi, γ̃i|dom γi = γi and that γ̃i is étale on a
neighborhood of dom γ̃i \ dom γi,

3) the inclusion of T ′ into T induces an equivalence from ΓT ′ to Γ .

Such a (ΓT ′ , T
′) is called a reduction of (Γ, T ).

Remark 2.12. If Γ is a compactly generated psg on a one-dimensional
complex manifold, then Γ is étale or ramified. In addition, the last condi-
tion in 2) is equivalent to Sing γ̃i = Sing γi.

For example, if (Γ, T ) is generated by a holonomy pseudogroup of a fo-
liation of a closed manifold, then (Γ, T ) is compactly generated. We need to
choose a complete transversal in order to define a holonomy pseudogroup. If
we change the choice of complete transversals, then we obtain pseudogroups
which are equivalent. Another source of compactly generated psg’s are ra-
tional mappings on CP 1. (Γ, T ) is also compactly generated if T = CP 1

and Γ is generated by a rational semigroup [10] which acts on CP 1. See [3]
for details.

Assumption 2.13. We assume that Γ is generated by local biholomorphic
diffeomorphism of Cq, q > 1, or by local biholomorphic diffeomorphisms of
C or ramified coverings, where a holomorphic map, say f , from an open
set of C to C is said to be ramified covering if there exist biholomorphic
diffeomorphisms ϕ from dom f to a domain in C and ψ from range f to a
domain in C such that ψ ◦ f ◦ ϕ−1(z) = zn holds for some positive integer
n, where z ∈ rangeϕ.
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Note that under our assumption, Γ consists of holomorphic open mappings.

Definition 2.14. Let T ′ ∈ T .

1) A connected open subset U of T ′ is a wF-open set (weak ‘Fatou’-open
set) if the following conditions are satisfied:

i) If γx is the germ of an element of ΓT ′ at x, γ is defined on U as
an element of Γ , where (ΓT ′ , T

′) is the restriction of Γ to T ′.

ii) Let ΓU be the subset of Γ which consists of elements of Γ
obtained as in (a). Then ΓU is a normal family.

2) A connected open subset V of T ′ is an F-open set (‘Fatou’-open set)
if γ ∈ Γ ′ and if dom γ ⊂ V , then range γ is a union of wF-open sets.

Definition 2.15. Let (Γ, T ) be a psg which fulfills Assumption 2.13. If
T ′ ∈ T , then let F (ΓT ′) be the union of F-open subsets of T ′. Let J(ΓT ′) =
T ′ \ F (ΓT ′), and J0(Γ ) =

⋃
T ′∈T

J(ΓT ′). Let J(Γ ) be the closure of J0(Γ )

and F (Γ ) = T \ J(Γ ). We call F (Γ ) and J(Γ ) the Fatou set and the Julia
set of (Γ, T ), respectively.

Roughly speaking, J(Γ ) is defined as follows. We regard (ΓT ′ , T
′) as

an approximation of (Γ, T ), and define J(ΓT ′). Indeed, it can be shown
that if (Γ, T ) is compactly generated, then J(ΓT ′) = J(Γ ) ∩ T ′ holds for
sufficiently large T ′. If T ′ ⊂ T ′′, then J(ΓT ′) ⊂ J(ΓT ′′)∩T ′ so that we take
the union. Finally by taking the closure, we will obtain a set which consists
of points where some ‘complicated dynamics’ occur in every neighborhood
of that point.

Thus defined Julia sets have the following properties.

Theorem 2.16. If Γ is a psg, then we denote by Jpsg(Γ ) its Julia set in
the sense of Definition 2.15. Then we have the following.

1) If f is a rational mapping on CP 1, then J(f) = Jpsg(〈f〉), where
〈f〉 denotes the pseudosemigroup generated by f . More generally,
if f1, . . . , fr are rational mappings on CP 1 and if G is the semi-
group generated by f1, . . . , fr, then J(G) = Jpsg(〈f1, . . . , fr〉), where
〈f1, . . . , fr〉 denotes the pseudosemigroup generated by f1, . . . , fr (or
by G).

2) If f is an entire function, then let 〈f〉 be the pseudosemigroup gen-
erated by f which acts on CP 1, where dom f is considered to be C.
Then, J(f) ∪ {∞} = Jpsg(〈f〉).

3) If G is a finitely generated Kleinian group, then Λ(G) = Jpsg(Γ ),
where Γ is the pseudosemigroup generated by G and Λ(G) denotes
the limit set of G.
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4) If Γ is the holonomy pseudogroup of a complex codimension-one fo-
liation of a closed manifold with respect to a complete transversal (it
suffices to assume that Γ is a compactly generated pseudogroup of lo-
cal biholomorphic diffeomorphisms on C). If we denote by Γpsg the
smallest pseudosemigroup which contains Γ , then J(Γ ) = Jpsg(Γpsg),
where J(Γ ) is the Julia set of compactly generated pseudogroup in the
sense of [2].

Theorem 2.16 can be seen as a partial refinement of Sullivan’s dictionary [9].
In the 4) of Theorem 2.16 the Julia set in the sense of Ghys, Gomez-

Mont and Saludes is also defined [4]. The following is known.

Theorem 2.17. Let Γ be a compactly generated pseudogroup of local bi-
holomorphic diffeomorphisms on C. If we denote by JGGS(Γ ) the Julia set
of Γ in the sense of Ghys, Gomez-Mont and Saludes, then J(Γ ) ⊂ JGGS(Γ ).

There are examples where the inclusion is strict.

Remark 2.18. If we denote by FGGS(Γ ) the Fatou set of Γ in the sense
of [4], there is a classification of the connected components of FGGS(Γ ). We
have also a classification of F (Γ )(⊃ FGGS(Γ )) of the same kind. We refer
[2] and [1] for more properties of Fatou-Julia decompositions of compactly
generated pg’s.

Pseudosemigroups in Theorem 2.16 are compactly generated except the
case 3). Other psg’s which are not necessarily compactly generated are ob-
tained by studying (transversely) holomorphic foliations of open manifolds,
or singular holomorphic foliations. A Fatou–Julia decomposition of these
foliations can be introduced by using the decomposition in the sense of
Definition 2.15. In [3], some properties of such decompositions are studied.

Some of common properties of the Julia sets and the limit sets can be re-
garded as properties of Julia sets of compactly generated pseudosemigroups.
For example, we have the following.

Lemma 2.19. Let Γ be a compactly generated pseudosemigroup. If we
denote by F (Γ ) and J(Γ ) Fatou and Julia sets of Γ , then we have the
following.

1) F (Γ ) is forward Γ -invariant, i.e., Γ (F (Γ )) = Γ , where Γ (F (Γ )) =
{x ∈ T | ∃ γ ∈ Γ, ∃ y ∈ F (Γ ) s.t. x = γ(y)}.

2) J(Γ ) is backward Γ -invariant, i.e., Γ−1(J(Γ )) = J(Γ ) = {x ∈
T | ∃ γ ∈ Γ s.t. γ(x) ∈ J(Γ )}.

If (Γ, T ) is a compactly generated pg, then there is a Hermitian metric



61

on F (Γ ) invariant under Γ [2]. In this sense, the action of Γ is not quite
wild on F (Γ ). If (Γ, T ) is a psg, then invariant metrics need not exist in
general. Indeed, if z ∈ F (Γ ), γ ∈ Γ and γ′z = 0, then (γ∗g)z = 0 so that
there is no Γ -invariant metric on F (Γ ), where γ′z denotes the derivative of
γ at z. For example, let T = C and define f : T → T by f(z) = z2. Then,
the open unit disc is a connected component of the Fatou set, however, f
cannot be an isometry for any metric.

Inspired by the Schwarz lemma on the Poincaré disc, we introduce the
notion of semi-invariant metrics as follows.

Definition 2.20. Let g1 and g2 be Hermitian metrics on F (Γ ). If z ∈
F (Γ ), then we denote by (g1)z the metric on TzF (Γ ). Suppose that we
have g1 = f 2

1 g0 and g2 = f 2
2 g0 on a neighborhood of z, where g0 denotes

the standard Hermitian metric on C. If f1(z) ≤ f2(z), then we write
(g1)z ≤ (g2)z. Note that this condition is independent of the choice of
charts about z. If (g1)z ≤ (g2)z holds on F (Γ ), then we write g1 ≤ g2.

Definition 2.21. Let g be a Hermitian metric on F (Γ ). The metric g
is said to be semi-invariant if z ∈ F (Γ ) and if γ ∈ Γ is defined on a
neighborhood of z, then γ∗g ≤ g holds on dom γ.

The following is known. See [3] and [2] for details.

Theorem 2.22. 1) Suppose that (Γ, T ) is compactly generated, then the
metric g is finite and locally Lipschitz continuous on F (Γ ).

2) If Γ× = Γ , then F (Γ ) admits a Hermitian metric which is locally
Lipschitz continuous and Γ -invariant.

3) If (Γ, T ) is generated by a compactly generated pg, then F (Γ ) admits
a Hermitian metric which is of class Cω and Γ -semiinvariant.

Example 2.23 ([3], Example 4.21). We define γ : CP 1 → CP 1 by γ(z) =
z2. Then, J(γ) = {|z| = 1}. If we set

f(z) =


1 if |z| ≤ 1

2
,

2k |z|2
k−1 if 2−

1

2k−1 ≤ |z| ≤ 2−
1

2k ,

2k |z|−2k−1 if 2
1

2k ≤ |z| ≤ 2
1

2k−1 ,
1
|z|2 if |z| ≥ 2,

then g = f 2 |dz|2 gives a Hermitian metric on CP 1 \ {|z| = 1} which is
locally Lipschitz continuous and semi-invariant under the action of Γ , where
Γ = 〈γ〉. On the other hand, if we consider the Poincaré metric on the unit
disc, then γ is contracting by the Schwarz lemma. Hence the Poincaré
metrics on the unit disc and CP 1 \{|z| ≤ 1} give rise to a Hermitian metric



62

on CP 1 \{|z| = 1} which is of class Cω and semi-invariant under the action
of Γ . On the other hand, there is no Γ -invariant metric on F (Γ ). Indeed,
0 ∈ F (Γ ) but (γ∗g)0 = 0 for any metric g on F (Γ ).

Let Γ̂ be the psg generated by γ|CP 1\{0,∞} and its local inverses. Then

F (Γ̂ ) = C\(S1∪{0}). An invariant metric on F (Γ̂ ) is given by |dz|2 /(|z| log |z|)2

on {0 < |z| < 1}. We can find on {1 < |z|} a metric of the same kind.
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1. Introduction

In her PhD thesis H. Eynard-Bontemps proved the following theorem:

Theorem 1.1 (Eynard-Bontemps [5]). Let F0 and F1 be smooth oriented
taut foliations on a 3-manifold M whose tangent distributions are homo-
topic as (oriented) plane fields. Then TF0 and TF1 are smoothly homotopic
through integrable plane fields.

This raises the question of whether any two taut contact structures that
are homotopic as plane fields are also homotopic as taut foliations. An
interesting special case of this concerns the path connectedness of the space
of horizontal foliations on S1-bundles (i.e. those that are transverse to the
fibers). We provide various examples which show that the answer to both of
these questions is negative. One of the main tools are contact perturbations
of foliations given by Eliashberg and Thurston [3].

This naturally leads to the problem, first raised by Eliashberg and
Thurston (see also [4]), of which (universally tight) contact structures are
perturbations of taut or Reebless foliations, which can be answered com-
pletely for Seifert fibered spaces over surfaces of genus at least one.

2. Main results

Let Repe(π1(Σg),Diff+(S1)) denote the space of holonomy representations
of smooth horizontal foliations on an oriented S1-bundle of Euler class e
over a closed, oriented surface Σg of genus g.

Theorem 2.1. The space Repe(π1(Σg),Diff+(S1)) with fixed Euler class
e 6= 0 is in general not path connected.

To prove this theorem one distinguishes path components of the space
Repe(π1(Σg),Diff+(S1)) using the isotopy class of contact perturbations
approximating the associated suspension foliations. However, care must

c© 2013 Jonathan Bowden
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be taken as the isotopy class of a contact structure approximating a con-
tact structure is in general not well-defined. On the other hand Vogel [8]
has shown that the isotopy class of the approximating contact structure
is well-defined for foliations without torus leaves, apart from a small list
of special cases, although for our applications a relatively simple argument
using linear deformations of foliations suffices.

Theorem 2.1 can also be shown using the following extension of a result
of Ghys [7], which answers a question posed to us by Y. Mitsumatsu.

Theorem 2.2. Any representation ρ ∈ Rep(π1(Σg),Diff+(S1)) that lies
in the C0-connected component of an Anosov representation ρAn is itself
Anosov. In particular, it is conjugate to a discrete subgroup of a finite
covering of PSL(2,R) and is injective.

Similar ideas yield the following

Theorem 2.3. There exist infinitely many examples of manifolds admit-
ting taut foliations F0,F1 that are homotopic as foliations but not as taut fo-
liations. Furthermore, the same result holds true for diffeomorphism classes
of unoriented foliations.

Concerning which contact structures can be realised as perturbations of
Reeebless/taut foliations, we obtain a characterisation for a large class of
Seifert fibered spaces. In order to state this result recall the notion of the
enroulement (cf. [6]) or twisting number t(ξ) of a contact structure ξ on a
Seifert fibered space which is defined as the maximal Thurston-Bennequin
number of a Legendrian knot that is isotopic to a regular fiber, where this is
measured relative to the canonical framing coming from the base. Moreover,
a deformation of a foliation F is a smooth family of 2-plane fields {ξt}t∈[0,1]

so that ξ0 = TF and ξt is a contact structure for t > 0.

Theorem 2.4. Let ξ be a universally tight contact structure on a Seifert
fibered space with infinite fundamental group and t(ξ) ≥ 0, then ξ is isotopic
to a deformation of a Reebless foliation. If g > 0 and t(ξ) < 0, then ξ is
isotopic to a deformation of a taut foliation.

3. Questions

Question 3.1. (1) Is the space Repe(π1(Σg),Homeo+(S1)) of topologi-
cal S1-actions of fixed Euler class path connected? A related question
is whether the image of

Repe(π1(Σg),Homeo+(S1))
eb−→ H2

b (π1(Σg),R)
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under the bounded Euler class is path connected (in the weak-* topol-
ogy).

(2) Does any 3-manifold M with infinite fundamental group that admits
universally tight contact structures for both orientations necessarily
admit a smooth Reebless/taut foliation? (Note that the existence of
universally tight contact structures for both orientations is a necessary
condition by [2]).

(3) Are there examples of manifolds for which the space of taut foliations
in a given homotopy class has infinitely manifold path components
up to diffeomorphism and deformation?
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1. Introduction

Let L be an arbitrary connected surface, compact or noncompact, with or
without boundary and orientable or nonorientable. Let f : L → L be a
homeomorphism. We discuss two topics which are related but perhaps, at
first, not obviously so.

The first topic is the Handel-Miller theory of endperiodic maps of sur-
faces, never published even as an announcement, although it has been used
by various authors in the study of foliated 3-manifolds. The second topic
concerns the Epstein-Baer theorem that homotopic homeomorphisms of
surfaces are isotopic. Both of these topics will be studied via a suitable
hyperbolic metric on L (Definition 1.1).

For endperiodic maps, we will sketch the main points of the theory and
announce new results. For homotopic homeomorphisms, we will outline a
new line of proof of Epstein-Baer using hyperbolic geometry. This involves
extending classical results about complete hyperbolic surfaces with finite
area to complete hyperbolic surfaces with geodesic boundary and infinite
Euler characteristic.

The Handel-Miller theory determines an endperiodic map h : L → L,
in the same isotopy class as f , which preserves a pair of transverse geodesic
laminations and has, in a certain sense, the “tightest” dynamics in its
isotopy class. This has obvious analogies with the Nielsen-Thurston theory
of automorphisms of compact surfaces, but there are remarkable differences
also. In proving that h is in the isotopy class of f , one is led to the second
topic of this talk.

Definition 1.1. A hyperbolic metric on a surface L is “standard” if it
is complete, makes ∂L geodesic and admits no isometrically imbedded hy-
perbolic half planes. A surface equipped with such a metric is called a
standard hyperbolic surface. A surface which is homeomorphic to a stan-
dard hyperbolic surface will simply be called standard.

This is not a serious restriction topologically. Up to homeomorphism,
there are exactly 13 nonstandard surfaces, none of them interesting for
Handel-Miller theory.

c© 2013 John Cantwell and Lawrence Conlon
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2. Endperiodic Homeomorphisms

Let E(L) denote the set of ends of L, a compact, totally disconnected,
metrizable space which compactifies L.

Definition 2.1. An end e ∈ E(L) is an attracting end if it admits a
neighborhood Ue ⊂ L such that, for a least integer pe ≥ 0,

Ue ⊃ fpe(Ue) ⊃ · · · ⊃ fnpe(Ue) ⊃ · · ·

and
⋂∞
n=0 f

npe(Ue) = ∅. Repelling ends are defined similarly, using iterates
of f−1. The integer pe is called the period of e.

Definition 2.2. A homeomorphism f : L → L is endperiodic if E(L) is
finite and each end is either attracting or repelling..

Examples will be pictured in the talk. The definition of “endperiodic”
can be extended to surfaces with infinite endset, even a Cantor set of ends,
and this has important applications to foliations. But in this generalization,
there will only be finitely many attracting and repelling ends, and one passes
to the “soul” of L, an f -invariant subsurface with finitely many ends on
which all of the interesting dynamics takes place. This effectively reduces
us to the case considered by Handel and Miller.

Definition 2.3. An end e is simple if it is isolated and either annular or
simply connected. Standard hyperbolic surfaces without simple ends are
called “admissible” surfaces.

In the rest of this section we consider admissible surfaces L with finitely
many ends and endperiodic homeomorphisms f : L→ L.

An attracting end e of period pe has compact fundamental domains Bi

such that Ue = B0 ∪ B1 ∪ · · · and fpe(Bi) = Bi+1, 0 ≤ i < ∞. There is a
similar notion of fundamental domain for repelling ends. The intersection
Bi ∩ Bi+1 is called a positive juncture. It is a compact 1-manifold. The
negative junctures are defined similarly in neighborhoods of repelling ends.
Each juncture is the union of finitely many 2-sided, essential closed curves
and/or properly imbedded arcs.

The Handel-Miller construction. Start applying powers of f−1 to pos-
itive junctures. The result is an infinite family of ultimately “distorted”
junctures. Generally the distortions get enormous and the distorted junc-
tures wrap around in L in increasingly complex ways. (In the talk, exam-
ples will be pictured to illustrate this.) It will be convenient also to call
a distorted juncture by the name “juncture”. In the homotopy class of
each component of a juncture (endpoint preserving homotopy for properly
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imbedded arcs) there is a unique geodesic. This infinite family of geodesics
accumulates exactly on a closed geodesic lamination Λ− with complete,
noncompact leaves (the absence of half planes is critical here). Every leaf
of this lamination penetrates arbitrarily deeply into the neighborhoods of
repelling ends, but the lamination is uniformly bounded away from the at-
tracting ends. Using the junctures of negative ends, one similarly defines
the geodesic lamination Λ+, transverse to Λ−, which penetrates arbitrarily
deeply into the attracting ends but is uniformly bounded away from the
repelling ends. The final step is to define an endperiodic homeomorphism
h : L→ L which preserves these laminations and is isotopic to f . The dy-
namics of h is “tightest possible” in its isotopy class, in the sense that h has
the smallest possible invariant set I and the dynamics of h|I is Markov.

Definition 2.4. A pseudo-geodesic σ in L is a continuous, imbedded

curve, any lift of which to the universal cover L̃ (viewed as a surface in
the Poincaré disk) has well defined endpoints on the circle at infinity.

We have axiomatized the Handel-Miller theory to allow the laminations
to be pseudo-geodesic. Again the endperiodic homeomorphism preserving
the laminations is isotopic to f . This generalization is quite useful in ap-
plications to foliation theory. We have developed an extensive structure
theory for the laminations, based on the axioms, which reveals many sur-
prising features.

Here are two new results.

Theorem 2.5. The pseudo-geodesic laminations of the axiomatized Handel-
Miller theory are simultaneously ambient isotopic to the geodesic lamina-
tions described above.

Generally, h is not smooth, even in the case that the laminations are
geodesic. One advantage to relaxing the geodesic condition is the following.

Theorem 2.6. There is a choice of Handel-Miller map h, corresponding
to pseudo-geodesic laminations, which is a diffeomorphism except, perhaps,
at finitely many p-pronged singularities.

3. Homotopic Homeomorphisms

The fact that the Handel-Miller endperiodic map h is isotopic to the original
endperiodic map f from which it is derived needs to be proven using the
ideas in this section.

The surface L is now any standard one. Give it a standard hyperbolic
metric. Denote by ∆ the open unit disk with the Poincaré metric. Then



70

either ∂L = ∅ and the universal covering space is L̃ = ∆, or L̃ ( ∆. The

completion L̂ is the closure of L̃ in the closed disk ∆. We denote by E the

“ideal boundary” of L̃, namely E = S1 ∩ L̂. The following is well known
for complete hyperbolic surfaces of finite area. For standard hyperbolic
surfaces, we can find no proof in the literature.

Theorem 3.1. Any lift h̃ : L̃→ L̃ of a homeomorphism h : L→ L extends

canonically to a homeomorphism ĥ : L̂→ L̂.

The following is also known for compact hyperbolic surfaces.

Theorem 3.2. If h : L → L is a homeomorphism having a lift such that

ĥ|E = idE, then h is isotopic to idL.

In particular, if f, g are two homeomorphisms of L with lifts such that

f̂ |E = ĝ|E, then f and g are isotopic. In the Handel-Miller theory, one
easily verifies this condition for f and h, hence h represents the isotopy
class of f .

The following is an easy corollary of Theorem 3.2.

Theorem 3.3 (Epstein-Baer). If L is a standard surface, then homotopic
homeomorphisms of L are isotopic.

In proving this, Epstein put no restriction on L, but required the homo-
topy to respect ∂L and, if there were noncompact boundary components,
required the homotopy to be proper. The first requirement is only needed
for 4 of the 13 nonstandard surfaces. The second requirement is inconve-
nient in applications and is not needed at all in our proof.

John Cantwell
St, Louis University
St. Louis, MO, USA
E-mail: cantwelljc@slu,edu

Lawrence Conlon
Washington University
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Connectedness of the space of smooth Z2

actions on [0, 1]

Hélène EYNARD-BONTEMPS

(joint work with C. Bonatti)

1. Introduction

Our interest in Z2-actions on [0, 1] stems from the general study of the
set Fol(M) of all smooth codimension one cooriented foliations on a given
closed oriented 3-manifold. By identifying every such foliation with its
tangent plane field, one can think of Fol(M) as a subspace of the space
P(M) of smooth plane fields on M , endowed with the usual C∞ topology.

The inclusion Fol(M)
ι
↪→ P(M) is strict. In fact, most plane fields are

not tangent to foliations (or, in other words, are not integrable): one can
easily see that Fol(M) is a closed subset of P(M) with empty interior. On
the other hand, it has been known since the late sixties that Fol(M) is
nonempty, and even that every plane field can be deformed into a (plane

field tangent to a) foliation (see [13]). In other words, the map π0Fol(M)
ι∗→

π0P(M) induced by the inclusion is surjective. It is then natural to wonder
whether this map is also injective, i.e:

Question 1.1. If two foliations have homotopic tangent plane fields, are
they connected by a path of foliations?

Larcanché [7] gave a positive answer for foliations transverse to the
fibers of a circle bundle over a closed surface, and for pairs of taut foliations
sufficiently close to each other. In [4], we extended this result to any pair
of taut foliations homotopic as plane fields. Note that the foliations of the
connecting path are not necessarily taut, and recent works by T. Vogel [12]
and J. Bowden [3] actually show that the space of taut foliations in a given
homotopy class is in general not path-connected. As for non-taut foliations,
we reduced Question 1.1 to the particular case of “horizontal” foliations on
the thick torus:

Question 1.2. Consider a foliation τ on T2× [0, 1] tangent to the bound-
ary and transverse to the direction [0, 1]. As a plane field, τ is homotopic
to the trivial foliation by T2 × {.} (rel. to the boundary) since both are

c© 2013 Hélène Eynard-Bontemps
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transverse to [0, 1]. But are they connected by a path of smooth foliations
transverse to [0, 1]?

This question has a translation in terms of holonomy. A foliation τ as
above has a so-called holonomy representation which is a homomorphism
ρ(τ) : π1(T2) ' Z2 → Diff∞+ [0, 1]. Let us denote by R the set of all such
homomorphisms. Since such a map is completely determined by the images
of the standard generators of Z2, R can be thought of as the space of pairs
of commuting elements of Diff∞+ [0, 1], endowed with the usual C∞ topology.
One can then show that question 1.2 is equivalent to:

Question 1.3. Is the space R path-connected?

Our aim here is to present the following partial answer obtained in
collaboration with C. Bonatti in [2].

2. Main result

Theorem 2.1 (Bonatti, E-B.). The space R of smooth orientation pre-
serving Z2-actions on [0, 1] is connected. More precisely, the path-connected
component Cid of (id, id) is dense in R.

Combined with [4], this yields the following:

Theorem 2.2. For any closed 3-manifold M , the inclusion of Fol(M) into
P(M) induces a bijection between the connected components of those two
spaces.

The analogous question for path-connected components however re-
mains open (for foliations as well as for Z2 actions). One of our aims here
will be to highlight the gap between connectedness and path-connectedness.
But let us make a few remarks beforehand.

First of all, why isn’t the answer to Question 1.2 obvious? Indeed, the
space Diff∞+ [0, 1] is contractible, so one can easily deform any given pair
(f, g) ∈ (Diff∞+ [0, 1])2 into any other. But this forgets about the commu-
tativity condition, which is a huge constraint. It is not the only source
of trouble though. Regularity is another. Indeed if we consider the same
question for homeomorphisms of [0, 1] instead of smooth diffeomorphisms,
we can easily see using some kind of “Alexander trick” that the space of
orientation preserving C0-actions of Z2 on [0, 1] is contractible. But such a
“brutal” method is bound to fail in the C∞ setting. The C1 case is still
different and was solved by A. Navas in [8] using completely different tools.
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Outline of proof. As we already mentioned, deforming a given pair of
diffeomorphisms (f, g) into another one is not difficult if one forgets about
the commutativity condition, but this constraint adds a lot of rigidity to
the problem. Namely, if we restrict to the case of diffeomorphisms f , g
which are nowhere infinitely tangent to the identity in (0, 1) (such pairs
will be referred to as “nondegenerate”), classical results by N. Kopell [6],
G. Szekeres [10] and F. Takens [11] imply that f and g belong either to a
common infinite cyclic group generated by some C∞ diffeomorphism h of
[0, 1] or to a common C1 flow (C∞ on (0, 1) but in general not C2 on [0, 1]).
Then, our strategy is as follows.

• In the first case, any isotopy t ∈ [0, 1] 7→ ht from id to h yields a path
t 7→ (hpt , h

q
t ) of commuting C∞-diffeomorphisms from (id, id) to (f =

hp, g = hq), so (f, g) is actually in the path-connected component of
(id, id) (Cid) and we have nothing to do.

• In the second case, however, extra-work is called for. If f and g are
the time-α and β maps of a C1 vector field ξ (C∞ on (0, 1)), the idea

is to construct a C∞ vector field ξ̃ whose time-α and β maps ϕα and
ϕβ are arbitrarily C∞ close to f and g respectively. The pair (ϕα, ϕβ)
is then easily connected to (id, id) by a continuous path of pairs of
commuting C∞ diffeomorphisms t ∈ [0, 1] 7→ (ϕtα, ϕtβ). One can then
conclude that (f, g) belongs to the closure of Cid.

In other words, what we show is that, among “nondegenerate” pairs, those
made of iterates of the same smooth diffeomorphism or of elements of the
same smooth flow form a dense and path-connected subset. Then, deriv-
ing the general result from the restricted (“nondegenerate”) one we just
mentioned is elementary.

The strategy seems very simple. But let us stress that, in the second
case above, a random smoothing of the vector field ξ near the boundary
won’t do in general, for the resulting flow would be no more than C1 close
to that of ξ. So first, one needs to derive some nice estimates on ξ from
the knowledge that some times of its flow are C∞. More precisely, if ξ
is not C∞ near a point of the boundary, say 0, according to Takens [11],
f and g are necessarily infinitely tangent to the identity at that point.
What we show in that case is that, though the derivatives of ξ of order
≥ 2 globally diverge when one approaches 0, arbitrarily close to 0, one can
find whole fundamental intervals of f and g where these derivatives are
arbitrarily small. These estimates are a generalization of those obtained
by F. Sergeraert in [9] for diffeomorphisms without fixed points in (0, 1).

Then the rough idea to construct ξ̃ is simply to replace ξ between 0 and
such a “nice interval” by something smooth and “C∞-small” (the latter
being made possible precisely by the estimates on ξ in the “nice interval”),
leaving it unchanged outside this small region. Then the time-α and β
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maps of the new vector field ξ̃ basically coincide with f and g away from
the boundary and are very close to the identity there, as are f and g !

Note, to conclude, that what our strategy provides in the situation
above is an approximation of (f, g) by elements of Cid, not a continuous de-
formation, simply because between the “nice intervals” which are essential
to our construction lie “nasty” ones. Precisely there lies the gap between
connectedness and path-connectedness.

3. (Other) questions

Question 3.1. It has been a longstanding open question whether the
space of smooth orientation preserving Z2 actions on the circle is (locally)
connected. It follows from Theorem 2.1 that the subspace made of non-
free actions (or equivalently, of pairs of commuting diffeomorphisms with
rationally dependent rotation numbers) is connected. For commuting dif-
feomorphisms f and g with rationally independant rotation numbers ρ(f)
and ρ(g), on the other hand, here is what is known:

• if ρ(f) and ρ(g) satisfy a joint diophantine condition, B. Fayad and
K. Khanin [5] proved that f and g are simultaneously conjugate to the
rotations of angle ρ(f) and ρ(g), denoted by Rρ(f) and Rρ(g) respec-
tively, by an element ϕ of Diff∞+ S1. The pair (f, g) is thus connected
to (id, id) by the path t ∈ [0, 1] 7→ (ϕ−1 ◦ Rtρ(f) ◦ ϕ, ϕ−1 ◦ Rtρ(g) ◦ ϕ)
of smooth commuting diffeomorphisms.

• if ρ(f) and ρ(g) do not satisfy such a condition, (f, g) is not necessarily
smoothly conjugate to (Rρ(f), Rρ(g)). Nevertheless, according to M.
Benhenda [1], there exists a Baire-dense subset B of S1 such that, if
ρ(f) or ρ(g) belongs to B, (f, g) can be approached by pairs which
are smoothly conjugate to (Rρ(f), Rρ(g)). Thus (f, g) belongs to the
closure of the path-connected component of (id, id).

It is not known, however, whether this last fact holds for any pair
(ρ(f), ρ(g)) ∈ (R \ Q)2. A positive answer would imply the connectedness
of the whole space of Z2-actions on the circle.

Question 3.2. How about smooth actions of other surface groups on
[0, 1]? On the circle? Some progress has recently been made by J. Bowden
[3] on this last subject.
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Classification and rigidity of totally periodic
pseudo-Anosov flows in graph manifolds

Sergio FENLEY

This is joint work with Thierry Barbot.
Pseudo-Anosov flows are extremely common amongst three mani-

folds, for example 1) Suspension pseudo-Anosov flows [Th1, Th2, Th3];
2) Geodesic flows in the unit tangent bundle of negatively curved surfaces
[An]; 3) Certain flows transverse to foliations in closed atoroidal manifolds
[Mo, Cal1, Cal2, Cal3, Fe]; flows obtained from these by either 4) Dehn
surgery on a closed orbit of the pseudo-Anosov flow [Go, Fr]; or 5) Shear-
ing along tori [Ha-Th]; 6) Non transitive Anosov flows [Fr-Wi] and flows
with transverse tori [Bo-La].

We consider the following question: how many different pseudo-Anosov
flows are there in a manifold up to topological conjugacy? Topological
conjugacy means that there is a homeomorphism between the manifolds
which sends orbits of the first flow to orbits of the second flow. We also
consider the notion of isotopic equivalence, i.e. a topological conjugacy
induced by an isotopy, that is, a homeomorphism isotopic to the identity.

Here we consider only closed, orientable, toroidal manifolds. They have
incompressible tori and and also since they support a pseudo-Anosov flow
they are irreducible. Therefore the manifolds are Haken manifolds. We
recently proved that if M is Seifert fibered, then the flow is up to finite
covers topologically conjugate to a geodesic flow in the unit tangent bun-
dle of a closed hyperbolic surface [Ba-Fe1]. We also proved that if the
ambient manifold is a solvable three manifold, then the flow is topologi-
cally conjugate to a suspension Anosov flow [Ba-Fe1]. We stress that in
both cases the results imply that the flow does not have singularities, that
is, the type of the manifold strongly restricts the type of pseudo-Anosov
that it can admit. This is in contrast with the strong flexibility in the
construction of pseudo-Anosov flows − that is because many flows are con-
structed in atoroidal manifolds or are obtained by flow Dehn surgery on
the pseudo-Anosov flow, which changes the topological type of the mani-
fold. Therefore in many constructions one cannot expect the underlying
manifold to be toroidal.

Here we consider pseudo-Anosov flows in graph manifolds. A graph
manifold is an irreducible three manifold which is a union of Seifert fibered
pieces. In [Ba-Fe1] we produced a large new class of examples in graph
manifolds. These flows are totally periodic. This means that each Seifert
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piece of the torus decomposition of the graph manifold is periodic, that is,
up to finite powers, a regular fiber is freely homotopic to a closed orbit of
the flow. More recently, Russ Waller [Wa] has been studying how common
these examples are, that is, the existence question for these type of flows.
He showed that these flows are as common as they could be (modulo the
necessary conditions).

Here we analyse the question of the classification and rigidity of such
flows. To do that we introduce Birkhoff annuli. A Birkhoff annulus is an
a priori only immersed annulus, so that the boundary is a union of closed
orbits of the flow and the interior of the annulus is transverse to the flow.
For example consider the geodesic flow of a closed, orientable hyperbolic
surface. The ambient manifold is the unit tangent bundle of the surface.
Let α be an oriented closed geodesic - a closed orbit of the flow - and
consider a homotopy that turns the angle along α by π. The image of
the homotopy from α to the same geodesic with opposite orientation is
a Birkhoff annulus for the flow in the unit tangent bundle. If α is not
embedded then the Birkhoff annulus is not embedded. In general Birkhoff
annuli are not embedded, particularly in the boundary.

In [Ba-Fe1] we proved the following basic result about the relationship
of a pseudo-Anosov flow and a periodic Seifert piece P : there is a spine Z for
P which is a connected union of finitely many elementary Birkhoff annuli.
In addition the union of the interiors of the Birkhoff annuli is embedded and
also disjoint from the closed orbits in Z. These closed orbits, boundaries of
the Birkhoff annuli in Z, are called vertical periodic orbits. The set Z is a
deformation retract of P , so P is isotopic to a small compact neighborhood
N(Z) of Z.

The first theorems (Theorem A and B) are valid for general Seifert
fibered pieces in any closed orientable manifold M , not necessarily a
graph manifold.

Theorem A ([Ba-Fe2]). Let Φ be a pseudo-Anosov flow in M3. If {Pi} is
the (possibly empty) collection of periodic Seifert pieces of the torus decom-
position of M , then the spines Zi and neighborhoods N(Zi) can be chosen
to be pairwise disjoint.

The next result shows that the boundary of the pieces can be put in
good position with respect to the flow:

Theorem B ([Ba-Fe2]). Let Φ be a pseudo-Anosov flow and Pi, Pj be pe-
riodic Seifert pieces with a common boundary torus T . Then T can be
isotoped to a torus transverse to the flow.

Theorem C ([Ba-Fe2]). Let Φ be a totally periodic pseudo-Anosov flow
with periodic Seifert pieces {Pi}. Then neighborhoods {N(Zi)} of the spines
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{Zi} can be chosen so that their union is M and they have pairwise dis-
joint interiors. In addition each boundary component of every N(Zi) is
transverse to the flow. Each N(Zi) is flow isotopic to an arbitrarily small
neighborhood of Zi.

We stress that for general periodic pieces it is not true that the bound-
ary of N(Zi) can be isotoped to be transverse to the flow. There are some
simple examples as constructed in [Ba-Fe1]. The point here is that we
assume that all pieces of the JSJ decomposition are periodic Seifert pieces.

Hence, according to Theorem C, totally periodic pseudo-Anosov flow
are obtained by glueing along the bondary a collection of small neighbor-
hoods N(Zi) of the spines. There are several ways to perform this glueing
which lead to pseudo-Anosov flows. The main result is that the resulting
pseudo-Anosov flows are all topologically conjugate to each other:

Theorem D ([Ba-Fe2]). Let Φ, Ψ be two totally periodic pseudo-Anosov
flows on the same orientable graph manifold M . Let Pi be the Seifert pieces
of M , and let Zi(Φ), Zi(Ψ) be spines of Φ, Ψ in Pi. Then, Φ and Ψ are topo-
logically conjugate if and only if there is a homeomorphism of M mapping
the collection of spines {Zi(Φ)} onto the collection {Zi(Ψ)} and preserving
the orientations of the vertical periodic orbits induced by the flows.

Finally we show that for any totally periodic pseudo-Anosov flow Φ
there is a model pseudo-Anosov flow as constructed in [Ba-Fe1] which has
precisely the same data Zi, N(Zi) that Φ has. This proves the following:

Main theorem ([Ba-Fe2]). Let Φ be a totally periodic pseudo-Anosov
flow in a graph manifold M . Then Φ is topologically equivalent to a model
pseudo-Anosov flow.

Model pseudo-Anosov flows are defined by some combinatorial data
(essentially, the data of some fat graphs and Dehn surgery coefficients) and
some parameter λ. A nice corollary of these results is that, up to topological
conjugation the model flows actually do not depend on the choice of λ, nor
on the choice of the selection of the particular glueing map between the
model periodic pieces.
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Thurston and foliation theory, some personal
reminiscences

André HAEFLIGER

I plan to evoke my personal contacts with Thurston from 1972, when
I met him for the first time in the Swiss alps, during the academic year
1972–1973 that we spent together at the Institute for Advanced Study at
Princeton, and in the summer 1976, in Warwick and Varenna in Italy.
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Dynamical Lagrangian Foliations: Essential
nonsmoothness and Godbillon–Vey classes

Patrick FOULON and Boris HASSELBLATT

1. Introduction

We present 2 results about foliations arising as stable and unstable foli-
ations for a contact Anosov flow. The first gives Lagrangian foliations on
3-manifolds that can not be smoothed in the following sense: They are
preserved by a contact Anosov flow and there is no topologically equivalent
contact Anosov flow with C2 stable and unstable foliations. The second, in
early development, gives a representation of Godbillon–Vey classes for the
invariant foliations of a contact Anosov flow and has promise for alternate
proofs of pertinent results.

2. Nonsmooth foliations

There are contact Anosov flows on 3-manifolds whose Anosov splitting is
not C2 and such that the same holds for any topologically equivalent contact
Anosov flow. In this sense, then, the invariant (and necessarily Lagragian)
foliations cannot be smoothed out. These Anosov flows turn out to have a
remarkable range of unconventional properties.

For a contact Anosov flow on a 3-manifold, the invariant (stable and un-
stable) foliations are C1+Zygmund, i.e., differentiable with Zygmund-regular
derivative. Indeed, this holds for the weak-stable and weak-unstable foli-
ations of volume-preserving Anosov flows on 3-manifolds [10].

Definition 2.1. A continuous function f : U → L on an open set U ⊂ L′

in a normed linear space to a normed linear space is said to be Zygmund-
regular if there is Z > 0 such that ‖f(x+h)+f(x−h)−2f(x)‖ ≤ Z‖h‖ for
all x ∈ U and sufficiently small ‖h‖. It is said to be “little Zygmund” (or
“zygmund”) if ‖f(x+ h) + f(x− h)− 2f(x)‖ = o(‖h‖). For maps between
manifolds these definitions are applied in smooth local coordinates.

The “nonsmooth” in the section title actually refers to “not C1+zygmund,”
i.e., no more regular than is always known to be the case. For our purposes
the following rigidity result by Hurder and others is central.

c© 2013 Patrick Foulon and Boris Hasselblatt
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Theorem 2.2 ([10, 8]). If a volume-preserving Anosov flow on a 3-
manifold has C1+zygmund Anosov splitting, then it is smoothly conjugate to
a geodesic flow (or a suspension).

To produce examples of contact Anosov flows whose invariant foliations are
not C1+zygmund and such that the same holds for any topologically equivalent
contact Anosov flow, it thus suffices to construct contact Anosov flows that
are not topologically equivalent to any geodesic flow.

The novelty is that these are contact flows, and the novelty of the
method (due to Foulon) is to refine previous surgery methods to preserve
the existence of a contact structure. The surgery is a Dehn surgery in a knot
neighborhood, and in our context the knot should be of the following type.

Definition 2.3. A Legendrian curve in a contact manifold is a curve tan-
gent to the contact structure at every point. In the presence of a contact
Anosov flow, a Legendrian curve (which is by construction transverse to the
flow) is said to be E-transverse if it is also transverse to both the strong
stable and strong unstable subbundles E− and E+ of the flow.

Our main result has a rather long statement because these flows have a
host of interesting properties, as do the manifolds we obtain.

Theorem 2.4. A contact Anosov flow ϕ on a 3-manifold M with an E-
transverse Legendrian knot K admits smooth Dehn surgeries that produce
new contact Anosov flows. If ϕ is the geodesic flow on the unit tangent bun-
dle of a negatively curved surface, then these surgeries include the Handel–
Thurston surgery [9], in which case the resulting flow has the following prop-
erties:

1. It acts on a manifold that is not a unit tangent bundle.

2. It is not topologically orbit equivalent to an algebraic flow.

3. Its weak stable foliation is not transversely projective [1, Théorème A].

4. Its Anosov splitting TM = Eϕ ⊕ E+ ⊕ E− does not have “little Zyg-
mund” (hence not Lipschitz-continuous) derivative (Theorem 2.2).

5. Its topological and volume entropies differ, or, equivalently, the mea-
sure of maximal entropy is always singular (otherwise it would be up to

finite covers smoothly conjugate to a geodesic flow of constant curvature [7]).

Moreover, there are contact Anosov flows on hyperbolic manifolds: If MrK
is a hyperbolic manifold, then all but finitely many of our Dehn surgeries
produce a hyperbolic manifold. The resulting contact Anosov flow (and any
contact Anosov flow topologically orbit equivalent to it) has the following
additional properties.
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6. It is associated with a new example of a quasigeodesic pseudo-Anosov
flow (see Definition 2.5, [6], [12, Section 5]).

7. It is not quasigeodesic (Definition 2.5).

8. Its orbits are geodesics for suitable Riemannian metrics on M .

9. Each closed orbit is isotopic to infinitely many others1 [4, Theorem A],
[2, Remark 5.1.16, Theorem 5.3.3], [3].

10. Only finitely many pairs of closed orbits bound an embedded cylin-
der2 [3].

Definition 2.5. A quasigeodesic curve is one that is efficient, up to a
bounded multiplicative distortion, in measuring distances in relative ho-
motopy classes, and a flow is said to be quasigeodesic if all flow lines are
quasigeodesics [5].

3. Godbillon–Vey classes for Legendrian foliations

Consider a contact Anosov flow ϕt on a 2m+1-dimensional manifold (M,A)
with invariant splitting RX ⊕ E+ ⊕ E−. We can take A(X) ≡ 1, and
A �E+⊕E−= 0. Then iXdA = 0 on E− ∪ E+ and dA �RX⊕E−= 0. E+ has
dimension m and has an unstable volume a. The normal n-bundle of a
subbundle F of TM is

Nn(F ) := {ω ∈
∧n

(T ∗M) | ω(u1, . . . , un) = 0 whenever ui ∈ F for any i}.

For an unstable volume a : M →
∧m(E+) define α ∈ Nm(RX ⊕ E−) by

α �E+= a.

Proposition 3.1. If α is C1, then there is a 1-form β such that dα = β∧α.

β is as regular as the foliations. If β = 0 on E+, then iXdα = β(X)α,
i.e., β(X) is the infinitesimal relative change of the unstable volume under
the flow.

Definition 3.2 (Godbillon–Vey classes). Suppose (M,A) is a contact
manifold of dimension 2m+ 1. For an A-preserving Anosov flow ϕt : M →

1For algebraic flows, free homotopy (hence isotopy) classes of closed orbits have cardinality
at most 2.

2This relation is neither transitive nor reflexive. For comparison, isotopy is the equivalence
relation of being the boundary components of an immersed cylinder.
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M with C2 Anosov splitting, we define the Godbillon–Vey classes by GV0 =∫
M

A ∧ dAm,

GV1 =

∫
M

β ∧ dAm

GV2 =

∫
M

β ∧ dβ ∧ dAm−1

...

GVm+1 =

∫
M

β ∧ dβm

Remark 3.3. We will show that the C2 assumption is not needed.

Lemma 3.4. The Godbillon–Vey classes are well-defined, independently of
the choices of a and β.

Theorem 3.5. GV0 is the contact (or Liouville) volume. GV1 is the Li-
ouville entropy (β(X) measures the relative rate of change of unstable volume, and

the time average (hence by ergodicity, the space average) of this is the sum of the posi-

tive Lyapunov exponents, which by the Pesin Entropy Formula is the Liouville entropy),
and for geodesic flows of surfaces, GV2 is the usual Godbillon–Vey class (we

derive the Mitsumatsu formula).

We can apply these classes to geometric rigidity of geodesic flows on sur-
faces. Analogously to a result of Mitsumatsu [11] we have:

Proposition 3.6.
GV0GV2

(GV1)2
≥ 1 with equality iff M has constant curvature.

Proof. We have dimE− = dimE+ = 1. Denote the standard vertical
vector field by Y and the standard horizontal vector field by h to get

[X, Y ] = −h, [Y, h] = −X, [X, h] = RY,

where R is the curvature. We write the unstable and stable vector fields as
ξ± = u±Y ±h, where u̇±+u±

2
+R = 0 (Riccati equation). With u := −u−

we have

GV0 =

∫
M

A∧ dA, GV1 =

∫
M

uA∧ dA, GV2 =

∫
M

u2 + 3(LY u)2A∧ dA,

so the Cauchy–Schwarz inequality∫
M

uA ∧ dA ≤
(∫

M

u2A ∧ dA
)1/2(∫

M

A ∧ dA
)1/2
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gives
GV1 ≤ (GV2)1/2(GV0)1/2

with equality only if u ≡ const (and, redundantly, LY u ≡ 0), which in turn
happens iff M has constant curvature.

This easily recovers a rigidity result of Hurder and Katok.

Theorem 3.7. Suppose ϕt and ψt are geodesic flows for Riemannian sur-
faces M and S, respectively, and S has constant curvature −1. If F is a
conjugacy that sends the contact form A for ϕt to that for ψt, and if the
Godbillon–Vey classes match up, i.e., GVi = GV ′i for i = 0, 1, 2, then M
and S are isometric.

Proof. For the constantly curved manifold we have GV ′0 = GV ′1 = GV ′2 =

vol(S), so
GV0GV2

(GV1)2
= 1, and Theorem 3.6 implies that M has constant

curvature.
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7 Rue René Descartes
67084 Strasbourg Cedex
France
Centre International de Rencontres Mathématiques
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Minimal sets for foliations

Steven HURDER

1. Introduction

In this talk, we will discuss recent results in the program to understand the
exceptional minimal sets for foliations of codimension q ≥ 1. The outline
of this program is discussed below.

Let F be a Cr-foliation of a compact connected Riemannian manifold
M , for r ≥ 0. The leaves of F are then smoothly immersed submanifolds
in M of codimension q ≥ 1, and each leaf inherits a natural quasi-isometry
class of Riemannian metrics.

A closed subset M ⊂ M is minimal for F if for each x ∈ M the
leaf Lx ⊂ M, and the closure Lx = M. Moreover, if for each transversal
Tx ⊂ M to F , the intersection Tx ∩M is a totally disconnected set, hence
is homeomorphic to a Cantor set as M is minimal, then we say that M is
an exceptional minimal set. Here is the general problem.

Problem 1.1. Classify the exceptional minimal sets for Cr-foliations, up
to homeomorphism (or possibly orbit equivalence), where q ≥ 1 and r ≥ 0.

The approach we take to this very broad problem, is to consider an
exceptional minimal set M ⊂M as a smooth foliated space in the sense of
[21], or Candel and Conlon [3, Chapter 11], with additional properties.

Definition 1.2. A matchbox manifold is a smooth foliated space M, whose
transverse models {Xi | 1 ≤ i ≤ ν} for the foliation charts are totally dis-
connected compact metric spaces. If every leaf of the foliation FM of M is
dense, we say that M is minimal, and then each transversal space Xi is a
clopen set in some Cantor set model X.

Definition 1.3. A matchbox manifold M is Lipshitz, if the holonomy
transformations defined by parallel transport along paths in the leaves of
FM are Lipshitz homeomorphisms with respect to the given metrics on the
models spaces {Xi | 1 ≤ i ≤ ν}.

With this definition, Problem 1.1 can be stated as:

c© 2013 Steven Hurder
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Problem 1.4. Let M be a Lipshitz minimal matchbox manifold. Given
r ≥ 0 and q ≥ 1, when does there exists a compact Riemannian manifold
M with Cr-foliation of codimension q, and a leafwise smooth embedding
ιM : M→M so that the image is a minimal set for F?

Observe that if such an embedding ιM : M → M exists, then every
leaf of FM is realized by a leaf of F in the same quasi-isometry class of
leafwise metrics. Thus, a solution to Problem 1.4 implies a solution to the
question posed by Cass in [4]. This problem can also be considered as a
generalization of the problem posed by McDuff in [20].

2. Existence results

There are a wide variety of constructions of classes of minimal matchbox
manifolds, and a vast literature on the study of these special classes. For
example, the tiling space Ω of a tiling of Rn is defined as the closure of
the space of tilings obtained via the translation action of Rn, in a suitable
metric topology. The assumption that the tiling is repetitive, aperiodic,
and has finite local complexity implies that Ω is locally homeomorphic to
a disk in Rn times a Cantor set [22], and thus is a matchbox manifold.
The Pisot Conjecture for tilings essentially asks when a particular class of
tilings embeds into a generalized Denjoy C1-foliation.

Weak solenoids were introduced by McCord in [19] and Schori in [23],
which generalize the classical case of Vietoris solenoids, which fiber over
B = S1. All weak solenoids are matchbox manifolds with leaves of dimen-
sion n. Their transverse dynamics are always equicontinuous, and for a
base manifold B of dimension n ≥ 2, there are many subtleties.

The Williams solenoids introduced in [25], which are expanding attrac-
tors for Axiom A dynamical systems, are defined as the inverse limit of an
expanding map on a branched manifold of dimension n. The leaves of the
expanding foliation defines a matchbox manifold structure for these.

The Ghys-Kenyon construction in [13, 2] yields the graph matchbox
manifolds, which have many remarkable properties as a class of examples
[17]. Lozano-Rojo and Lukina show in [18] that each generalized Bernoulli
shift yields a graph matchbox manifold with leaves of dimension 2.

Finally, Chapter 11 of the text by Candel and Conlon [3] contains many
constructions of foliated spaces, many of which have totally disconnected
transverse models, so are matchbox manifolds.

3. Non-embedding results

There are two types of non-embedding results for matchbox manifolds. Note
that an embedding of M as a minimal set for a foliation of a compact
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manifold M is a fortiori an embedding of M into M . Clark and Fokkink
prove in [5] the following:

Theorem 3.1. Suppose that M is homeomorphic to a weak solenoid with
leaves of dimension 1, and the Čech cohomology of M is not finite dimen-
sional, then M cannot be embedded in a compact manifold M of dimension
n+ 1. In particular, such M cannot be homeomorphic to a minimal set in
a codimension-one foliation.

For higher codimension, obstructions to embedding a continuum such
as M into a compact manifold M are more delicate, and do not hold in
such generality as above; see the discussion in [6]. The known obstructions
to a solution to Problem 1.4 in higher codimensions use properties of the
dynamics of M.

The work [1] by Attie and Hurder introduces the notion of the leaf
entropy for a leaf of a C0-foliation, whose definition extends naturally to
the leaves of a foliated space. The work [16] by Hurder and Lukina use
the methods of Lukina in [17] to construct examples of graph matchbox
manifolds whose leaves have infinite leaf entropy, which yields:

Theorem 3.2. There exists graph matchbox manifolds M which cannot be
embedded as a minimal set for any C1-foliation of a compact manifold.

If M is a minimal matchbox manifold which embeds as a minimal set
of a C1-foliation of a compact manifold, then there exists a metric on the
transverse models {Xi | 1 ≤ i ≤ ν} for FM such that the holonomy of FM

is Lipshitz. In the work [16] we show:

Theorem 3.3. There exists a minimal matchbox manifold M for which
there does not exist a metric on the transverse models {Xi | 1 ≤ i ≤ ν}
such that the holonomy of FM is Lipshitz. Thus, each such example cannot
be embedded as a minimal set for any C1-foliation.

Given a finitely-generated, torsion-free group Γ, and a minimal action
by homeomorphisms ϕ : ΓX → X on a Cantor set X, then the suspen-
sion construction yields a minimal matchbox manifold M whose transverse
holonomy groupoid is given by the action ϕ. The results in [5] show that
such matchbox manifolds always admit an embedding into a C0-foliation
with codimension 2.

Problem 3.4. Let ϕ : Γ × X → X be a minimal action on a Cantor set
X. Find invariants of the action which are obstructions to embedding a
matchbox manifold M obtained from a suspension of ϕ, into a Cr-foliation
of a compact manifold, for r ≥ 1.
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4. Embedding results

The problem of embedding a 1-dimensional matchbox manifold M in a
Cr-flow has two forms. If the dynamics of the flow restricted to M are
equicontinuous, or equivalently the flow is almost periodic on M, then M
must a Vietoris solenoid [24]. The realization of solenoids as minimal sets
for flows has an extensive literature (see [7] for a discussion and references).

The other possibility in the 1-dimensional case, is that the dynamics
of M are transversally expansive. In this case, M has a presentation as an
inverse limit of branched 1-manifolds, which can be used to give effective
criteria for embedding into punctured surfaces, for example as considered
in [14].

The case where M is minimal with leaf dimension n ≥ 2 is much more
difficult, and few results are known except when such an embedding is part
of the data in the construction, such as for the action of a rank-one lattice
in a Lie group, acting on its boundary when it is totally disconnected.

In the work [7], the authors’ studied the embedding problem for the
base Tn, and developed criteria for when M has a smooth embedding.

Theorem 4.1. Let M be a weak solenoid with base manifold Tn. Then
there exists a C0-foliation F of codimension-2n on a compact manifold with
minimal set M. If a mild restriction of the model of M by compact tori is
assumed, then it can be realized by a C1-foliation F of codimension-2n.

5. Classification

The study of the exceptional minimal sets for foliations also includes the
problem of classification of minimal matchbox manifolds, up to homeomor-
phism and orbit equivalence. This is work in progress [8, 9, 10, 11, 15].
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78:845–864, 2003.

[3] A. Candel and L. Conlon, Foliations I, Amer. Math. Soc., Providence, RI, 2000.

[4] D. Cass, Minimal leaves in foliations, Trans. A.M.S., 287:201–213, 1985.

[5] A. Clark and R. Fokkink, Embedding solenoids, Fund. Math., 181:111–124, 2004.

[6] A. Clark and J. Hunton, Tiling spaces, codimension one attractors and shape, New
York J. Math., 18:765–796, 2012.

[7] A. Clark and S. Hurder, Embedding solenoids in foliations, Topology Appl.,
158:1249–1270, 2011.



93

[8] A. Clark and S. Hurder, Homogeneous matchbox manifolds, Transactions AMS
365 (2013), 3151–3191.

[9] A. Clark, S. Hurder and O. Lukina, Shape of matchbox manifolds, preprint, 2013.

[10] A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, preprint, 2013.

[11] J. Dyer, S. Hurder and O. Lukina, Orbit equivalence invariants of matchbox mani-
folds, in progress, 2013.
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On codimension two contact embeddings

Naohiko KASUYA

1. Introduction and the statements of the results

We study codimension two contact embeddings in the odd dimensional Eu-
clidean space. Let (M2n−1, ξ) be a closed contact manifold and (N2m−1, η)
be a co-oriented contact manifold. An embedding f : M2n−1 → N2m−1 is
said to be a contact embedding if f∗(TM

2n−1)∩η|f(M2n−1) = f∗ξ. Note that
ξ must be co-orientable since f ∗β is a global defining 1-form of ξ, where
β is a global defining 1-form of η. For given (M2n−1, ξ), we would like to
know whether there exists a contact embedding of (M2n−1, ξ) in (R2n+1, η0),
where η0 is the standard contact structure on R2n+1. It is equivalent to the
existence of contact embeddings of (M2n−1, ξ) in the (2n + 1)-sphere with
the standard contact structure. We see that the first Chern class is an
obstruction for the existence of such an embedding.

Theorem 1.1. If a closed contact manifold (M2n−1, ξ) is a contact sub-
manifold of a co-oriented contact manifold (N2n+1, η) satisfying the condi-
tion H2(N2n+1;Z) = 0, then the first Chern class c1(ξ) vanishes.

In particular, there are infinitely many contact 3-manifolds which can-
not be embedded in (R5, η0) as contact submanifolds. We note that any
3-manifold can be embedded in R5 by Wall’s theorem[16]. We also note
that A.Mori[10] constructed a contact immersion of any closed co-orientable
contact 3-manifold in (R5, η0) and D.Martinez[9] proved that any closed co-
orientable contact (2n + 1)-manifold can be embedded in (R4n+3, η0) as a
contact submanifold. For the existence of contact embeddings of contact
3-manifolds in (R5, η0), there are several known examples. Some of them
are links of isolated complex surface singularities in C3. The canonical
contact structure on a link is given by the complex tangency, and it is a
contact submanifold of (S5, ηstd), where ηstd is the standard contact struc-
ture on S5. Though it is difficult to determine the structure on a link in
general, it is done in the cases of the quasi-homogeneous singularities[13]
and the cusp singularities[4],[11],[13]. In these cases, the link is the quo-
tient of a cocompact lattice of a Lie group G and the contact structure is
invariant under the action of G. Another example is given by A.Mori[12]
and Niederkrüger-Presas[14]. They independently constructed a contact
embedding of the overtwisted contact structure on S3 associated to the

c© 2013 Naohiko Kasuya
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negative Hopf band in (S5, ηstd). In spite of these examples, we do not
know whether every contact 3-manifold with c1(ξ) = 0 can be embedded in
(R5, η0) as a contact submanifold. By Gromov’s h-principle, however, we
can show the following result.

Theorem 1.2. If c1(ξ) = 0, we can embed (M3, ξ) in R5 as a contact
submanifold for some contact structure on R5.

2. Preliminary

2.1. The Chern classes of a co-oriented contact structure

Let (M2n−1, ξ = kerα) be a co-oriented contact structure. Since the 2-form
dα induces a symplectic structure on ξ, (ξ, dα|ξ) is a symplectic vector
bundle over M2n−1. Since the conformal class of the symplectic bundle
structure does not depend on the choice of α, we define the Chern classes
of ξ as the Chern classes of this symplectic vector bundle.

2.2. The conformal symplectic normal bundle of a contact sub-
manifold

Let (M, ηM) ⊂ (N, η = ker β) be a contact submanifold. The vector bundle
η splits along M into the Whitney sum of the two subbundles

η|M = ηM ⊕ (ηM)⊥,

where ηM is the contact plane bundle on M given by ηM = TM ∩ η|M
and (ηM)⊥ is the symplectic orthogonal of ηM in η|M with respect to the
form dβ. We can identify (ηM)⊥ with the normal bundle νM . Moreover,
dβ induces a conformal symplectic structure on (ηM)⊥. We call (ηM)⊥ the
conformal symplectic normal bundle of M in N .

2.3. The Euler class of the normal bundle of an embedding

Let Kk be a closed orientable k-manifold, Ll an orientable l-manifold and
f : Kk → Ll an embedding.

Theorem 2.1. If H l−k(Ll;Z) = 0, the Euler class of the normal bundle
of f vanishes.

Proof. By Theorem 11.3 of [7], the Euler class of the normal bundle of
f is the image of the dual cohomology class of Kk by the homomorphism
f ∗ : H l−k(Ll;Z)→ H l−k(Kk;Z). Thus, if H l−k(Ll;Z) = 0, it vanishes.
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In particular, when l = k + 2, the normal bundle is a 2-dimensional trivial
vector bundle.

3. Proof of Theorem 1.1

Proof. Let f : M2n−1 → N2n+1 be an embedding such that

f∗(TM
2n−1) ∩ η|f(M2n−1) = f∗ξ.

Since H2(N2n+1;Z) = 0 and the normal bundle of f is 2-dimensional, it is
topologically trivial by Theorem 2.1. Since the conformal symplectic struc-
ture on 2-dimensional trivial vector bundle is unique, the normal bundle of
f(M2n−1) is also trivial as a conformal symplectic vector bundle. That is,
the vector bundle η splits along f(M2n−1) such that

η|f(M2n−1) = ηf(M2n−1) ⊕ (ηf(M2n−1))
⊥,

where ηf(M2n−1) = f∗ξ and (ηf(M2n−1))
⊥ is a trivial symplectic bundle. By

the naturality of the first Chern class and the condition H2(N2n+1;Z) = 0,
it follows that c1(η|f(M2n−1)) = f ∗c1(η) = 0. On the other hand, taking
the Whitney sum with a trivial symplectic bundle does not change the first
Chern class. Thus, c1(η|f(M2n−1)) = c1(ξ) holds. It follws that c1(ξ) = 0.

4. Proof of Theorem 1.2

4.1. h-principle

We review Gromov’s h-principle and prove Propositon 4.4 as a preliminary
for the proof of Theorem 1.2.

Definition 4.1. Let N2n+1 be an oriented manifold. An almost contact
structure on N2n+1 is a pair (β1, β2) consisting of a global 1-form β1 and a
global 2-form β2 satisfying the condition β1 ∧ βn2 6= 0.

Remark 4.2. There is another definition. We can define an almost con-
tact structure on N2n+1 as a reduction of the structure group of TN2n+1

from SO(2n+1) to U(n). Since a pair (β1, β2) satisfying β1∧βn2 6= 0 can be
seen as the cooriented hyperplane field ker β1 with an almost complex struc-
ture compatible with the symplectic structure β2|kerβ1 , the two definitions
are equivalent up to homotopy.

Theorem 4.3 (Gromov[2], Eliashberg-Mishachev[1]). Suppose N2n+1 is
an open manifold. If there exists an almost contact structure over N2n+1,
then there exists a contact structure on N2n+1 in the same homotopy class
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of almost contact structures. Moreover if the almost contact structure is
already a contact structure on a neighborhood of a compact submanifold
Mm ⊂ N2n+1 with m < 2n, then we can get a contact structure on N2n+1

which coincides with the original one on a small neighborhood of Mm.

Let (M2n−1, ξ = kerα) be a closed cooriented contact manifold and M2n−1

be embedded in R2n+1. By Theorem 2.1, there exists an embedding

F : M2n−1 ×D2 → R2n+1.

The form α + r2dθ induces a contact form β on U = F (M2n−1 × D2).
By Theorem 4.3, in order to extend given contact structure, it is enough
to extend it as an almost contact structure. Almost contact structures
on N2n+1 correspond to sections of the principal SO(2n+ 1)/U(n) bundle
associated with the tangent bundle TN2n+1. In particular, almost contact
structures on R2n+1 correspond to smooth maps

R2n+1 → SO(2n+ 1)/U(n).

Thus we get the following proposition.

Proposition 4.4. We can embed (M2n−1, ξ) in R2n+1 as a contact sub-
manifold for some contact structure, if and only if there exists an embedding
F : M2n−1×D2 → R2n+1 such that the map g : M2n−1 → SO(2n+ 1)/U(n)
induced by the underlying almost contact structure of (M2n−1×D2, α+r2dθ)
is contractible.

Proof. The underlying almost contact structure of (U, β) ⊂ R2n+1 is iden-
tified with the map g̃ : U → SO(2n+1)/U(n) whose restriction to M2n−1 is
g. We can take an extension of g̃ over R2n+1 if and only if g is contractible.

4.2. Proof of Theorem 1.2

Proof. There exists an embedding f : M3 → R5 [16], and the normal
bundle of f is trivial. Thus we can take an embedding F : M3 ×D2 → R5.
By Proposition 4.4, it is enough to prove that if c1(ξ) = 0, then there
exists an embedding F such that the map g : M3 → SO(5)/U(2) induced
by F is contractible. Let us take a triangulation of M3 and M (l) be its l
dimensional skeleton, i.e.,

M (0) ⊂M (1) ⊂M (2) ⊂M (3) = M3.

The condition c1(ξ) = 0 is equivalent to that ξ is a trivial plane bundle over
M3. Hence a trivialization τ of ξ and the Reeb vector field R of α give a
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trivialization of TM3. This trivialization of TM3 and a trivialization ν of
the normal bundle νM3 form a map

h : M3 → SO(5).

In other words, h is a trivialization of TR5 |M3 consisting of R, τ and ν.
Composing with the projection π : SO(5) → SO(5)/U(2), it induces the
map g = π ◦ h : M3 → SO(5)/U(2). Thus h is a lift of g. Now we consider
whether h is null-homotopic over M (1). In other words, we consider the
difference between the spin structures on TR5 |M3 induced by h and the
constant map I5. Then the obstruction is the Wu invariant c(f) ∈ Γ2(M3),
where Γ2(M3) = {C ∈ H2(M3;Z) | 2C = 0}. The following explanation
of the Wu invariant is due to [15]. The Wu invariant is defined for an
immersion of the parallelized 3-manifold with trivial normal bundle. A
normal trivialization ν of f and the tangent trivialization define a map
π1(M3) → π1(SO(5)), namely an element c̃f in H1(M3;Z2). If we change
ν by an element z ∈ [M3, SO(2)] = H1(M3;Z), then the class c̃f changes
by ρ(z), where ρ is the mod 2 reduction map H1(M3;Z) → H1(M3;Z2).
Hence the coset of c̃f in H1(M3;Z2)/ρ(H1(M3;Z)) does not depend on ν.
The cokernel of ρ is identified with Γ2(M3) by the canonical map induce
by the Bockstein homomorphism. Under this identification, the coset of c̃f
corresponds to the Wu invariant c(f) ∈ Γ2(M3). Now we fix the trivial-
ization of TM3 formed by τ and R. By Theorem 3.8 of [15], there exists
an embedding f : M3 → R5 such that c(f) = 0. Moreover, there exists
a normal trivialization ν of f such that c̃f = 0 ∈ H1(M3;Z2). With the
embedding f and the normal trivialization ν, the map h is null-homotopic
over M (1). Since π2(SO(5)) = 0, it is also null-homotopic over M (2) and so
is the map g = π ◦ h : M3 → SO(5)/U(2). Since π3(SO(5)/U(2)) = 0, g is
contractible. This completes the proof of Theorem 1.2.

5. Examples of codimension 2 contact submanifolds

5.1. Singularity links

Let X be a complex algebraic surface in C3 with an isolated singularity
at the origin 0. The intersection L3 of X and a sufficiently small sphere
S5
ε is called the link of (X, 0). The canonical contact structure ξ on L3

is given by ξ = TL3 ∩ JTL3, where J is the standard complex structure
on C3. It is obviously a contact submanifold of (S5, ηstd). In the case of
quasi-homogeneous singularity and cusp singularity, Neumann[13] showed
that there is a one-one correspondence between geometric structures on L3

and complex analytic structures on (X, 0).

Example 5.1 (Brieskorn singularity). Let X = {xp + yq + zr = 0}. The
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link L3 is a quotient of the Lie group G = SU(2), Nil3 or S̃L(2;R), accord-
ing as the rational number p−1 + q−1 + r−1 − 1 is positive, zero or negative
[8]. Since the canonical contact structure ξ on L3 is invariant under the
action of G, ξ is determined[13].

Example 5.2 (Cusp singularity). LetX = {xp + yq + zr + xyz = 0} with
p−1 + q−1 + r−1 < 1. This singularity is analytically equivalent to a Hilbert
modular cusp associated with a quadratic field over Q [3],[5],[6]. Thus the
link L3 is a hyperbolic mapping torus and has a geometry of the Lie group
G = Sol3. ξ is the positive contact structure associated with the Anosov
flow on L3 [4],[11],[13].

5.2. Other examples

Let (r1, θ1, r2, θ2, r3, θ3) be the polar coordinates on S5 ⊂ C3, where

(z1, z2, z3) = (r1e
2πiθ1 , r2e

2πiθ2 , r3e
2πiθ3) ∈ C3, S5 =

{
r2

1 + r2
2 + r2

3 = 1
}
.

The standard contact form on S5 is α0 = r2
1dθ1 + r2

2dθ2 + r2
3dθ3. Let

φ : S5 → R3 be the projection, where φ(r1, θ1, r2, θ2, r3, θ3) = (r2
1, r

2
2, r

2
3).

Then the image φ(S5) = {x1 + x2 + x3 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0} is a reg-
ular triangle in R3. It is called the moment polytope 4. Note that π is a
T 3-fibration over Int4 and is a T 2-fibration over ∂4 except on the three
vertices. Choosing a curve c on 4 and a section over c appropriately, one
can get an embedding of a 3-manifold in S5.

Example 5.3 (Mori’s example). Let (S3, ηneg) be the negative overtwisted
contact structure associated with the negative Hopf link. Using the mo-
ment polytope, A.Mori constructed a deformation of embedded standard
contact 3-sphere to (S3, ηneg) in (S5, ξstd), via the Reeb foliation on S3 fo-
liated by immersed Legendrian submanifolds of S5 [12]. Slightly changing
this example, we can also see that tight contact structures on the 3-torus
can be embedded in (S5, ηstd) as contact submanifolds.

Example 5.4 (Furukawa’s example). In a similar way, R.Furukawa con-
structed the contact embeddings of universally tight contact structures on
some T 2 bundles over S1. His examples cover the link of cusp singularities
and Brieskorn Nil singularities.
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Towards the classification theorem for
one-dimensional pseudogroups

Victor KLEPTSYN

My talk will be devoted to a joint project with B. Deroin, D. Filimonov
and A. Navas, that has as its ultimate goal to understand and classify real
one-dimensional finitely generated pseudo-group actions. This naturally
includes group actions on the circle and real codimension one foliations of
compact manifolds.

Our study was motivated by following questions, going back to 1980’s,
that were asked by D. Sullivan, E. Ghys, and G. Hector; we’re stating them
both in the group actions and foliations setting:

Question 0.1 (Ghys, Sullivan). Let G be a finitely generated group of
(C2-)smooth circle diffeomorphisms, acting on the circle minimally. Is this
action necessarily ergodic with respect to the Lebesgue measure?

Let F be a transversely (C2-)smooth foliation of a compact manifold,
which is minimal. Is it necessarily ergodic with respect to the Lebesgue
measure?

Question 0.2 (Ghys, Sullivan). Let G be a finitely generated group of
(C2-)smooth circle diffeomorphisms, acting on the circle with a Cantor
miminal set K. Is K necessarily of zero Lebesgue measure?

Let F be a transversely (C2-)smooth foliation of a compact manifold,
having an exceptional minimal set K. Is it necessarily of zero Lebesgue
measure?

Question 0.3 (Hector). LetG be a finitely generated group of (C2-)smooth
circle diffeomorphisms, acting on the circle with a Cantor miminal set K.
Does the action of G on the connected components of S1 \ K necessarily
have but a finite number of orbits?

Let F be a transversely (C2-)smooth foliation of a compact manifold
M , having an exceptional minimal set K. Does the complement M \ K
necessarily have at most finite number of connected components?

Our results partially answer these questions; what is even more impor-
tant, some general paradigm seems to turn up. Namely, it seems that (up

Talk on a joint project with Bertrand Deroin, Dmitry Filimonov, Andrés Navas
Partly supported by RFBR project 13-01-00969-a and joint RFBR/CNRS project 10-01-

93115-CNRS a.
c© 2013 Victor Kleptsyn

103



104

to some modifications1) the following general paradigm takes place:

Paradigm. For a finitely-generated pseudogroup of transformations of a
real line, the following dichotomy holds:

• Either it has local flows in its local closure,

• Or it admits a Markov partition (of the minimal set).

This is closely related to what was done and suggested as a generic behavior
for the case of an exceptional minimal set by Cantwell and Conlon in [1, 2].
Though, for the case of an exceptional minimal set we expect that Markov
partition always exists, as the sense in which we understand the Markov
partition is slightly weaker than the one of Cantwell–Conlon (and this covers
also the type of behavior mentioned in [2, §7] that did not fit in their
definition).

A road towards this paradigm lies through the local discreteness, which
makes the dichotomy between the two cases above. Namely, if a (pseudo)group
is not locally discrete and its action does not preserve a measure, the ar-
guments of Scherbakov-Nakai-Loray-Rebelo ([5, 12, 11, 14]) imply that it
contains local flows in its local closure. Roughly speaking, due to the ab-
sence of a preserved measure there is a map with a hyperbolic fixed point;
expanding the sequence of maps (C1-)convergent to the identity with help
of this map, one finds local flows.

The case to consider is then the one of locally discrete groups, and here
the non-expandable points come into play. Namely, there Sullivan’s expo-
nential expansion strategy allows to expand arbitrarily small neighborhoods
of points of the minimal set with a uniform control on the distortion, pro-
vided that for any point of the minimal set there is a map that expands
linearly at this point. This allow to obtain, under this assumption, pos-
itive answers to the Questions 0.1–0.3, and it is quite likely to provide a
Markov partition (with the same mechanism as the one used in [6]: under
the expansion the maps stay uniformly close to the identity, and thus there
should be a repetition between the expanded images).

The non-expandable points that we mentioned earlier are the obstacles
to the application of Sullivan’s expansion strategy:

Definition 0.4. A point x of a minimal set is non-expandable for the ac-
tion of a (pseudo)group G, if for any g ∈ G (defined in x) one has |g′(x)| ≤ 1.

Note, that their presence in a minimal set immediately implies the local
discreteness of the group: otherwise, local vector flows would allow minimal-

1For instance, for the local flows one shouldn’t consider glueing or too large domains of
definition: otherwise, for the standard Thomson group action, generated by the doubling map,
one would both have a Markov partition and a flow.
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ity with a uniform control on the derivative, and bringing a non-expandable
point close to a hyperbolic repelling one would imply a contradiction. Thus,
in view of the paradigm above, we should try showing that in this case there
exists a Markov partition.

Though the non-expandable points are an obstacle to the “fast” expan-
sion procedure, an additional assumption allows to handle this difficulty:

Definition 0.5 ([3]). A minimal action of a finitely generated (pseudo)group
G has property (?), if any non-expandable fixed point is right- and left- iso-
lated fixed point for some maps g+, g− ∈ G.

An action of a finitely generated (pseudo)group G with a Cantor min-
imal set K has property (Λ?), if any non-expandable fixed point x ∈ K is
right- and left- isolated fixed point for some maps g+, g− ∈ G.

When this assumption is satisfied, one can modify the Sullivan’s expo-
nential expansion strategy by a “slow” expansion near the non-expandable
points, by iterating the g± (or their inverses) till the point leaves the neigh-
borhood of a non-expandable point. Such a modification have allowed us
in [3] to obtain under this assumption the positive answers to Questions 0.1–
0.3.

This also allows to describe the structure of a (pseudo)group: it turns
out (see [6, 7]) that if this assumption is satisfied, and there actually is at
least one non-expandable point, then the dynamics indeed admits some kind
of Markov partition. Also, the (pseudo)group is in a sense Thomson-like:
for the piecewise-nonstrictly expanding map R, associated to this partition,
the maps from the (pseudo)group locally are composition of its iterations,
the branches of its inverse, and an intermediate map chosen from a finite
set.

What is left for establishing the paradigm and for answering Ques-
tions 0.1–0.3 is thus to prove that the property (?) (or (Λ?)) always holds.
And two our recent works make an advancement towards it:

Finally, for some cases, the property (?) (or (Λ?)) can be shown to
hold:

Theorem 0.6 ([4]). Let G be a (virtually) free finitely generated subgroup
of the group of analytic circle diffeomorphisms, such that the action G does
not have finite orbits. Then, G satisfies property (?) or (Λ?) (depending on
whether the action is minimal or possesses an exceptional minimal set).

Remark 0.7. Recall, that due to a result by Ghys [10], a finitely generated
group of analytic circle diffeomorphisms, acting with a Cantor minimal set,
is always virtually free. Hence, Theorem 0.6 implies positive answers for
Questions 0.2 and 0.3 for the case of an analytic group action on the circle.
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Theorem 0.8 ([8]). Let G be a finitely generated subgroup of the group
of analytic circle diffeomorphisms, acting minimally, that has one end, is
finitely presented, and in which one cannot find elements of arbitrarily large
finite order. Then, G satisfies property (?).
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Foliations of S3 by cyclides

Rémi LANGEVIN

1. Introduction

Throughout last 2-3 decades, there was great interest in extrinsic geometry
of foliated Riemannian manifolds (see [As], [B-L-R] and [Ze]).

One approach is to build examples of foliations with reasonably simple
singularities with leaves admitting some very restrictive geometric condi-
tion. After considering foliations of S3 by totally geodesic of totally umbili-
cal leaves with isolated singularities, totally geodesic foliations of H2 or H3,
[La-Si] provide families of foliations of S3 by Dupin cyclides with only one
smooth curve of singularities. Quadrics and other families of cyclides like
Darboux cyclides provide other examples. In all cases the results are ob-
tained considering an auxiliary space associated to the geometry imposed
to our leaves, the space of spheres, of lines, of circles for the examples
mentioned above.

Another motivation for our construction is the use of cyclides in com-
puter graphics, see for example [Po-Li-Sko].

The results mentioned in this conference come from a joint work with
Jean-Claude Sifre.

2. The spaces of lines, spheres, and circles

2.1. The space of lines

The set of affine lines of R3 is a vector bundle of base P2 and fiber R2 of
dimension 6. The projective space RP3 completes R3. The set of projective
lines of RP3 is isomorphic to the Grassmann manifold G(4, 2) of planes
of R4.

Let us first show how, using Plücker coordinates, G(4, 2) can be seen
as a quadric Π ⊂ RP5.

The condition that a vector U of
∧2(R4) is pure, that is of the form

u ∧ v, u ∈ R4, v ∈ R4 writes U ∧ U = 0; this provides a quadratic form,
called the Plücker form which defines the Plücker cone.

The incidence relation of two lines corresponding to the 2-vectors U
and V obtained checking that the corresponding 2-planes of R4 generate a
subspace of dimension at most 3; it writes U ∧ V = 0.

Date: June 5, 2013
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A pencil of lines ` is the projective image of a totally isotropic plane of∧2(R4) for the Plücker form; it is of index (3, 3). We call the corresponding
projective line a projective light-ray.

Geometrically, a pencil of lines of P3 correspond to a contact condition,
that is a pair (m,P ), m ∈ P ⊂ P3.

2.2. The space of spheres

It will be convenient for us to realize both our ambient space S3 and the
set of oriented spheres as subsets of the Lorentz space R5

1, that is R5

endowed with the Lorentz quadratic form L(x) = L(x0, x1, x2, x3, x4) =
−x2

0 +
∑4

i=1 x
2
i .

The light-cone Li is the set L(x) = 0. Its generatrices are called light-
rays. We also call affine lines parallel to a generatrix of the light-cone
light-rays.

The light-cone separates vectors of R5 \ Li in two types: space-like
vectors, such that L(v) > 0 and time-like vectors, such that L(v) < 0.
A plane will be called space-like if it contains only space-like (non-zero)
vectors. It is called time-like if it contains non zero time-like vectors (then
it contains vectors of the three types). It is called light-like is it contains
non-zero light-like vectors but no time-like vector.

The space of oriented 2-dimensional spheres in S3 may be parame-
terized by the de Sitter quadric Λ4 ⊂ R5

1 defined as the set of points
σ = (x0, x1, x2, x3, x4) such that L(σ) = 1, in the following way. The hyper-
plane σ⊥ orthogonal to σ (for the Lorentz quadratic form L) cuts the affine
hyperplane H0 = {x0 = 1} along a 3-dimensional oriented affine hyper-
plane, which cuts the unit sphere S3 ⊂ H0 along a 2-dimensional sphere Σ.
Let us orient the sphere Σ as boundary of the ball Bσ = S3∩{L(x, σ) ≥ 0}.

Figure 1: The correspondence between points of Λ4 and spheres in S3.
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This correspondence between points σ of Λ4 and oriented spheres Σ ⊂
S3 ⊂ H0 is bijective.

Geometric properties of spheres have a counterpart in Λ4. For example,
two oriented spheres Σ and Σ′ in S3 are positively (i.e. respecting the orien-
tation) tangent if and only if the corresponding points σ and σ′ in Λ4 verify:
L(σ, σ′) = 1. In that case, the points σ and σ′ are joined by a segment of
light-ray contained in Λ4. In fact the oriented spheres tangent to Σ corres-
pond to the points of the 3-dimensional cone TσΛ4 ∩Λ4 which is a union of
(affine) light-rays.

The tangent space TσΛ4 is parallel to the hyperplane (R · σ)⊥. It is
therefore of index (3, 1). This means it contains space-like, time like and
light-like vectors.

A contact element (or simply a contact) in S3 is a pair (m,h), where
m ∈ S3 and h is a vector plane h ⊂ TmS3. The set of contact conditions
is of dimension 5. To each contact element (m,h) corresponds a pencil of
spheres tangent to h at m. Orienting h ⊂ TmS3 allows to orient the spheres
of the pencil, and distinguishes one of the light-rays of Λ4 corresponding to
spheres of the pencil.

Reciprocally, each light-ray contained in Λ4 defines a contact element
in S3. Precisely, the intersection of the direction of the light-ray ` with H0

is a point m` of S3 and the spheres Σ associated to the points σ ∈ ` are the
spheres having a common oriented contact h ⊂ m` at the point m`. We
can now observe that the quadric Λ4 is ruled by a 5-dimensional family of
(affine) light-rays.

Pencils of spheres can be of the types: pencils of tangent spheres,
pencils of spheres with a base circle and pencils of spheres with limit points.
The corresponding points of Λ4 are respectively two parallel light-rays, the
intersection of Λ4 with a space-like vectorial plane and the intersection of
Λ4 with a time-like plane.

2.3. The space of circles

A circle Γ ⊂ S3 is the axis of a pencil of spheres. This pencil corresponds to
the points of intersection of the quadric Λ4 ⊂ R5

1 and a space-like vectorial
plane. Therefore the space of circles C can be seen as a subset of the set of
lines of the cone P ⊂

∧2(R5) given by the Plücker relations defining pure
2-vectors.

The wedge product defines a bilinear form QC :
∧2(R5) ×

∧2(R5) →∧4(R5). The condition QC(U,U) = 0 gives 5 quadratic equations. They are
not independent. One can prove that the equality QC(U,U) = 0 defines a
7-dimensional cone P . We will soon see that the set of lines corresponding
to circles is open in P(P). We could have checked directly that the set of
oriented circles C is a 6-dimensional space.
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Let now UΓ1 and UΓ2 be two pure vectors corresponding to the two
circles Γ1 and Γ2. The condition 0 = QC(UΓ1 , UΓ2 = UΓ1 ∧ UΓ2 is equiva-
lent to dim(pΓ1 + pΓ2) ≤ 3, that is to say ∃σ ∈ pγ1 ∩ pγ2 ∩ Λ4. In other
terms, the two circles Γ1 and Γ2 belong to the same sphere Σ if and only if
corresponding 2-vector UΓ1 and UΓ2 satisfy Uγ1 ∧ UGamma2 = 0.

The condition is satisfied in particular when the two circles intersect
at two distinct points or are tangent.

2.3.1. Plücker and Lorentz quadratic forms

It is natural to consider on
∧2(R5) a quadratic form coming from the

Lorentz quadratic form L on R5 defined by L(x) = −x2
0+x2

1+· · ·+x2
4. Con-

sider on R5 the basis e0, e1, · · · e4; the 10 2-vectors ei∧ej, i < j form a basis

of
∧2(R5). the quadratic form L on

∧2(R5) is defined by L(e1 ∧ ej) = +1
if i ≥ 1, L(e1 ∧ ej) = −1 if i = 0. The signature of L is therefore (6, 4).

The light-cone of L contains the lines generated by wedge of vectors of
R5 contained in a 2-plane tangent to the light-cone of L.

One may visualize the set of “true” oriented circles of S3 as the inter-
section C of the Plücker cone of “pure” 2-vectors, defined by the equations
u ∧ u = 0, and the quadric of equation L(x) = 1.

Using on C the pseudo-metric induced from L, we get a pseudo metric
of signature (4, 2) . We admit that this pseudo-metric does not depend
on the choice of the orthonormal basis (for L) of R5. A way to visualize
orthogonal directions for L in TγC is explained in [La-O’H].

3. The d’Alembert property

Cyclides are surfaces of S3 which are, at least in two different ways, union
of one-parameter families of circles. We will here accept lines are particular
circles. Many interesting examples are proposed in [Po-Li-Sko].

Definition 3.0.1. Two one-parameter families of circles C1 and C2 satisfy
the d’Alembert property if any two circles Γ1 ∈ C1 and Γ2 ∈ C2 are contained
in a sphere Σ1,2. We will call a cyclide, union of the circles of two families
satisfying the d’Alembert property a d’Alembert cyclide.

Remark. – d’Alembert observed that ellipsoids admit two families of
circles which are the intersection of the ellipsoid with planes parallel
to the tangent planes at the umbilics (see [d’A] and Figure 2). Two
circles, one in each family are always contained in a common sphere
(this is clear, from topological reasons, when the two circles intersect).
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Figure 2: Two families of circles on an ellipsoid.

– Whereas a quadric can be described as the zero-set of second order
polynomial in Cartesian coordinates (x1, x2, x3), a large family of cy-
clide, called the Darboux cyclides, is given by the zero-set of a second
order polynomial in (x1, x2, x3, r

2), where r2 = x2
1 + x2

2 + x2
3. Thus

they are quartic surfaces in Cartesian coordinates, with an equation
of the form:

Ar4 + 2r2

3∑
i=1

Bixi +
3∑

i,j=1

Qijxixj + 2
3∑
i=1

Cixi + a

where Q is a 3× 3 matrix, Bi are a 3-dimensional vectors, and A and
a are constants [Ta].

They are d’Alembert cyclides, and have been classified by Takeushi [Ta].
We hope to know soon wether all d’Alembert cyclides are Darboux or not.

Proposition 3.0.2. The points of Λ4 corresponding to spheres which con-
tain a pair of circles, one in each family, of a d’Alembert cyclide, are con-
tained in a 4 dimensional subspace of R5

1.

Proof. Let us chose two circles γ1, γ2 of the first family, they are the axis
of two pencils of spheres Pγ1 and Pγ2 . The points corresponding to the
spheres of these pencils are intersection of Λ4 with the planes p1 and p2. A
circle τ of the second family is the axis of the pencil Pτ . The definition of
a d’Alembert cyclide implies that a sphere Σ1 of Pγ1 ∩Pτ contains γ1 and τ
and that a sphere Σ2 of Pγ2 ∩ Pτ contains γ2 and τ . This implies that τ is
the pencil generated by Σ1 and Σ2. The spheres of this pencil correspond
to points of Λ4 contained in the 4-dimensional subspace p1 ⊕ p2 ⊂ R5

1. It
is now enough to use the d’Alembert condition satisfied by a circle of the
first family and to given circles of the second family to obtain a proof of
the proposition. �
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Figure 3: Villarceau circles on a torus

Remark. A regular Dupin cyclide, that is an embedded torus which is in
two different ways the envelope of a one-parameter family of spheres is also
a d’Alembert cyclide, as the two families of Villarceau circles satisfy the
d’Alembert condition. The d’Alembert property reflects on the two curves
of the space of circles corresponding to the circles of the two families.

In Proposition 3.0.3 the notions of time-like, space-like and light-like
refer to the Lorentz quadratic form L(x) = −x2

0 + x2
1 + x2

2 + x2
3 + x4

4.

Proposition 3.0.3. To each 4-dimensional subspace H ⊂ R5
1 corresponds

a 9-dimensional family of d’Alembert cyclides AH.

1) If H is space-like, there exist a metric of S3 of constant curvature 1
such that all the circles of the two families are geodesics.

2) If H is light-like, that is tangent to the light-cone along a light-ray
R ·m, then, choosing m as the point at infinity, the cyclide becomes
a ruled quadric of R3 ' S3 \m.

3) If H is time-like, then all the circles of the cyclide are orthogonal to
the sphere Σ corresponding to the two points of H⊥ ∩ Λ4.

From now on, we will use the quadratic form defined on
∧2(H) by

Plu(U,U) = U ∧ U . It is of index (3, 3). The totally isotropic sub-
spaces of

∧2(H) will be called like-like subspaces. It is convenient , instead
of dealing with planes, 3-dimensional subspaces and the Plücker cone of
R6 '

∧2(H) to work in the projective space P5 = P(
∧2(H)). The Plucker

quadric π is the image of the Plücker cone of equation (only one in
∧2(H))

Plu(U,U) = 0. A projective light-ray is the image of a totally isotropic
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plane and two orthogonal 3-dimensional subspaces provide two conjugate
projective planes.

Theorem 3.0.4. The two families of circles of a d’Alembert cyclide form
two conics, intersection of the Plücker quadric πP5 with conjugate projec-
tive planes.

The proof is quite similar to the analogous result obtained in
[La-Si-Dru-Gar-Pa] for Dupin cyclides.

4. Cyclides, contact conditions and foliations

In [La-Si-Dru-Gar-Pa] the authors studied the existence of Dupin cyclides
satisfying three contact conditions, that is tangent to three planes at three
points. The solutions, when they exist, form a foliation of S3 with a singular
locus which is a curve where all the solutions are tangent (see [La-Si].

Propositions 3.0.2 and 3.0.3 let us hope for a similar result for each
family of d’Alembert cyclide.

The proofs will use a dynamical construction using three projective
light-rays of P5 = P(

∧2(H)) corresponding to the three d’Alembert pairs,
two circles contained in a common sphere. When cyclides containing the
three d’Alembert pairs exist, they are tangent along a curve and form a
foliation of S3 in case 1) of Proposition 3.0.3, and other wise a foliation of
a simple domain of ss

3 that can be used as a building block.

Remark. Algebraic geometers would give a proof of theorem 3.0.4 us-
ing linear families. In particular, the three contact problem in case 2) of
Proposition 3.0.3 can be reduced to Brianchon theorem for conics.
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5. Examples of foliations by d’Alembert cyclides and
tangent d’Alembert cyclides

Figure 4: Foliation of R3 by quadrics and Darboux cyclides tangent along
a curve
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1. Introduction

In this talk we will be presenting some fundamental results about a class of
codimension one foliations which generalises 3-dimensional taut foliations.

Definition 1.1. A codimension one foliation F of M2n+1 is said to be
2-calibrated, if there exists a closed 2-form ω such that the restriction of
ωn to the leaves of F is no-where vanishing.

A 2-calibrated foliation (M,F , ω) (M always closed) is an object which
essentially belongs to symplectic geometry, as the following fact illustrates:
the flow along the kernel of ω induces on each small open subset of each
leaf a Poincaré return map which is a symplectomorphism.

1.1. Examples

There are three elementary families of 2-calibrated foliations: products,
cosymplectic foliations and symplectic bundle foliations.

A product is the result of crossing a 2-calibrated foliation, typically a
3-dimensional taut foliation, with a (non-trivial) symplectic manifold, and
putting the product foliation and the obvious closed 2-form.

A cosymplectic foliation is a triple (M,α, ω), where α is a no-where
vanishing closed 1-form and (M, kerα, ω) is a 2-calibrated foliation. If α has
rational periods then the cosymplectic foliation is a symplectic mapping
torus, i.e., a mapping torus with fibre a symplectic manifold and return
map a symplectomorphisms.

A bundle foliation with fibre S1 is by definition an S1-fibre bundle
π : M → X endowed with a codimension one foliation F transverse to the
fibres. If the base space admits a symplectic form σ, then (M,F , π∗σ) is a
2-calibrated foliation which we refer to as a symplectic bundle foliation.

c© 2013 David Mart́ınez Torres
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2. Surgeries

It is possible to build new examples out of old ones: via a surgery with
generalises the normal connected sum of symplectic manifolds [2], one
can construct 2-calibrated foliations which belong to none of the three ele-
mentary classes [4].

There exist a second surgery in which a neighbourhood of a Lagrangian
sphere is separated into 2 copies, and glued back by a generalised Dehn twist
(a symplectic generalisation to any dimension of a 2-dimensional Dehn twist
around a closed curve). Generalised Dehn surgery has an alternative
presentation, in which the original and the resulting 2-calibrated foliations
are the boundary of certain elementary symplectic cobordism [4]; this is re-
lated to the fact that a Lagrangian sphere in a leaf of a 2-calibrated foliation
determined a canonical framing, and therefore an elementary cobordism.

3. Submanifolds and transverse geometry

Up to date, there are no differential geometric conditions on a foliation
which guarantee the existence of submanifolds everywhere transverse to
the leaves.

A 2-calibrated submanifold is an embedded submanifold j : W ↪→
M everywhere transverse to F and intersecting each leaf in a symplectic
submanifold. This means that W inherits a 2-calibrated foliation (FW , ωW ).

Methods of symplectic geometry developed by Donaldson [1] can be
used to prove the following essential property:

Theorem 3.1. [3] A 2-calibrated foliation (M2n+1,F , ω) has 2-calibrated
submanifolds of any even codimension. In particular (M2n+1,F , ω) (2n +
1 ≥ 5) contains W 3 a 3-dimensional manifold inheriting a taut foliation.

3.1. Transverse geometry

Following Haefliger’s viewpoint, the transverse geometry of a foliation (M,F)
is captured by the group-like structures in which the holonomy parallel
transport is encoded. These are either the holonomy pseudogroup or the
holonomy groupoid.

Here is our main result formulated in the framework of holonomy
groupoids.

Theorem 3.2. [5] Let (M,F , ω) be a 2-calibrated foliation. There exist
W ↪→M 3-dimensional submanifold W t F , which inherits a taut foliation
FW from F with the following property: the map induced by the inclusion
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between holonomy groupoids

(3.3) Hol(FW )→ Hol(F).

is an essential equivalence.

The interpretation of theorem 3.2 is as follows: the taut foliation
(W,FW ) and the 2-calibrated foliation (M,F , ω) have equivalent transverse
geometry.
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Rotation number and actions of the modular
group on the circle
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1. Introduction

Let Σ be a connected and oriented two dimensional orbifold with empty
boundary and negative Euler characteristic χ(Σ) < 0. We consider the
space Hom(π1(Σ),Homeo+(S1)) of homomorphisms from π1(Σ) to Homeo+(S1)
with the compact-open topology. Let φ ∈ Hom(π1(Σ),Homeo+(S1)).

When Σ is a closed surface, we have the Euler number eu(φ) ∈ Z of φ
and Milnor-Wood inequality ([7], [10])

| eu(φ)| ≤ |χ(Σ)|

holds. Matsumoto [6] showed that | eu(φ)| = |χ(Σ)| if and only if φ is
semi-conjugate to an injective homomorphism onto a discrete subgroup
of PSL(2,R) ⊂ Homeo+(S1), which is the holonomy representation of a
hyperbolic structure on Σ (we call such a homomorphism a hyperbolization
of Σ).

When Minakawa [8] dealt with the case where Σ is compact and has
cone points. He defined the Euler number eu(φ) ∈ Q of φ by

eu(φ) =
eu(φ|Γ)

[π1(Σ) : Γ]
,

where Γ is a torsion-free subgroup of π1(Σ) of finite index, and generalized
the above results.

For the case where Σ is a noncompact surface of finite type. Burger,
Iozzi and Wienhard [1] introduced the bounded Euler number eub(φ) ∈ R
of φ by using bounded cohomology and generalized Milnor-Wood inequality
and the above result of Matsumoto.

In this talk we deal with the case where Σ is noncompact and has cone
points. In particular, we consider Milnor-Wood type inequality on each
connected component of Hom(π1(Σ),Homeo+(S1)).

Partly supported by Grant-in-Aid for Scientific Researches for Young Scientists (B) (No.
25800036), Japan Society of Promotion of Science.
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2. Bounded Euler number

Let Σ be a noncompact, connected and oriented two dimensional orbifold
with cone points. For φ ∈ Hom(π1(Σ),Homeo+(S1)), we define the bounded
Euler number eub(φ) ∈ R of φ by

eub(φ) =
eub(φ|Γ)

[π1(Σ) : Γ]
,

where Γ is a torsion-free subgroup of π1(Σ) of finite index. The bounded
Euler number has the following properties.

Proposition 2.1. (1) We have

χ(Σ) ≤ eub(φ) ≤ −χ(Σ).(2.2)

Furthermore eub(φ) = ±χ(Σ) if and only if φ is semi-conjugate to a hyper-
bolization of Σ.
(2) Suppose that Σ = Σg,n(q1 . . . , qm), an orbifold whose underlying space is
a surface of genus g with p punctures with m cone points of order q1, . . . , qm.
Then under the presentation

π1(Σ) = 〈a1, b1, . . . , ag, bg, c1, . . . , cn, d1, . . . , dm :

dqkk , k = 1, . . . ,m,

g∏
i=1

[ai, bi]
n∏
j=1

cj

m∏
k=1

dk〉,

we have

eub(φ) = r̃ot(

g∏
i=1

[φ̃(ai), φ̃(bi)]
n∏
j=1

φ̃(cj)
m∏
k=1

φ̃(dk))

−
n∑
j=1

r̃ot(φ̃(cj))−
m∑
k=1

r̃ot(φ̃(dk)),

where g̃ ∈ H̃omeo+(S1) is a lift of g ∈ Homeo+(S1) and r̃ot : H̃omeo+(S1)→
R is the translation number.

Remark 2.3. We make several remarks on the case where Σ = Σ0,1(q1, q2)

with
1

q1

+
1

q2

< 1.

(1) The equality eub(φ) = ±χ(Σ0,1(q1, q2)) can be characterized by rotation
numbers without translation numbers. Indeed eub(φ) = ±χ(Σ0,1(q1, q2)) if

and only if (rot(φ(c1)), rot(φ(d1)), rot(φ(d2))) =

(
0,± 1

q1

,± 1

q2

)
.
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(2) There exists φ ∈ Hom(π1(Σ0,1(q1, q2)),Diffω+(S1)) such that φ(c) is topo-
logically conjugate to a parabolic Möbius transformation and φ has an ex-
ceptional minimal set. This makes a contrast to the case of closed surface
groups [3]. Such a homomorphism is obtained by taking φ so that φ([a, b])
has more than two fixed points. If φ were minimal, then it is topologically
conjugate to a hyperbolization of Σ0,1(2, 3) of finite area and hence for every
g ∈ π1(Σ0,1(2, 3)), φ(g) has at most two fixed points.

(3) There exists φ ∈ Hom(π1(Σ0,1(2, 3)),Diffω+(S1)) such that φ is topologi-
cally conjugate to a hyperbolization of Σ0,1(2, 3) of finite area but they are
not C1-conjugate. Note that a hyperbolization of Σ0,1(2, 3) of finite area is
unique up to conjugate in PSL(2,R). This also makes a contrast to the case
of closed surface groups [4]. Existence of such a homomorphism is estab-
lished by checking that we can deform φ ∈ Hom(π1(Σ0,1(2, 3)),Diffω+(S1))
so that φ is kept topologically conjugate to a hyperbolization of Σ0,1(2, 3) of
finite area and the derivative of φ([a, b]) at the attracting fixed point varies.

3. Extremals on connected components

Let m,n ≥ 1 and Σ = Σg,n(q1, . . . , qm). For integers p1, . . . , pm, we put

Hg,n

(
p1

q1

, . . . ,
pm
qm

)
=

{
φ ∈ Hom(π1(Σ),Homeo+(S1)) : rot(φ(dk)) =

pk
qk
, k = 1, . . . ,m

}
.

Since n ≥ 1, the subset Hg,n(
p1

q1

, . . . ,
pm
qm

) is a connected component of

Hom(π1(Σ),Homeo+(S1)). The inequality (2.2) is not optimal on each con-

nected component Hg,n

(
p1

q1

, . . . ,
pm
qm

)
. We can obtain the optimal inequal-

ity by Proposition 2.1 (2) and results of Jankins, Neumann [5] and Naimi
[9] (see also [2] for more general study). For example, when Σ = Σ0,1(2, 3),
we have

1

5
χ(Σ) ≤ eub(φ) ≤ −χ(Σ)

on H0,1

(
1

2
,
1

3

)
and

χ(Σ) ≤ eub(φ) ≤ −1

5
χ(Σ)
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on H0,1

(
1

2
,−1

3

)
. Note that φ ∈ H

(
1

2
,±1

3

)
satisfies eub(φ) = ±1

5
χ(Σ) if

and only if rot(c1) = ±1

5
. In this case, we have the following result.

Theorem 3.1. If Σ = Σ0,1(2, 3) and φ ∈ H0,1

(
1

2
,±1

3

)
satisfies eub(φ) =

±1

5
χ(Σ), then φ is semi-conjugate to a 5-fold covering of a hyperbolization

of Σ.

Remark 3.2. Theorem 3.1 cannot be generalized straightforward when
we change Σ and (p1, . . . , pm). For example, when Σ = Σ0,1(2, 7), we have

χ(Σ) ≤ eub(φ) ≤ − 3

25
χ(Σ)

on H0,1(
1

2
,
1

7
) and φ ∈ H0,1(

1

2
,
1

7
) with eub(φ) = − 3

25
χ(Σ) is not semi-

conjugate to a finite covering of a hyperbolization of Σ.
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théorie spectrale et géométrie, 13 Année 1994-1995. 167–170, 1995.

[9] R. Naimi, Foliations transverse to fibers of Seifert manifolds, Comment. Math.
Helv. 69 (1994), 155–162.

[10] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math.
Helv. 46 (1971), 257–273.



127

Department of Mathematics, Kyoto University
Kita-shirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
E-mail: ymatsuda@math.kyoto-u.ac.jp





Geometry and Foliations 2013
Komaba, Tokyo, Japan

Conitinuous leafwise harmonic functions on
codimension one transversely isometric
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1. Introduction

Let M be a closed C2 manifold, and let F be a continuous leafwise C2 foli-
ation on M . This means that M is covered by a finite union of continuous
foliation charts and the transition functions are continuous, together with
their leafwise partial derivatives up to order 2. Let g be a continuous leaf-
wise1 C2 leafwise Riemannian metric. In this talk, such a triplet (M,F , g)
is simply refered to as a leafwise C2 foliations. For simplicity, we assume
throughout that the manifold M and the foliation F are oriented. For a
continuous leafwise2 C2 real valued function h on M , the leafwise Laplacian
∆h is defined by ∆h = ∗d ∗ d h, where ∗ is the leafwise Hodge operator
induced by the leafwise metric g.

Definition 1.1. A continuous leafwise C2 function h is called leafwise
harmonic if ∆h = 0.

Definition 1.2. A leafwise C2 foliation (M,F , g) is called Liouville if any
continuous leafwise harmonic function is leafwise constant.

As an example, if F is a foliation by compact leaves, then (M,F , g) is
Liouville. Moreover there is an easy observation:

Proposition 1.3. If F admits a unique minimal set, then (M,F , g) is
Liouville.

This can be seen as follows. Let m1 (resp. m2) be the maximum (resp.
minimum) value of the continuous leafwise harmonic function h on M .
Assume h takes the maximum value m1 at x ∈M . Then by the maximum
principle, h = m1 on the leaf Fx which passes through x. Now the closure
of Fx contains the unique minimal set X. Therefore h = m1 on X. The

Partially supported by Grant-in-Aid for Scientific Research (C) No. 25400096.
c© 2013 Shigenori Matsumoto

1This means that the leafwise partial derivatives up to order 2 of the components of g in
each foliation chart are continuous in the chart.

2The leafwise partial derivatives of h up to order 2 in each foliation chart are continuous in
the chart.
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same argument shows that h = m2 on X. That is, m1 = m2, showing that
h is constant on M .

A first example of non-Liouville foliations is obtained by R. Feres and
A. Zeghib in a simple and beautiful construction [FZ]. It is a foliated S2-
bundle over a hyperbolic surface, with two compact leaves. There are also
examples in codimension one. B. Deroin and V. Kleptsyn [DK] have shown
that a codimension one foliation F is non-Louville if F is transversely
C1, admits no transverse invariant measure and possesses more than one
minimal sets, and they have constructed such a foliation.

A codimension one foliation F is called R-covered if the leaf space of
its lift to the universal covering space is homeomorphic to R. See [F] or
[FFP]. It is shown in [F] and [DKNP] that an R-covered foliation without
compact leaves admits a unique minimal set. Therefore the above example
of a codimension one non-Liouville foliation is not R-covered. This led the
authors of [FFP] to the study of Liouville property for R-covered foliations.
The main purpose of the present talk is to generalize a result of [FFP].

Definition 1.4. A codimension one leafwise C2 foliation (M,F , g) is called
transversely isometric if there is a continuous dimension one foliation φ
transverse to F such that the holonomy map of φ sending a (part of a) leaf
of F to another leaf is C2 and preserves the leafwise metric g.

Notice that a transversely isometric foliation is R-covered. Our main
result is the following.

Theorem 1.5. A leafwise C2 transversely isometric codimension one fo-
liation is Liouville.

In [FFP], the above theorem is proved in the case where the leafwise
Riemannian metric is negatively curved. Undoubtedly this is the most
important case. But the general case may equally be of interest.

If a transversely isometric foliation F does not admit a compact leaf,
then, being R-covered, it admits a unique minimal set, and Theorem 1.5
holds true by Proposition 1.3. Therefore we only consider the case where
F admits a compact leaf. In this case the union X of compact leaves is
closed. Let U be a connected component of M \ X, and let N be the
metric completion of U . Then N is a foliated interval bundle, since the one
dimensional transverse foliation φ is Riemannian.

Therefore we are led to consider the following situation. Let K be
a closed C2 manifold of dimension ≥ 2, equipped with a C2 Riemannian
metric gK . Let N = K × I, where I is the interval [0, 1]. Denote by
π : N → K the canonical projection. Consider a continuous foliation L
which is transverse to the fibers π−1(y), ∀y ∈ K. Although L is only
continuous, its leaf has a C2 differentiable structure as a covering space of
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K by the restriction of π. Also L admits a leafwise Riemannian metric g
obtained as the lift of gK to each leaf by π. Such a triplet (N,L, g) is called
a leafwise C2 foliated I-bundle in this talk. Now Theorem 1.5 reduces to
the following theorem.

Theorem 1.6. Assume a leafwise C2 foliated I-bundle (N,L, g) does not
admit a compact leaf in the interior Int(N). Then any continuous leafwise
harmonic function is constant on N .

An analogous result for random discrete group actions on the interval
was obtained in [FR].

2. Outline of the proof of Theorem 1.6

The proof is by absurdity. Let (N,L, g) be a leafwise C2 foliated I-bundle
without interior compact leaves, and we assume that there is a continuous
leafwise harmonic function f such that f(K × {i}) = i, i = 0, 1.

A probability measure µ on N is called stationary if 〈µ,∆h〉 = 0 for
any continuous leafwise C2 function h.

Proposition 2.1. There does not exist a stationary measure µ such that

µ(Int(N)) > 0.

This can be shown as follows. Denote by X the union of leaves on which
f is constant. The subset X is closed in N . L. Garnett [G] has shown that
µ(X) = 1 for any stationary measure µ. Therefore if µ(Int(N)) > 0, there
is a leaf L in Int(N) on which f is constant. But since we are assuming
that there is no interior compact leaves, the closure of L must contain both
boundary components of N . A contradiction to the continuity of f .

The proof of Theorem 1.6 is obtained by studying leafwise Brownian
motions. Let us denote by Ω the space of continuous leafwise paths ω :
[0,∞) → N . For any t ≥ 0, a random variable Xt : Ω → N is defined by
Xt(ω) = ω(t). For any point x ∈ N , the Wiener probability measure P x

is defined using the leafwise Riemannian metric g. Notice that P x{X0 =
x} = 1.

Given 0 < α < 1, let V = K × (α, 1], and define a subset ΩV of Ω by

ΩV = {Xti ∈ V, ∃ti →∞}.

Clearly ΩV is invariant by the shift map. Then, as is well known, the
function p : M → [0, 1] defined by p(x) = P x(ΩV ) is leafwise harmonic.
Another important feature of the function p is that p is nondecreasing
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along the fiber π−1(y), ∀y ∈ K, since our leafwise Brownian motion is
synchronized, i. e, it is the lift of the Brownian motion on K. The key fact
for the proof is the following:

The function p is constant on Int(N).

This follows from Proposition 2.1. That is, if we assume p nonconstant,
then we can construct a stationary measure µ such that µ(Int(N)) > 0.
Next an easy observation shows the following:

The function p is 1 on Int(N).

This implies that lim supt→∞ f(Xt) = 1, P x-almost surely, since the
neighbourhood V can be arbitrary. Likewise considering neighbourhoods
of K × {0}, we have lim inft→∞ f(Xt) = 0.

But since f is leafwise harmonic, the family {f(Xt)} is a P x-martingale,
and the martingale convergence theorem asserts that there exist limt→∞ f(Xt),
P x-almost surely. The contradiction shows Theorem 1.6.
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The normal h-principle for foliations and
Mather-Thurston homology equivalence

Gaël MEIGNIEZ

This talk introduces a normal h-principle for foliations, which is a
refinement of Thurston’s h-principle. ”Normal” means that we prescribe a
plane field to which the foliation to be built will be normal, except in some
parts of the ambiant manifold, the so-called holes. The interesting case is
when this plane field is tangential to the fibres of a fibration. We get:

Theorem 0.1. Let f : Mp+q → Bp be a fibration between closed mani-
folds, q ≥ 2 , and let ξ be a Γq-structure on M , whose normal bundle is
isomorphic to kerDf . Then, there is a foliation F of codimension q on
M s.t.

• F is homotopic to ξ as a Γq-structure;

• τF is a limit of p-plane fields transverse to the fibres.

More precisely, F is transverse to the fibres, except along a submanifold
of codimension 1 , union of compact leaves bounding some kind of vertical
Reeb components, given by Thurston’s method to fill holes in codimension
larger than 1 . The theorem also holds true when q = 1 , p = 2 , and when
f is a Seifert fibration.

The same method also gives a new proof of the Mather-Thurston ho-
mology equivalence in all codimensions.

The h-principle for foliations is a powerful tool to build foliations on
a given manifold M , and to classify them up to concordance. Due to
Haefliger for M open, and to Thurston for M compact, it says that every
formal foliation on M is homotopic to some genuine foliation.

We are interested in the case where M is closed. Recall that a Γq-
structure on M is a pair ξ = (νξ,X ) where

• νξ is a real linear bundle of rank q over M , the normal bundle, or
microbundle;

• X is a foliation of codimension q on the total space νξ , transverse to
the fibres (in fact, the germ of such a foliation along the null section).

A formal foliation is a pair (ξ, j) , where ξ is a Γq-structure on M , and
where j : νξ → τM is a linear bundle monomorphism.

c© 2013 Gaël Meigniez
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Write M̄ := M×[0, 1] and M̄i := M×i (i = 0, 1) . A homotopy between
two formal foliations (ξi, ji) on M , sharing the same normal bundle, is a
Γq-structure ξ on M̄ s.t. ξ|M̄i = ξi (i = 0, 1), together with a continuous
homotopy of linear bundle monomorphisms jt : νξ0 → τM (t ∈ [0, 1]) .

Recall the sketch of Thurston’s proof (skipping technicallities about
”good position” and ”civilization”). We start from a closed manifold M
on which are given a Γq-structure ξ and a linear bundle monomorphism
j : νξ → τM from the microbundle of ξ into τM . One easily translates
these data into an embedding of M̄ into a large-dimensional open manifold
E and a plane field F of codimension q on E s.t.

• On some neighborhood of M̄0 , the field F is integrable, and this
foliation induces ξ by restriction to M̄0 ;

• Along M̄1 , the field F is transverse to j(νξ) .

Then, M̄ is finely triangulated, and jiggled in E , giving a PL submanifold
M̄ ′ ⊂ E , C0-close to M̄ , s.t. the field F in transverse to M̄ ′ , which
means by definition, transverse to every simplex of M̄ ′ . Write M̄ ′

i ⊂ M̄ ′

the jiggled image of M̄i (i = 0, 1). Thanks to the transversality of F and
M̄1 , one arranges that M̄1 is globally invariant by the jiggling, and thus
M̄ ′

1 = M̄1 remains a smooth submanifold in E .
Thurston’s method consists in applying a homotopy to F , in a small

neighborhood of M̄ ′ , relative to M̄ ′
0 , among the plane fields transverse to

M̄ ′ , to make F integrable in a neighborhood of M̄ ′ . Then, F will induce
on M̄1 the seeked foliation.

The homotopy is realized simplex after simplex, climbing up a collaps-
ing of M̄ ′ onto M̄ ′

0 (”inflation”) . The heart of the construction is the
inflation process: given a (q + k)-simplex α of M̄ ′ and a ”free” hyperface
β ⊂ α s.t. F is already integrable in a neighborhood of λ := (∂α) \ β , one
homotopes F relatively to λ , to an integrable field in the whole of α . In
a first time, this leaves in the interior of α an unfoliated subset (”hole”)
diffeomorphic to D2×Sk−2×Dq . This hole is filled in a second time. (For
q = 1 , things are a little more complicated: the hole needs to be extended
before we fill it).

To prove the normal h-principle, write N := j(νξ) , a q-plane field on
M . Consider a tubular neighborhood T of M̄0 in E . Write π : T →M the
projection, kerπ the plane field in T tangential to the fibres, and consider
π∗(N) , a foliation on T .

In the beginning, T is a small tubular neighborhood of M̄0 in E . As the
inflation process goes, we extend T by successive isotopies of embeddings
in E s.t. T remains a small neighborhood of the union of the simplicies
where F has been made integrable; and moreover:

• kerπ and π∗(N) are transverse to M̄ ′ ;
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• kerπ ⊂ F at every point of every free simplex of M̄ ′ ;

• π∗(N) t F except in the holes;

• π∗(N) t (D2 × Sk−2 × t) in every hole, and for every t ∈Dq .

It is better not to fill the holes during the inflation. The holes propagate.
At the end, F defines on M̄ ′ a Γq-structure with holes. Each hole has the
form

D2 × Sk−2 ×Dn+1−k ×Dq

where n := dimM , and meets M̄1 on

D2 × Sk−2 × Sn−k ×Dq

In restriction to M̄1 , outside the holes, F defines a foliation normal to
π∗(N) . The projection of F |M̄1 through π is a foliation on M transverse
to N , except in the holes.

Then, we can fill the holes by the classical way, obtaining a foliation
on M , normal to N but in the holes: this is the normal h-principle.

In case N is an integrable q-plane field on M , we can arrange that in
each hole, N coincides with the Dq-fibres.

Assume moreover that N is tangential to the fibres of a fibration M →
B . Then, we can fill each hole by some suspension, at the price of a surgery
on B : this leads to some bordism equivalence between the classifying space
BDiffc(R

q) for foliated bundles, and the Thom space of BΓ̄q ; and then,
through the Atiyah-Hirzebruch spectral sequence, to the Mather-Thurston
homology equivalence.
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Genus one Birkhoff sections for suspension
Anosov flows

Hiroyuki MINAKAWA

1. Introduction

There are two fundamental examples of Anosov flows of clesed connected
3-manifolds. One is the suspension flow φA of a hyperbolic toral automor-
phism A induced by an element A ∈ SL(2,Z) with trace(A) > 2 and the
other is the geodesic flow φΣg of a closed hyperbolic surface Σg of genus g.

Two flows φ of M and φ′ of M ′ are said to be topologically equivalent
if there exists a homeomorphism h : M → M ′ which maps φ-orbits to
φ′-orbits preserving their orientation. No suspension Anosov flow is topo-
logically equivalent to a geodesic flow. Two flows φ, φ′ are said to be
topologically almost equivalent if there exists a finite union Γ (resp. Γ′) of
periodic orbits of φ (resp. φ′) such that φ|M\Γ is topologically equivalent
to φ′|M ′\Γ′ . Then, each geodesic flow is topologically almost equivalent to
some suspension Anosov flow. This is proved by constructing genus one
Birkhoff sections for geodesic flows. A Birkhoff section for a flow ψ of a
closed connected 3-manifold M is defined to be the pair (S, ι) of a compact
connected surface S with the boundary ∂S and an immersion ι : S → M
such that (1) ι|Int(S) is an embedding transverse to the flow, (2) each com-
ponent of the boundary ∂S covers a periodic orbit of ψ by ι, and (3) every
orbit starting from any point of M meets S in a uniformly bounded time.
The image ι(S) is also called a Birkhoff section. These observations may
lead one to ask the following question.

Question 1.1. Is any geodesic flow topologically almost equivalent to any
suspension Anosov flow?

The aim of this article is to give a positive answer to this question.

2. First return maps of Birkhoff sections

Let (S, ι) be a Birkhoff section of an Anosov flow φ of a closed 3-manifold
M . Let Γ be a finite union of periodic orbits of φ. For any orbit γ ⊂ Γ,
take a tubular neighborhood N(γ) = D2 × S1. Let MΓ be the 3-manifold
with boundary obtained from M by blowing up each point p ∈ Γ using a

c© 2013 Hiroyuki Minakawa
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polar coordinate of D2. There uniquely exists a flow φΓ of MΓ such that
φ|M\Γ = φΓ|Int(MΓ). The surface ι(S) gives rise to an embedded surface

SΓ ⊂ MΓ transverse to φΓ, which is really a cross section of φΓ. Let
r : SΓ → SΓ be the first return map of the flow φΓ. Fried has shown that the
return map r is topologically conjugate to a pseudo-Anosov diffeomorphism
h of SΓ ([2, Theorem 3]). Let rS : ŜΓ → ŜΓ be the homeomorphism
obtained from r : SΓ → SΓ by collapsing each component of ∂SΓ to a point.
If S is of genus one, rS is topologically conjugate to a toral automorphism
B for some hyperbolic element B ∈ SL(2,Z)(see [4, Lemma 1 in Section
3]).

3. Main results

Let A be an element of SL(2,Z) with trace(A) > 2. Then, A is conjugate,
in GL(2,Z), to a matrix of the form(

1 1
0 1

)a1
(

1 0
1 1

)a2

· · · · ·
(

1 1
0 1

)a2n−1
(

1 0
1 1

)a2n

( ai ≥ 1)

(see [3, Section 1]).
Suppose B1, B2 ∈ SL(2,Z) are given. If B1 is conjugate to B2 in

GL(2,Z), the induced flow φB1
is topologically equivalent to φB2

. So we

may assume that A =

(
a b
c d

)
, a ≥ b ≥ d, and a ≥ c ≥ d.

Theorem 3.1. If trace(A) > 3 , there exists a genus one Birkhoff section
(S, ι) of φA such that ]F ix(rS) < ]Fix(A).

Here, Fix(f) denotes the fixed point set of a map f : X → X.
By arguments in Section 2, the map rS obtained in Theorem 3.1 is

topologically conjugate to a hyperbolic automorphism B determined by a
matrix B ∈ SL(2,Z). Then we have

trace(B)− 2 = #Fix(B)

= #Fix(rS)

< #Fix(A)

= trace(A)− 2.

These observations lead one to the following theorem which gives one a
positive answer to Question 1.1.
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Theorem 3.2. Let A be an element of SL(2,Z) with trace(A) > 3. Then,
there exists B ∈ SL(2,Z) such that (1) φA is topologically almost equivalent
to φB, and (2) 2 < trace(B) < trace(A).

4. Outline of the proof Theorem 3.1

Let A =

(
a b
c d

)
be an element of SL(2,Z) with a ≥ b ≥ d and a ≥ c ≥ d.

Let MA = T 2 × [0, 1]/(p, 1) ∼ (A(p), 0). recall that the Anosov flow φA
is a suspension flow of MA. A key point of the construction of a genus
one Birkhoff section of φA is to find a suitable rectangle �P1P2P3P4 in
T 2 = T 2 × {0} ⊂MA such that

1. φA(P1P2) = P3P2 and φA(P3P4) = P1P4, or

2. φA(P3P2) = P1P2 and φA(P1P4) = P3P4,

where PQ denote the edge of a rectangle connecting a vertex P with a vertex
Q. Such a rectangle, together with two flow bands connecting P1P2 with
P3P2 and P3P4 with P1P4 respectively, gives rise to an immersed surface S1

in MA such that 1) S1 is homeomorphic to a 2-sphere minus three disks,
2) int(S1) is embedded in MA and is transverse to φA, 3) each component
of ∂S1 covers a periodic orbit of φA( see [2, Section 2] ). For any 0 < ε < 1,
S1 ∪ (T 2 × {ε}) is a singular surface with double point curves. If you cut
and paste the surface S1 ∪ (T 2 × {ε}) along the double curves to obtain a
required genus one Birkhoff section (S, ι) of φA. In order to complete the
proof of Theorem 3.1, it suffeces to find a rectangle mentioned above. To
this end, take P1 = (0, 0), P2 = (1/c, 0), P3 = (0, 1), and P4 = (−1/c, 1)

if b = 1, and take P1 = (1, 0), P2 =
1

a+ d− 2
(a − 1, c), P3 = (0, 0), and

P4 =
1

a+ d− 2
(d − 1,−c) if b 6= 1. Then the rectangle �P1P2P3P4 in R2

gives rise to a required rectangle in T 2.

5. Question

Given A ∈ SL(2,Z) with trace(A) < −3, you can also make a Birkhoff
section (S, ι) of φA as in Section 4. In this case, the induced homeomorphism
rS is not an Anosov homeomorphism. Then you have the following question.

Question 5.1. Does there exist a pair of matrices A, B in SL(2,Z) such
that (1) φA is topologically almost equivalent to φB, and (2) trace(A) <
trace(B) < −2.
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Leafwise symplectic structures on
codimension 1 foliations on S5

Yoshihiko MITSUMATSU

1. Introduction

In this talk, we present a framework for the existence of leafwise symplectic
structures on a codimension 1 foliation associated with a Milnor fibration
or with an open book decomposition supporting a contact structure.

Definition 1.1. A leafwise symplectic structure on a foliatited manifold
(M,F) is a smooth 2-form ω which restricts to a symplectic form on each
leaf.

Our previous result was the following.

Theorem 1.2 ([Mi]). The natural codimension 1 spinnable foliation Fk on

S5 associated with the simple elliptic hypersurface singularity Ẽk, admits a
leafwise symplectic structure for k = 6, 7, 8.

Corollary 1.3. There exist regular Poisson stuctures on S5 whose sym-
plectic dimension is 4.

In particular for k = 6, the associated foliation is so called Lawson’s
foliation which is the first codimension one foliation found on S5 ([L]).

The three deformation classes Ẽl (l = 6, 7, 8) of simple elliptic hyper-
surface singularities are given by the following polyomials.

fẼ6
= Z3

0 + Z3
1 + Z3

2 (+λZ0Z1Z2)

fẼ7
= Z4

0 + Z4
1 + Z2

2 (+λZ0Z1Z2)

fẼ8
= Z6

0 + Z3
1 + Z2

2 (+λZ0Z1Z2)

As the smooth topology of these objects does not depend on the choice
of the constant λ, while λ should avoid finitely many exceptional values,

we can ignore it and take it to be 0. In the case of Ẽ6 the objects are
homogeneous of degree 3 and the hypersurfaces f−1(w) are all easily dealt

with in a geometric sense. For Ẽ7 and Ẽ8, they are quasi homogeneous

Partly supported by Grant-in-Aid for Scientific Research (B) No. 22340015
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and still easy to handle. In particular we easily see that their links are
ismorphic to 3-dimensional nil manifolds Nil3(−3), Nil3(−2), and Nil3(−1)
respectively.

The next main target for us is the case of cusp singularities which is
defined by the following polynomials.

fp,q,r = Zp
0 + Zq

1 + Zr
2 + Z0Z1Z2 ,

1

p
+

1

q
+

1

r
< 1

whose links are known to be solv manifolds, i.e., T 2-bundles over S1 with
monodoromies hyperblic toral auto’s. If we try to generalize our consruction
to a wider class of Milnor fibrations or open books supporting contact
structures including the cusp singularities case, we need to formalize and
brush up the construction in [Mi].

For basic facts about hypersurface singularities, the readers may refer
to Milnor’s seminal text book [M]. For the treatment of cusp singularities
in this context, see [H] and [K].

Let (M,K,Φ) be a symplectic open book decomposition of M2n+1 sup-
porting a contact structure ξ on M or a Milnor fibration on M = S2n+1

associated with a singularity of n + 1 variables with the link K. In the
first case ξ restricts to ξK = ξ|K and in the latter case the ambient complex
strucrue of Cn+1 determines the standard contact structure ξ = ξ0 on S2n+1

which restricts to a natural contact structure ξK = ξ0|K . Let Fθ denote the
page over θ ∈ S1. The end of Fθ is diffeomorphic to K × R+.

Now our main result is stated as follows.

Theorem 1.4. In the above situation, supppose the following conditions
are satisfied. Then M admits a natural ‘spinnable’ codimension 1 foliation
F with a leafwise symplectic structure and an isotopic family of contact
structures starting from the given one ξ on M which converges to F as a
family of almost contact structures.

(1) The link K2n−1 fibres over S1 with a symplectic sructure ωΣ on the
fibre Σ2n−2 which is invariant under the monodromy.1

(2) The restriction H2
dR(Fθ)→ H2

dR(K × R+) ∼= H2
dR(K) hits [ωΣ].

(3) ξK admits a contact form whose Reeb vector field XK is tangent to
the fibration in (1). For n > 2 we need extra quantitative conditions.2

Corollary 1.5. Associated with any of the cusp singularities of the form
fp,q,r = 0 at the origin (1

p
+ 1

q
+ 1

r
< 1), the natural spinnable foliation on

S5 admits a leafwise symplectic structure.3

1In the case n = 2, this simply meens K fibres over S1.
2For many cases this extra condtion seems to be easily checked.
3This foliation has a unique compact leaf diffeomorphic to a solv manifold.
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2. Mori’s convergence criterion

Atsuhide Mori’s criterions on a symplectic open book supporting a contact
structure for the existence of a natural codimension 1 spinnable foliation or
for the isotopic convergence of the contact structures to the foliation ([Mo1],
[Mo2], and [Mo3]). These criterions are the prototypes of our conditions
in the main theorem. Let (M,K,Φ), ξ, ξK ,and XK be as in the previous
setion.

Theorem 2.1 (Mori). Let us consider the following two conditions.

(I) K admits a Riemannian foliation G of codimension 1.

(II) XK is tangent to G.

1) If (I) is satisfied, there exists a natural ‘spinnable’ foliation F on M
which restricts to G = F|K on K.
2) Moreover if (II) is also satisfied, there exists an isotopic family of ξ which
converges to F .

1) is applicable for any open book decomposition, because the condition
(I) comes from Kopell’s lemma and Thurston-Rosenberg ([RT]) showed
that then K ×D2 can be smoothly foliated. Topologically, (I) implies that
K fibres over S1 (Tischler’s theorem). The coincidence of (II) with our
condition (3) is rather surprising.

Mori’s criterions implies the covergence of contact structures to a spinnable
foliation is quite different in dimension 5 or higher than in dimension 3.

3. Further discussions

Naturally next main target for us is a construction of a codimension 1 leaf-
wise symplectic foliation on S7, while the Milnor fibre is simply connected
for usual isolated singularities of 4 or more variables. Therefore already the
condition (1) in our theorem fails.

Problem 3.1. 1) Does there exist mixed function with an isolated singu-
larity to which we can apply the very basic theory of Milnor fibrations and
contact structures which exhibit different features on the topologies of link
and Milnor fibres?

2) In particular for 4 or more complex variables whose link K admits a
symplectic fibre in the sense of (2) in our main Theorem ?

On the other hand, what is really missing is the search for impossibility.
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Problem 3.2. 1) Find non-trivial obstructions for codimension 1 folia-
tions to admit a leafwise symplectic structures.

2) Find further obstuctions for Stein manifolds to admit an end-periodic
symplectic structures. The 2nd foliated cohomology does not seem to be a
good candidate.

3) Does there exist a 2-calibrated codimension 1 foliation on S5? Here,
‘2-calibrated’ means ‘equipped with a global closed 2-form which restricts
to a symplectic form on each leaf’.
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Problems on
characteristic classes of foliations

Shigeyuki MORITA

1. Introduction

The theory of characteristic classes of foliations was initiated by discovery
of the Godbillon-Vey class of codimension 1 foliations [14] and a ground-
breaking work of Thurston [35] proving that it can vary continuously. Soon
after this, Bott and Haefliger [5], and also Bernstein and Rozenfeld [3]
presented a general framework for this theory and during the 1970’s, it
has been developed extensively by many people including Heitsch [17] and
Hurder [19]. There also appeared closely related theory of Gelfand and
Fuks [11] and that of Chern and Simons [8]. The notions of Γ-structures
and their classifying spaces due to Haefliger [18] played a crucial role in
this theory and Mather [26] and Thurston [36] obtained many fundamental
results by using them.

However there remain many important problems to be solved in future.
In this talk, we would like to focus on the following two major problems
both of which turn out to be extremely difficult. One is the determination of
the homotopy type of the classifying space BΓ1 of Γ1-structures in the C∞-
category. The other is development of characteristic classes of transversely
symplectic foliations.

2. Homotopy type of BΓ1

The following is one of the major open problems in foliation theory.

Problem 2.1. Determine the homotopy type of BΓ1. More precisely, de-
termine whether the classifying map

GV : BΓ1 → K(R, 3)

induced by the Godbillon-Vey class, is a homotopy equivalence or not.
Here BΓ1 denotes the homotopy fiber of the natural map w1 : BΓ1 →
BGL(1,R) = K(Z/2, 1).

In [28], we introduced the concept of discontinuous invariants of foliations.
One possible approach to the above problem would be the following.

c© 2013 Shigeyuki Morita
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Problem 2.2. Determine whether the homomorphism

GVk : H3k(BΓ1,Z)→ ∧kZR (∼= Hk(Rδ;Z))

induced by the discontinuous invariants associated with the Godbillon-Vey
class is non-trivial or not.

Let BΓ
ω

1 denote the classifying space of transversely oriented real analytic
Γ1-structures. Haefliger [18] proved that BΓ

ω

1 is a K(π, 1) space for certain
perfect group π.

Problem 2.3. Determine whether the natural map

(BΓ
ω

1 )+ → BΓ1

is a homotopy equivalence or not, where + denotes Quillen’s plus construc-
tion.

Recall here that Thurston constructed a family of real analytic codimension
1 foliations on a certain 3-manifold by making use of the group

SL(2,R) ∗SO(2) S̃L(2,R)n ⊂ Diffω+S
1

thereby proving that the homomorphism

GV : H3(BΓ
ω

1 ;Z)→ R

is surjective. Here S̃L(2,R)n denotes the n-fold covering group of SL(2,R).
In the case of piecewise linear (PL for short) category, Greenberg [15]

showed that there is a weak homotopy equivalence

BΓ
PL

1 ∼ BRδ ∗ BRδ

where the right hand side represents the join of two copies of BRδ. It follows

that BΓ
PL

1 is 2-connected and he described the integral homology group of

BΓ
PL

1 completely. It also follows that the higher homotopy groups of this
space is highly non-trivial.

By making use of this result, Tsuboi [33] showed that all the discon-

tinuous invariants of BΓ
PL

1 associated with the discrete Godbillon-Vey class

∈ H3(BΓ
PL

1 ,R), defined by Ghys and Sergiescu [13], vanishes.
On the other hand, in a certain case of low differentiability (Lipschitz

with bounded variation of derivatives), Tsuboi [34] proved that the second
discontinuous invariant

GV2 : H6(BΓ
Lip,bdd

1 ,Z)→ ∧2
ZR
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is highly non-trivial (in fact its cockernel is a torsion group) where GV is
the one he extended to this case.

The Godbillon-Vey class can be defined for transversely holomorphic
foliations with trivialized normal bundles and Bott [4] proved that the ho-
momorphism

GVC : π3(BΓ
C
1 )→ C

is surjective.

Problem 2.4. Determine the homotopy type of BΓC1 . More precisely, de-
termine whether the classifying map

GVC : BΓ
C
1 → K(C, 3)

induced by the complex Godbillon-Vey class, is a homotopy equivalence or
not.

We refer to a book [1] by Asuke for a recent study of GVC.
Finally we recall a closely related problem. LetMh(3) denote the set of

orientation preserving diffeomorphism classes of closed oriented hyperbolic
3-manifolds. For any such manifold M , we have its volume vol(M) and the
η-invariant η(M) of Atiyah-Patodi-Singer [2]. The combination η + i vol
gives rise to a mapping

η + i vol :Mh(3)→ C.

Problem 2.5 (Thurston ([37], Questions 22, 23). Study the above map.
In particular, determine whether the dimension over Q of the Q-subspace
of iR generated by the second component of the image of the above map is
infinite or not.

Recall that any such M defines a homology class [M ] ∈ H3(PSL(2,C)δ;Z)
and we have the following closely related problem.

Problem 2.6. Determine the image of the map

Mh(3)→ H3(PSL(2,C)δ;Z)
(CS,ivol)−→ C/Z.

Problem 2.7. Study the discontinuous invariants of the group PSL(2,C)δ

associated with the above classes. In particular, determine the value of the
total Chern Simons invariant introduced in Dupont [9].
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3. Characteristic classes of transversely symplectic
foliations

One surprising feature of the Gelfand-Fuks cohomology theory was that

dimH∗c (an) <∞

where an denotes the Lie algebra consisting of all the formal vector fields
on Rn. The associated characteristic homomorphism

Φ : H∗c (an)→ H∗(BΓn;R)

is now very well understood. In contrast with this, the case of all the volume
preserving formal vector fields vn ⊂ an and that of all the Hamiltonian
formal vector fields ham2n ⊂ a2n are both far from being understood.

Problem 3.1. Compute

H∗c (vn), H∗c (vn,O(n)), H∗c (ham2n), H∗c (ham2n,U(n)).

In particular, prove (or disprove) that

dimH∗c (vn) =∞, dimH∗c (ham2n) =∞.

Recall here that there are very few known results concerning this problem.
First, Gelfand, Kalinin and Fuks [12] found an exotic class

GKF class ∈ H7
c (ham2, Sp(2,R))8

and later Metoki [27] found another exotic class

Metoki class ∈ H9
c (ham2, Sp(2,R))14.

On the other hand, Perchik [32] obtained a formula for the Euler charac-
teristic and computed it up to certain degree. It suggests strongly that the
cohomology would be infinite dimensional.

Let BΓsymp
2n denote the Haefliger classifying space of transversely sym-

plectic foliations of codimension 2n.

Problem 3.2. Prove that, under the homomorphism

Φ : H∗c (ham2, Sp(2,R))→ H∗(BΓsymp
2 ;R)

the GKF class and the Metoki class survive as non-trivial characteristic
classes.

Kontsevich [22] introduced a new viewpoint in this situation. He con-
sidered two Lie subalgebras

ham1
2g ⊂ ham0

2g ⊂ ham2g
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consisting of Hamiltonian formal vector fields without constant terms and
without constant as well as linear terms, respectively. Then he constructed
a homomorphism

Φ : H∗c (ham0
2g, Sp(2g,R)) ∼= H∗c (ham1

2g)
Sp → H∗F(M)

for any transversely symplectic foliation F on a smooth manifold M of
codimension 2n, where H∗F(M) denotes the foliated cohomology group. By
using this viewpoint, in a joint work with Kotschick [24] we decomposed
the Gelfand-Kalinin-Fuks class as a product

GKF class = η ∧ ω
where η ∈ H5

c (ham0
2, Sp(2,R))10 is a certain leaf cohomology class and ω

denotes the transverse symplectic form.

Conjecture 3.3 (Kotschick-M. [24]). The Metoki class can also be decom-
posed as a product η′ ∧ ω for a certain class η′ ∈ H7

c (ham0
2, Sp(2,R))16.

On the other hand, ham0
2g, ham

1
2g can be described as

ham0
2n = ĉn ⊗ R, ham1

2n = ĉ+
n ⊗ R

where cn denotes one of the three Lie algebras (commutative one) in Kont-
sevich’s theory [20][21] of graph homology and ĉn denotes its completion.
Thus the above homomorphim Φ can be written as

Φ : H∗c (̂c+
n )Sp ⊗ R ∼= H∗c (ham1

2n)Sp → H∗F(M).

Besides the theory of transversely symplectic foliations as above, the graph
homology of cn has another deep connection with the theory of finite type
invariants for homology 3-spheres initiated by Ohtsuki [31] which we briefly
recall. Let A(φ) denote the commutative algebra generated by vertex ori-
ented connected trivalent graphs modulo the (AS) relation together with
the (IHX) relation. This algebra plays a fundamental role in this theory. In

fact, the completion Â(φ) of A(φ) with respect to its gradings is the target
of the LMO invariant [25].

By using a result of Garoufalidis and Nakamura [10], in a joint work
with Sakasai and Suzuki [30] we constructed an injection

A(φ)→ H∗(c
+
∞)Sp

and defined the “complementary” algebra E so as to obtain an isomorphism

H∗(c
+
∞)Sp ∼= A(φ)⊗ E

of bigraded algebras. E can be interpreted as the dual of the space of all the
exotic stable leaf cohomology classes for transversely symplectic foliations.

Problem 3.4 (cf. Sakasai-Suzuki-M. [30]). Study the structure of E .
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4. Homology of DiffδM and Sympδ(M,ω)

In general, homology group of the diffeomorphism group DiffδM of a closed
C∞ manifold M , considered as a discrete group, or that of the symplec-
tomorphism group Sympδ(M,ω) of a closed symplectic manifold (M,ω),
again with the discrete topology, is a widely open research area. One can
also consider the real analytic case. Here we present a few problems in the
cases of the circle S1 and closed surfaces.

It was proved in [29] that the natural homomorphism

Φ : H∗c (X (S1), SO(2))) ∼= R[α, χ]/(αχ)→ H∗(BDiffδ+S
1;R)

from the Gelfand-Fuks cohomology of S1, relative to SO(2) ⊂ Diff+S
1,

to the cohomology of Diffδ+S
1, is injective. Also there were given certain

non-triviality results for the associated discontinuous invariants.

Problem 4.1. Prove (or disprove) that the homomorphism

Φ : H∗c (X (S1), SO(2)) ∼= R[α, χ]/(αχ)→ H∗(BDiffω,δ+ S1;R)

is injective, where Diffω,δ+ S1 denotes the real analytic diffeomorphism group
of S1 equipped with the discrete topology.

Problem 4.2. Determine whether the natural inclusion

Diffω,δ+ S1 → Diffδ+S
1

induces an isomorphism in homology or not.

Of course one can consider the above problem for any closed manifold M .
Let Σg denote a closed oriented surface of genus g. Harer stability

theorem [16] states that the homology group Hk(BDiff+Σg) is independent
of g in a certain stable range k � g (see a survey paper [38] by Wahl for
more details).

By applying a general method, we can define certain characteristic
classes for foliated Σg-bundles. Also, in [23] certain characteristic classes for
foliated Σg-bundles with area-preserving holonomy were defined by making
use of the notion of the flux homomorphism. These classes are all stable
with respect to the genus g and it seems reasonable to present the following.

Problem 4.3. Determine whether certain analogue of Harer stability the-
orem holds for the group DiffδΣg and/or SympδΣg.

Bowden [6][7] obtained some interesting results related to this problem.
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One dimensional dynamics in intermediate
regularity: old and new

Andrés NAVAS

1. Introduction

The study of (pseudo)-group actions on 1-dimensional manifolds by dif-
feomorphisms of class C2 is a classical subject that goes back to Denjoy,
Schwartz and Sacksteder. By many reasons, it is desirable to extend this to
intermediate regularity (smaller than C2 but larger than C1 in the Hölder
scale). T. Tsuboi and S. Hurder were among the first in being interested on
this, both interested in the possibility of extending the Godbillon-Vey class
to a certain critical regularity [4, 8]. This made natural several questions of
a dynamical natural, formulated by Tsuboi as conjectures. Most of them
were solved in collaboration with Deroin and Kleptsyn [2], as for example:

Theorem 1.1 (à la Denjoy). Every free action of Zd by circle diffeomor-
phisms of class C1+α, α > 1/d, is minimal and topologically conjugated to
a group of rotations.

Theorem 1.2 (à la Kopell). Let f1, . . . , fd, fd+1 be diffeomorphisms of the
closed unit interval for which there exist subintervals Ii1,...,id,id+1

disposed
lexicographically and such that fj(Ii1,...,ij ,...,id+1

) = Ii1,...,ij+1,...,id+1
for all j.

If the fj’s, with j = 1, . . . , d, are all of class C1+α, where α > 1/d, and
commute (among them and) with fd+1, then fd+1 cannot be of clas C1.

In both cases, counter-examples in class C1+α, α < 1/d, were already
been constructed by Tsuboi [9].

In this talk, I will concentrate on recent extensions of these kind of
results to more genral groups/regularities. I start with a theorem obtained
in collaboration with Kleptsyn [5] concerning the case where the regularities
of the maps are different.

Theorem 1.3. In both theorems above, one may suppose that the regular-
ities of the fj’s are different, say fj is of class C1+αj , j = 1, . . . , d, provided
1
α1

+ . . .+ 1
αd
> 1. Moreover, for every combination of exponents satisfying

the reverse (strict) inequality, one can construct counter-examples.

c© 2013 Andrés Navas

153



154

The second extension is very recent and concerns the critical regularity
C1/d. Although this remains open for the case of the circle, for the interval
is completely settled in [7].

Theorem 1.4. Theorem 1.2 still holds in class C1+1/d (assuming fd+1 of
class C1+α for some positive α). This remains true for the extension to
different regularities above.

Finally, we consider the case of more complicated groups. We start with
a result that completely solves the question concerning growth of groups of
diffeomorphisms.

Theorem 1.5. If Γ is a finitely generated subgroup of Diff1+α
+ ([0, 1]), then

either Γ is almost nilpotent or it contains a free semigroup. Moreover, this
is no longer true in class C1.

This theorem makes natural the study of nilpotent groups of diffeo-
morphisms of the interval. In this direction, the classical Kopell-Plante-
Thurston theorem establishes that no such group can be contained in
Diff2

+([0, 1]) unless it is Abelian. However, it is a classical fact (going back
to Malcev and Newmann) that every torsion-free, finitely-generated nilpo-
tent group Γ is left-orderable, hence it acts on the interval. Actually, there
is a very natural action, which was proven by B. Farb and J. Franks [3]
to be smoothable to the class C1. This action is constructed as follows:
According to a theorem of Malcev, Γ embeds into a group Nd of d × d
lower-triangular matrices with integer entries and 1 in the diagonal. This
group acts on Zd, fixing the hyperplane {1} ×Zd−1 and respecting the lex-
icographic order therein. If we make correspond an interval Ii1,...,id−1

to
all such points in Zd−1 and we dispose them on [0, 1] in an ordered way,
this naturally induces an action of Nd (hence of Γ) on [0.1] (just use in-
finitely many affine maps and paste them). The next result was shown in
collaboration with E. Jorquera and G. Castro.

Theorem 1.6. The Farb-Franks action of Nd above is not (semi-)conjugate
to an action by C1+α diffeomorphisms, where α ≥ 2

(d−1)(d−2)
. This is no

longer true in lower regularity.

This result concerns a single action, and it remains the question of
determining the best regularity of arbitrary actions of nilpotent groups
on the interval. This is work in progress (in collaboration with Castro,
Jorquera, C. Rivas and R. Tessera).
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[5] V. Kleptsyn and A. Navas, A Denjoy type theorem for commuting circle diffeo-
morphisms with derivatives having different Hölder differentiability classes, Moscow
Math. Journal 8 (2008), 477-492.

[6] A. Navas, Growth of groups and diffeomorphisms of the interval, Geom. and Funct.
Analysis (GAFA) 18 (2008), 988-1028.

[7] A. Navas, On centralizers of interval diffeomorphisms in critical (intermediate)
regularity, Journal d’Anal. Math. (to appear).

[8] T. Tsuboi, Area functionals and Godbillon-Vey cocycles. Ann. Inst. Fourier
(Grenoble) 42 (1992), 421-447.

[9] T. Tsuboi, Homological and dynamical study on certain groups of Lipschitz home-
omorphisms of the circle, J. Math. Soc. Japan 47 (1995), 1-30.

Universidad de Santiago de Chile
Alameda 3363, Santiago, Chile
E-mail: andres.navas@usach.cl





Geometry and Foliations 2013
Komaba, Tokyo, Japan

Rigidity and arithmeticity in Lie foliations
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1. Introduction

Background. For a Lie group G, a G-Lie foliation is a foliation trans-
versely modeled on the G-action on G by left translation. Such foliations
have been investigated being motivated by the classification of Riemannian
foliations (see [6, 8]). The first example of Lie foliations is the following
one, which is called homogeneous :

Example 1.1. Let G and H be connected Lie groups. Let K be a closed
Lie subgroup of H, and Γ a torsion-free cocompact lattice of H ×G. Then
we have a G-Lie foliation on K\H×G/Γ induced from the product foliation
K\H ×G = tg∈GK\H × {g}.

A number of examples of nonhomogeneous Lie foliations were constructed
in [15, 16, 9]. On the other hand, under various conditions, minimal Lie
foliations tend to be homogeneous or have rigidity which is quite useful for
the classification: Caron-Carrière [3] showed that 1-dimensional Lie folia-
tion is diffeomorphic to a linear flow on a torus. Matsumoto-Tsuchiya [14]
proved that any 2-dimensional affine Lie foliation on closed 4-manifolds are
homogeneous. Zimmer [24] proved that if a minimal G-Lie foliation ad-
mits a Riemannian metric such that each leaf is isometric to a product of
symmetric space of noncompact type of rank greater than one, then the
holonomy group is arithmetic.

Motivation. This work was motivated by the following two questions on
rigid aspects of Lie foliations mentioned in the last paragraph.

Question 1.2. Classify minimal SL(2;R)-Lie foliations whose leaves are
hyperbolic plane.

By a theorem of Carrière [4], for a G-Lie foliation on a compact mani-
fold, G is solvable if and only if each leaf admits a Følner sequence. Thus Lie
foliations in Question 1.2 are of the lowest dimension among Lie foliations
with hyperbolic leaves.

1Partly supported by by JSPS/IHÉS/EPDI Fellowship
c© 2013 Gaël Meigniez and Hiraku Nozawa
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Question 1.3. Classify 3-dimensional minimal Lie foliations which ad-
mits leafwise geometrization in the sense of Thurston.

One may conjecture that any 3-dimensional minimal Lie foliations may
admits leafwise geometrization. Thus Question 1.3 may be considered as a
step for the classification of 3-dimensional minimal Lie foliations.

Main results. This talk is based on work in progress. The main result
is the following:

Theorem 1.4. Let (M,F) be a compact manifold with a minimal G-Lie
foliation. Assume that M admits a Riemannian metric such that every
leaf of F is isometric to a symmetric space X =

∏
Xi, where Xi is an

irreducible Riemannian symmetric space of noncompact type of dimension
greater than two. Then (M,F) is homogeneous.

This result gives a complete answer for Question 1.3 in the case where the
leaves are H3. We describe the proof in detail in Section 3. The key step of
the proof is to show that the geodesic boundary of hyperbolic leaves admits
a π1M -invariant conformal structure thanks to ergodicity of the π1M -action
or the leafwise geodesic flow. This phenomenon can be regarded as a certain
family version of strong Mostow rigidity for locally symmetric spaces [19].
Our proof is not sufficient to solve Question 1.2 in the same reason why
Mostow strong rigidity fails to hold for Riemann surfaces.

We deduce two consequences of Theorem 1.4. We need the following
result, which will be proved in Section 4.

Proposition 1.5. If a homogeneous Lie foliation (K\H×G/Γ,F) in Ex-
ample 1.1 satisfies the assumption of Theorem 1.4, then G is semisimple
and the projection of Γ to any connected normal subgroup of H×G is dense.

A lattice Γ of a connected Lie group G is called superrigid if, for any
real algebraic group H containing no connected simple compact normal
subgroups, any homomorphism Γ → H with Zariski dense image virtually
extends to a continuous homomorphism G→ H. Combining Theorem 1.4,
Proposition 1.5 with an extension of Margulis’ superrigidity theorem due
to Starkov [23, Theorem 4.6], we get the following.

Corollary 1.6. Under the assumption of Theorem 1.4, π1M is isomorphic
to a superrigid cocompact lattice in H ×G.

Combining with Theorem 1.4 and Proposition 1.5 with Margulis’ arith-
meticity theorem [12, Theorem A in p. 298], we get the following conse-



159

quence, which implies a generalization of a theorem of Zimmer [24, Theo-
rem A-3], which says that the holonomy group of Lie foliation whose leaves
are isometric to a product of symmetric space of noncompact type of rank
greater than one is arithmetic.

Corollary 1.7. In addition to the assumption of Theorem 1.4, we assume
that X is of rank greater than one. Then π1M is isomorphic to an S-
arithmetic subgroup of H ×G.

The advantage of arithmeticity is that arithmetic subgroups can be listed
up in a sense. Thus Lie foliations in Corollary 1.7 are classified in a sense.

2. Questions

The following is related to Question 1.2.

Question 2.1. Does there exist a non-homogeneous minimal Lie foliation
on a closed manifold whose leaves are isometric to hyperbolic planes?

The following is a question concerning the possibility of generalizations
of a theorem of Matsumoto-Tsuchiya [14] on homogeneity of solvable Lie
foliations.

Question 2.2. Find a good condition which implies the rigidity of mini-
mal G-Lie foliations when G is solvable.

Tits buildings are arithmetic analog of symmetric spaces which have
similar rigidity theoretic properties.

Question 2.3. Construct minimal Lie foliations whose leaves are quasi-
isometric to Tits buildings of rank greater than one. Do they have rigidity?

Question 2.4. The leaves of the example [9, Section 6] of a minimal
SL(2;R)-Lie foliation are quasi-isometric to a Tits building of rank one.
Does it have rigidity?

3. Outline of the proof of Theorem 1.4

Step I. The leafwise boundary of foliations. First we explain the
proof of Theorem 1.4 in the case where X = Hn

R (n ≥ 3).
Let (M,F) be a minimal G-Lie foliation on a compact manifold. As-

sume that M admits a Riemannian metric such that each leaf of F̃ is iso-
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metric to X. Let (M̃, F̃) be the universal cover of (M,F). Let G(F̃) = {γ |
γ is a geodesic in a leaf of F̃}. We define the leafwise geodesic boundary

∂F̃ of (M̃, F̃) by

∂F̃ = G(F̃)/ ∼ ,

where γ ∼ γ′ if and only if γ and γ′ are contained in a leaf of F̃ and
asymptotic to each other. By the structure theory of Lie foliations (see [17,

Section 4.2]), we have an X-bundle dev : M̃ → G whose fibers are the

leaves of F̃ . We also have a homomorphism hol : π1M → G, which makes

dev a π1M -equivariant X-bundle. Then ∂F̃ is the total space of a π1M -

equivariant ∂X-bundle ∂ dev : ∂F̃ → G, where ∂X is the geodesic bound-
ary of X.

Step II. Ergodicity of the π1M-action on the leafwise boundary.
Let H = IsomX = PSO(n, 1) and K the isotropy group of a point on X so
that X = K\H. Since each leaf of F is isometric to X, we have a canonical
K-principal bundle N → M over M with an isometric H-action. Here we

have ∂F̃ = Ñ/P for a parabolic subgroup P . Thus ∂F̃ has a Lebesgue
measure. The following is the key step in the case where X = Hn

R.

Proposition 3.1. The π1M-action on ∂F̃ constructed in Step I is ergodic
with respect to the Lebesgue measure.

In the sequel, we consider Lebesgue measures on smooth manifolds.
We will use the following results.

Lemma 3.2 (A modification of [18, Proposition 4]). Let Γ1 and Γ2 be two
groups. Let Z be a smooth manifold with a (Γ1×Γ2)-action such that Z/Γ1

and Z/Γ2 are smooth manifolds. Then the Γ1-action on Z/Γ2 is ergodic if
and only if the Γ2-action on Z/Γ1 is ergodic.

Theorem 3.3 (A part of [18, Theorem 1]). Let H be a semisimple Lie
group with no compact connected subgroup. Let P be a subgroup of H.
Then the following are equivalent:

1. The image of P under the projection from H to each connected simple
normal subgroup of H is noncompact.

2. For any unitary H-representation π in the Hilbert space V and any
vector v ∈ V , if π(P )v = v, then π(H)v = v.

Proof of Proposition 3.1. By Lemma 3.2, the π1M -action on ∂F̃ is er-
godic if and only if the P -action on N is ergodic. By Theorem 3.3 for
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Hilbert space L2(N), any P -invariant L2-function on N is H-invariant.
Thus the latter condition is equivalent to the ergodicity of the H-action on
N . Lemma 3.2 implies that the H-action on N is ergodic if and only if the

Γ-action on Ñ/H = G is ergodic. Since Γ is a dense subgroup of G, the
Γ-action on G is ergodic (see the proof of [18, Proposition 4]).

Step III. Construction of a homomorphism π1M → H. We con-

struct a trivialization of ∂F̃ as a ∂X-bundle over G based on the construc-
tion [9, Section 3]. For g ∈ G, denote the leaf of F̃ which is the fiber of dev

over g by L(g). Take a π1M -invariant metric on (M̃, F̃). Any left invariant

vector field ξ on G can be horizontally lifted to M̃ along dev : M̃ → G so

that the lift ξ̃ is tangent to (T F̃)⊥. Since dev is π1M -equivariant and M is

compact, the flow on M̃ generated by ξ̃ is bi-Lipschitz. For each g ∈ G, take

the left invariant vector field ξ on G such that exp ξ = g. By the flow on M̃

generated by ξ̃, we have a map Φ(g) : M̃ → M̃ whose restriction to L(h)

is bi-Lipschitz for any h ∈ G. Here Φ(g) induces a map ∂Φ(g) : ∂F̃ → ∂F̃
whose restriction to ∂L(h) is a quasi-conformal homeomorphism (see [19,
Section 21]). Clearly we have ∂Φ(g1) ◦ ∂Φ(g2) = ∂Φ(g1g2). Then we get a

trivialization ∂F̃ ∼= ∂L(e)×G. Let eG be the unit element of G. we obtain
a π1M -action on ∂L(eG) given by

(3.4)
π1M × ∂L(eG) −→ ∂L(eG)

(c, [γ]) 7−→ ∂Φ(hol(c)−1)([c · γ]) ,

where · denotes the π1M -action on the space G(F̃) of geodesics.
Since a quasi-conformal homeomorphism is absolutely continuous, the

trivialization preserves the Lebesgue measure class. Thus, by Proposi-
tion 3.1, we have ergodicity of (3.4). Here we apply the following.

Proposition 3.5 ([19, Section 22]). Let n ≥ 2 and q : Sn → Sn be a
quasi-conformal homeomorphism. If q is equivariant with respect to an
ergodic group action, then q is conformal.

Then we conclude that the π1M -action (3.4) on ∂L(eG) is conformal. We
get a homomorphism π1M → Conf(∂X) ∼= IsomX = H.

Step IV. Construction of a homogeneous Lie foliation (M0,F0).
Let ρ : π1M → H be the homomorphism constructed in Step III. Consider
the direct product ρ× hol : π1M −→ H ×G. Let Γ = (ρ× hol)(π1M).

We show that Γ is discrete in H × G. Assume that Γ is not dis-
crete. Then there exists a sequence {ck} in π1M such that ρ(ck)→ eH and
hol(ck) → eG. Let ψk : L(eG) → L(eG) be the isometry which induces a
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conformal transformation ρ(ck) on ∂L(eG). Take a point x in L(eG) and
consider a sequence {ak} in L(eG) defined by

ak = ψ−1
k

(
Φ(hol(ck)

−1)(ck · x)
)
,

where Φ(hol(ck)
−1) : L(hol(ck)) → L(eG) is the bi-Lipschitz map con-

structed in Step III and · denotes the π1M -action on M̃ . By construction,
the map

χk : L(eG) −→ L(eG)
y 7−→ ψ−1

k

(
Φ(hol(ck)

−1)(ck · y)
)

is a bi-Lipschitz map which induces the identity on ∂L(eG). Since {hol(ck)}
converges to eG, there exists a positive number C such that, for any k,
Φ(hol(ck)

−1)|L(hol(ck)) is bi-Lipschitz with Lipschitz constant C. Then, χk
is a bi-Lipschitz with Lipschitz constant C for any k. By the Morse
lemma (see, for example, [2, 8.4.20]), there exists r > 0 such that χk maps
any geodesic τ in L(eG) into an r-neighborhood of τ . This implies that
d(y, χk(y)) < r, where d is the distance on L(eG). Then {χk(x)} admits a
converging subsequence. By construction, this implies that {ck · x} admits
a converging subsequence. This contradicts with the properly discontinuity

of the π1M -action on M̃ . Thus Γ is discrete in H ×G.
We show that Γ is cocompact in H × G. We denote the real cohomo-

logical dimension of manifolds and groups by rcd. First we compute rcd Γ.

By applying [5, Lemme 2.4] to dev : M̃ → G, we have

rcd M̃ ≤ rcd L̃+ rcdG ,

rcdM ≤ rcd M̃ + rcd Γ ,

where L̃ is a leaf of F̃ . Since L̃ is contractible, rcd L̃ is zero. Since M is
compact, we have rcdM = dimM . Thus we get

rcdG+ rcd Γ ≥ dimM .

Let KG be a maximal compact subgroup of G. Let XG = KG\G. Recall
that K is a maximal compact subgroup of H such that X = K\H. Since
rcdG = dimK, dimG = dimXG + dimK and dimM = dimG + dimX.
We get

rcd Γ ≥ dimXG + dimX .

On the other hand, since a finite index subgroup of Γ acts freely on X×XG

which is contractible, we get

rcd Γ ≤ dimXG + dimX .

Thus we get rcd(Γ) = dimXG + dimX. This implies that Hn
(
(X ×

XG)/Γ;R
)

is nontrivial, where n = dim(X × XG)/Γ. Thus Γ is cocom-
pact in H ×G.
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Then M0 = K\H × G/Γ is a closed manifold. Here M0 admits a G-
Lie foliation F0 which is induced from the product foliation K\H × G =
tg∈GK\H × {g} and whose leaves are isometric to X = K\H.

Step V. Construction of a diffeomorphism. Here we will show that
(M,F) is diffeomorphic to (M0,F0). Since (M,F) and (M0,F0) are classify-
ing spaces of G-Lie foliations with the same holonomy group as explained in
the last paragraph, there exist smooth maps f : M →M0 and f0 : M0 →M

such that f ∗F0 = F , f ∗0F = F0, f0 ◦ f ' idM and f ◦ f0 ' idM0 . Let f̃ and

f̃0 be lifts of f and f0 to the universal covers. Since M and M0 are compact,

by using f̃0, we can show that f̃ is a quasi-isometry on each leaf. Thus f̃

induces a π1M -equivariant homeomorphism ∂f̃ : ∂F̃ → ∂F̃0 which is quasi-
conformal on the geodesic boundary of each leaf. The π1M -equivalence of

∂f̃ and Proposition 3.5 imply that ∂f̃ is conformal on the geodesic bound-
ary of each leaf. Since H = IsomX, for each g ∈ G, there is a unique way

to extend ∂f̃ |∂L(g) to an isometry on Lg. It is easy to see that, by this exten-

sion, we get a well-defined π1M -equivariant diffeomorphism f̃1 : M̃ → M̃0.
Thus the proof is concluded.

The case where X is an irreducible symmetric space of rank one.
Now X is one of the following: Hn

R, Hn
C, Hn

H and H2
O. In the case where

X = Hn
C (n ≥ 2), Theorem 1.4 is proved in a way similar to the real

hyperbolic case by replacing Hn
R with Hn

C and by using quasi-conformal
mappings over C (see [19, Section 21]).

If X = Hn
H or H2

O, then Theorem 1.4 is proved in a way simpler than
the above two cases thanks to the following result of Pansu.

Theorem 3.6 ([20]). For any quasi-isometry ϕ on Hn
H or H2

O, there exists

an isometry ϕ1 such that ϕ ◦ ϕ−1
1 is bounded.

By this theorem, we can skip Step II. In Step III, we get a homomorphism
π1M → H without Step II. In the last step, we do not need to show that
∂f is conformal. The rest of the proof is the same.

The case where X is an irreducible symmetric space of rank r ≥
2. We refer to [19] for facts used in this paragraph. A flat in X is a
totally geodesic flat submanifold of dimension r. Let ∂X be the Furstenberg
maximal boundary of X, which is defined as a set of asymptotic classes of
flats in X. Here ∂X has a structure of a spherical Tits building whose
automorphism group Aut(∂X) is isomorphic to H. Theorem 1.4 can be
proved in this case by replacing the geodesic boundary of hyperbolic spaces
to Tits building ∂X. The following is well known.
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Proposition 3.7 (see [19, Section 15]). Any quasi-isometry on X induces
an automorphism of Tits building ∂X.

We define the leafwise boundary ∂F̃ like in Step I but by replacing geodesics
with flats. We skip Step II. By Proposition 3.7, we get a homomorphism
π1M → H in Step III without Step II. To show the discreteness Γ in H×G
in Step IV, we need to use the following result instead of Morse lemma:

Theorem 3.8 (A special case of [11, Theorem 1.1.3]). Let Z be an irre-
ducible symmetric space of noncompact type of rank greater than one. Then,
for any bi-Lipschitz self-map with Lipschitz constant C on Z, there exists
a homothety on Z at distance less than S, where S is a function of C.

In the last step, we do not need to show that ∂f is conformal. The rest of
the proof of Theorem 1.4 is the same as the case where X = Hn

R.

The general case. By a theorem of Kapovich-Kleiner-Leeb [10], for a

quasi-isometry φ on
∏`

i=1Xi, there exists a quasi-isometry φi for each i
such that pi ◦ φ is equal to φ ◦ pi up to a bounded error. If Xi is Hn

H, H2
O

or an irreducible symmetric space of rank greater than one for any i, then
we finish the proof by applying the above argument to each component.

Assume that Xi = Hn
R (n ≥ 3) or Hn

C (n ≥ 2) for some i. Then, in Step
II, we need to show that the π1M -action on the geodesic boundary ∂Xi is
ergodic. We consider a subfoliation Fi of F which is defined by the Xi-
factor in each leaf of F . Since the Xi-factor is determined by the holonomy
of the given smooth metric, Fi is a smooth foliation. Let Hi = Xi and take
a subgroup Ki so that Xi = Hi/Ki. Since each leaf of Fi is isometric to Xi,
we have a canonical principal Ki-bundle Wi →M . We can lift the foliation
F ′i horizontally to get an (H ′ ×G)-Lie foliation on Wi, where H ′ = H/Hi.
By the structure theorem of Lie foliations [17, Theorem 4.2], the closure of
a leaf is a submanifold Mi of M . Here (Mi,F ′i |Mi

) is a minimal Lie foliation
whose leaves are isometric to Xi. We apply the above Step II for (Mi,F ′i |Mi

)
to show the ergodicity of the π1Mi-action on the geodesic boundary of a
leaf of Fi. This implies that the π1M -action on the geodesic boundary of
a leaf of Fi is ergodic. Applying this argument for each i such that Xi is
of rank one, we can get a homomorphism π1M → Isom

∏
Xi = H in Step

III. The rest of the proof is the same.

4. Proof of Proposition 1.5.

Let G = LnR be the Levi decomposition of G, where L is semisimple with
trivial center and R is solvable and normal in G. By the assumption that
the leaves of F are simply-connected, the H-action on H × G/Γ is free.
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Then, by [24, Lemma 5.2], Γ ∩ R is discrete. Since R ∩ Γ is discrete and
normal in H × G, R ∩ Γ is central in H × G. Thus, by taking quotient of
G and Γ by R ∩ Γ, the proof of Proposition 1.5 can be reduced to the case
where R ∩ Γ is trivial. Let L = SK be the decomposition of L such that
Lie(S) is the sum of noncompact semisimple Lie algebras and Lie(K) is the
sum of compact semisimple Lie algebras. Since Γ is a cocompact lattice
of H × G, by a consequence of Auslander’s theorem [22, Theorem E.10],
R∩Γ is a cocompact lattice of KR. Thus R is compact, hence the identity
component R0 is abelian.

We will show that the projection of Γ to any connected normal simple
subgroup of H×G is dense. Let p : H×G→ H×G/KR be the projection.
Since KR is compact, p(Γ) is a lattice of H × G/KR. Then, since H ×
G/KR is a semisimple group without connected compact subgroup, by a
well known result (see [21, Theorem 5.22]), p(Γ) has a finite index subgroup
T such that T =

∏m
i=1 Ti, where Ti is an irreducible lattice of a product of

some connected normal simple subgroup of H×G/KR. Since the leaves of
F is simply-connected, the restriction of the projection H ×G→ G to Γ is
injective. Hence we get m = 1 and S is an irreducible lattice of H×G/KR,
which implies that so is p(Γ) (see [21, Corollary 5.21]). Then the projection
of Γ to any normal simple subgroup of H ×G is dense.

To show that G is semisimple, it suffices to show that R is finite. Since
R0 is abelian, the kernel of R → G/[G,G] is finite. On the other hand,
since Γ is a lattice of H ×G and the projection of Γ to any normal simple
subgroup of H × G is dense, a vanishing theorem of Starkov [23] implies
that Γ/[Γ,Γ] = 0. Since Γ is dense in G, it follows that G/[G,G] = 0.
Hence R is finite.
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Birkhäuser, Boston-Basel, 1988.
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Quasi-invariant measures for
non-discrete groups on S1

Julio C. REBELO

Whereas the discussion is primarily conducted for finitely generated
subgroups of Diffω(S1), almost all results can be adapted to similar sub-
groups of smooth diffeomorphism of the circle. In terms of higher dimen-
sional manifolds, however, our results will only admit convenient gener-
alizations if the corresponding group of diffeomorphisms are supposed to
contain a Morse-Smale element (see [Re-2]).

Consider then a finitely generated subgroup G of Diffω(S1). The group
G is said to be non-discrete if it contains a sequence of elements {hi}
converging to the identity in the (say) C∞-topology (and such that hi 6= id
for every i ∈ N). Concerning the existence of non-discrete groups as before,
the following result due to Ghys may be quoted.

Theorem (Ghys [Gh]). Consider the group Diffω(S1) equipped with the
analytic topology. Then there is a neighborhood U of the identity such that
every non-solvable group G ⊂ Diffω(S1) generated by a finite set S ⊂ U is
non-discrete.

Our purpose will be to study some subtle aspects of the ergodic theory
of non-discrete groups as above. In particular, we would like to investi-
gate the structure of quasi-invariant measures (always supposed to be non-
atomic) with special interest in the case of stationary measures. Stationary
measures are defined as follows. Let G ⊂ Diffω(S1) be a finitely generated
group equipped with a probability measure ν which is non-degenerate in the
sense that its support generates G as semi-group. A probability measure µ
on S1 is said to be stationary for G with respect to ν if the equation

(1) µ(B) =
∑
g∈G

ν(g)µ(g−1(B)) .

holds for every Borel set B ⊂ S1. A simple adaptation of Krylov-Bogoloubov
theorem suffices to ensure that stationary measures always exist. Also, as-
suming that G has no invariant measure, it easily follows that every sta-
tionary measure is quasi-invariant and gives no mass to points. Moreover,
this measure is often unique as proved by Deroin, Kleptsyn and Navas:

c© 2013 Julio C. Rebelo
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Theorem (Deroin-Kleptsyn-Navas [DKN]). Suppose that G is a group of
diffeomorphisms of S1 leaving no probability measure on S1 invariant. If G
is equipped with a non-degenerate probability measure ν, then the resulting
stationary measure µ is unique.

Thus, whereas every theorem valid for quasi-invariant measures will
automatically hold for the stationary measure, many easy constructions
of singular quasi-invariant measures do not apply to stationary measures.
Similarly it is easy to produce several examples of singular measures that
are quasi-invariant by non-discrete groups as above but most of the corres-
ponding constructions yield measures that are certainly not stationary. Yet,
singular stationary measures for groups as above do exist and the difficulty
of providing a criterion to ensure that stationary measures must be regular
is illustrated by the following theorem due to Kaimanovich and Le Prince
[K-LP]: every Zariski-dense finitely generated subgroup of PSL (2,R) can
be equipped with a non-degenerate measure ν giving rise to a singular sta-
tionary measure µ on S1.

Besides stationary measures, Patterson-Sullivan measures are among
the best known examples of quasi-invariant measures (in the case for Fuchs-
ian or Kleinian groups). A very distinguished feature of Patterson-Sullivan
measure is its d-quasiconformal character. Given d ∈ R∗+, recall that a
probability measure µ on S1 is said to be d-quasiconformal for G if there
exists a constant C such that, for every Borel set B ⊂ S1 and every g ∈ G,
we have

1

C
|g′(x)|d ≤ dµ

dg∗µ
(x) ≤ C|g′(x)|d .

In particular, d-quasiconformal measures are closely related to the
d-dimensional Hausdorff measure. Also we can wonder whether d-
quasiconformal measures on the circle exist beyond the class of Fuchsian
groups, whether or not we are dealing with “discrete groups”. In fact, this
problem can be viewed as a far reaching extension of Patterson-Sullivan
theory. Concerning the case of non-discrete subgroups of Diffω(S1), we
have the following theorem.

Theorem (Uniqueness of Lebesgue, [Re-1]). Let G ⊂ Diffω(S1) be a
finitely generated non-solvable and non-discrete group. Assume also that G
has no finite orbit and that µ is a d-quasiconformal measure for G. Then
µ is absolutely continuous and d = 1.

Since we mentioned that some statements for the circle generalize to
higher dimensions in the presence of a Morse-Smale dynamics, here it is
a good point to give an example of these generalizations. To keep state-
ments as simple as possible, consider non-discrete groups of analytic dif-
feomorphism of the sphere S2. Since these diffeomorphisms need not be
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conformal, the notion of d-quasiconformal measures can be replaced by the
following definition:

Definition. Let µ be a probability measure on S2 and consider a group
G ⊂ Diffω(S2). Given d ∈ R∗+, the measure µ will be called a d-quasi-
volume for G if there is a constant C such that for every point x ∈ S1

and every element g ∈ G, the Radon-Nikodym derivative dµ/dg∗µ satisfies
the estimate

1

C
‖Jac [Dg](x)‖d ≤ dµ

dg∗µ
(x) ≤ C‖Jac [Dg](x)‖d ,

where Jac [Dg](x) stands for the Jacobian determinant of Dg at the point x.

The more general statements in [Re-2] imply the following:

Theorem ([Re-2]). Suppose that G ⊂ Diffω(S2) is non-discrete and con-
tains a Morse-Smale element. Suppose also that G leaves no proper analytic
subset of S2 invariant. Then every d-quasi-volume µ for G is absolutely
continuous (in particular d = 2).

Going back to the circle, it was observed that d-quasiconformal mea-
sures behave similarly to the d-dimensional Hausdorff measure. Since the
examples in Kaimanovich-Le Prince [K-LP] possess Hausdorff dimension
comprised between 0 and 1, it is natural to wonder whether these station-
ary measures are comparable to Hausdorff measures of same dimension.
To help to make sense of these possible comparisons, the notion of Lusin
sequences can be used. A Lusin sequence for a probability measure µ con-
sists of a sequence of compact sets K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ · · · such that
µ(Kn)→ 1. The advantage of using Lusin sequences is to work with com-
pact sets as opposed to general Borel sets while recovering the standard
definitions of Hausdorff measures/dimensions and so on. Denoting by µd
the d-dimensional Hausdorff measure, we have:

Theorem ([Re-1]). Let G ⊂ Diffω(S1) be a finitely generated non-solvable
and non-discrete group. Suppose that µ is an ergodic (non-atomic) singu-
lar quasi-invariant measure for G whose Hausdorff dimension d belongs to
(0, 1]. Denoting by µd the d-dimensional Hausdorff measure, the following
alternative holds:

• Either there is a Lusin sequence {Kn} for µ such that µd(Kn) = 0 for
every n or

• Every Lusin sequence {Kn} verifies µd(Kn)→∞ when n→∞.

In particular, the Borel set K =
⋃∞
n=1Kn is such that µ(K) = 1 and µd(K)

is either zero or infinite.



170

If time permits, we shall conclude with a more detailed discussion of
stationary measures along with some regularity criteria for them.
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Generic pseudogroups on (C, 0) and
the topology of leaves

Helena REIS

This is an extended abstract for the material in the papers [MRR] and
[RR] jointly with J.-F. Mattei and J. Rebelo.

In the study of some well-known problems about singular holomorphic
foliations, we usually experience difficulties concerning to greater or lesser
extent the topology of their leaves. Yet, most of these problems are essen-
tially concerned with pseudogroups generated by certain local holomorphic
diffeomorphisms defined on a neighborhood of 0 ∈ C. In this sense, results
about pseudogroups of Diff (C, 0) generated by a finite number of local
holomorphic diffeomorphisms are crucial for the understanding of certain
singular foliations defined about the origin of C2. Also, as it will be seen
below, for most of these problems it is necessary to consider classes of
pseudogroups with a distinguished generating set all of whose elements
have fixed conjugacy class in Diff (C, 0).

In the above mentioned works, some well-known questions about sin-
gular holomorphic foliations on (C2, 0) are answered. These questions have
first arisen as an outgrowth of the problem of classifying germs of plane
analytic curves (Zariski problem). The key to answer them will be the in-
troduction of a theory of pseudogroups obtained out of “generic” elements
in Diff (C, 0) having fixed conjugacy class. We shall explain these problems
before presenting our main results.

Recall that a local singular holomorphic foliation on a neighborhood
of (0, 0) ∈ C2 is nothing but the foliation induced by the local orbits of
a holomorphic vector field having isolated singularities and defined on the
mentioned neighborhood. In particular singular points of a foliation F
on (C2, 0) are always isolated and, besides, two holomorphic vector fields
representing F differ by an invertible multiplicative holomorphic function.
Assume that the origin is a singular point for a given foliation F and let X
be a representative of F . The eigenvalues of F at the origin correspond to
the eigenvalues of the linear part of X at the same point. It is well-known
that every foliation on (C2, 0) can be transformed by a finite sequence

of blow-up maps into a new foliation F̃ possessing singularities that are

“simple”, i.e. F̃ has at least one eigenvalue different from zero at each of

its singular points. This sequence of blow-up maps leading to F̃ is called
the resolution of F .

c© 2013 Helena Reis
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The study of singularities of foliations and of their deformations, par-
alleling Zariski problem, led to the introduction of the Krull topology in
the space of these foliations. In this topology, a sequence of foliations Fi
is said to converge to F if there are representatives Xi for Fi and X for
F such that Xi is tangent to X, at the origin, to arbitrarily high orders
(modulo choosing i large enough). It should be noted that, given a foliation
F , its resolution depends only on a finite jet of the Taylor series of X at
the singular point. Therefore, if F ′ is close to F in the Krull topology,
then these foliations admit exactly the same resolution. Furthermore the

position of the singularities of the resolved foliations F̃ , F̃ ′ coincide and so
do their corresponding eigenvalues.

A prototypical problem in this direction that will also help us to clar-
ify the contents of the above discussion is provided by the nilpotent foli-
ations associated to Arnold singularities A2n+1. These are local foliations
F defined by a (germ of) vector field X having nilpotent linear part,
i.e. X = y∂/∂x + · · · , and a unique separatrix S that happens to be a
curve analytically equivalent to {y2 − x2n+1 = 0}. Let us discuss the sim-
plest case n = 1 in detail (the general case is very similar).

Consider a nilpotent foliation F associated to Arnold singularity A3,
i.e. a nilpotent foliation admitting a unique separatrix that happens to be
a curve analytically equivalent to {y2 − x3 = 0}. For this type of foliation,
the desingularization of the separatrix coincides with the resolution of the
foliation itself. More precisely, the map associated to the desingularization
of the separatrix ES : M → C2 reduces also the foliation F (see Figure 1
for the corresponding resolution).

Figure 1

The corresponding exceptional divisorD = E−1
S (0) consists of the union

of 3 rational curves as indicated in Figure 1. The singular points of F̃ are the
intersection points of consecutive components in the tree along with a point
s0 that corresponds to the intersection of the transformed of the separatrix
with E−1

S (0). This intersection takes place in the component C3 as indicated
in Figure 1. All these singular points possess two eigenvalues different from
zero. The corresponding eigenvalues can precisely be determined by using
the self-intersection of the various components of the exceptional divisor.
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For example, the eigenvalues of F̃ at s1 are 1,−3 whereas the eigenvalues

of F̃ at s2 are 1,−2.
It should be noted that the regular leaf C1 \ {s1} is isomorphic to C

and thus simply connected. This implies that the local holonomy map as-
sociated to a path contained in C1 \ {s1} and winding around s1 coincides

with the identity. This assertion combined with the fact that F̃ has eigen-

values 1,−3, guarantees that the germ of F̃ at s1 is linearizable. Thus the
local holonomy map f associated to a small loop about s1 and contained
in C3 must be of finite order equal to 3, i.e. it is conjugate to a rotation
of order 3. A similar discussion applies to the component C2 and leads to
the conclusion that the local holonomy map g associated to a small loop
around s2 and contained in C3 has order equal to 2, i.e. it is conjugate to

a rotation of order 2. Since C3 \ {s0, s1, s2} is a regular leaf of F̃ , we con-
clude that the (image of the) holonomy representation of the fundamental
group of C3 \ {s0, s1, s2} in Diff (C, 0) is nothing but the group generated
by f, g. The reader will easily convince himself/herself that the dynamics
of this holonomy group encodes all the information about the correspond-
ing foliation.

It should be noted that the conclusion above depends only on the con-
figuration of the reduction tree which, in turn, is determined by a finite jet
of the Taylor series of X at the singular point. Hence, if the coefficients
of Taylor series of the vector field X are perturbed starting from a suffi-
ciently high order, the new resulting vector field X ′ will still give rise to a
foliation whose singularity is reduced by the same blow-up map associated
to the divisor of Figure 1. In particular, the holonomy representation of
the fundamental group of C3 \ {s0, s1, s2} in Diff (C, 0), obtained from this
new foliation, is still generated by two elements of Diff (C, 0) having finite
orders respectively equal to 2 and to 3. Since every local diffeomorphism of
finite order as above is conjugate to the corresponding rotation, it follows
in particular that their conjugacy classes in Diff (C, 0) are fixed.

From what precedes, it follows that whenever F is a foliation as above
and F ′ is close to F in the Krull topology, then F ′ is also a nilpotent
foliation of type A3. It is then natural to wonder what type of dynamical
behavior can be expected from these foliations, or more precisely, from
a “typical” foliation in this family. Inasmuch the space of foliations was
endowed with the Krull topology, which fails to have the Baire property,
questions about “dense sets of foliations” can still be asked. The following
is an example of long-standing problem in the area:

Question. Does there exist a nilpotent foliation F in A3 whose leaves are
simply connected (apart maybe from a countable set)? Is the set of these
foliations dense in the Krull topology, i.e. given a nilpotent foliation F in
A3, does there exist a sequence of foliations Fi converging to F in the Krull
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topology and such that every Fi has simply connected leaves (with possible
exception of a countable set of leaves)?

Our methods are powerful enough to affirmatively settle both questions
above. A crucial point is the understanding of groups generated by f, g at
level of pseudogroup and not only at germ level. In fact, the local dynamics
of the holonomy pseudogroup arising from the leaf C3\{s0, s1, s2} on a fixed
neighborhood of 0 ∈ C must be studied.

In the case of nilpotent foliations in the class A3, it was seen that
pseudogroups given by generating sets with elements possessing fixed con-
jugacy classes play a central role in the description of the corresponding
foliations. This phenomenon is not peculiar to the mentioned family of
foliations and, indeed, appears quite often. To have a better insight in the
nature of the mentioned phenomenon, suppose we are given a foliation F
and consider F ′ very close to F in the Krull topology. In particular, the

resolutions F̃ , F̃ ′ of F , F ′ turn out to coincide. The positions of the sin-

gular points of F̃ , F̃ ′ in the common exceptional divisor coincide as well

and so do their corresponding eigenvalues. Suppose now that F̃ has only

hyperbolic singularities i.e. the singularities of F̃ have two eigenvalues dif-
ferent from zero and such that their quotient lies in C \R. The same holds

for F̃ ′ since corresponding singularities of F̃ , F̃ ′ have the same eigenvalues.
By Poincaré theorem, both singularities are then conjugate to the corres-
ponding linear model and, thus, they are conjugate to each other. Thus the
corresponding local holonomy maps arising from a small loop encircling the
singularity in question are themselves conjugate by a local diffeomorphism.
In other words, the pseudogroups generated by these holonomy maps for

F̃ and for F̃ ′ naturally have generating sets whose elements have the same
conjugacy classes. The latter are, indeed, fixed since it corresponds to the
class of a hyperbolic element of Diff (C, 0) with fixed multiplier.

Having explained the need for considering pseudogroups with generat-
ing sets all of whose elements possess a fixed conjugacy class in Diff (C, 0),
we can now proceed to state our main results. Let us begin with the re-
sults concerning pseudogroups generated by a finite number of elements in
Diff (C, 0) which will later allow us to answer the above stated questions
on nilpotent foliations. For this, let us equip Diff (C, 0) with the so-called
analytic topology, that was first considered by Takens in the context of real
diffeomorphisms of an analytic manifold and further discussed in the case
of Diff (C, 0) in [MRR]. Unlike the Krull topology, the analytic topology
has the Baire property. Now, consider a k-tuple of local holomorphic dif-
feomorphisms f1, . . . , fk fixing 0 ∈ C. The first theorem states that the
local diffeomorphisms fi can be perturbed inside their conjugacy classes so
as to generate a pseudogroup isomorphic to the free product of the cor-
responding cyclic groups. Indeed, the perturbation can be made inside a
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Gδ-dense subset of (Diff (C, 0))k. Also, it can be proved that the mentioned
perturbation can be made inside the class of diffeomorphisms tangent to the
identity to every a priori fixed order (which for technical reasons is also nec-
essary to solve the corresponding questions on foliations). More precisely,
letting Diffα(C, 0) stand for the normal subgroup of Diff (C, 0) consisting
of elements tangent to the identity to order α, we have the following:

Theorem A ([MRR]). Fixed α ∈ N, let f1, . . . , fk be given elements in
Diff (C, 0) and consider the corresponding cyclic groups G1, . . . , Gk. Then,
there exists a Gδ-dense set V ⊂ (Diffα(C, 0))k such that, whenever (h1, . . . ,
hk) ∈ V, the following holds:

(1) The group generated by h−1
1 ◦ f1 ◦h1, . . . , h

−1
k ◦ fk ◦hk induces a group

in Diff (C, 0) that is isomorphic to the free product G1 ∗ · · · ∗Gk.

(2) Let f1, . . . , fk and h1, . . . , hk be identified to local diffeomorphisms de-
fined about 0 ∈ C. Suppose that none of the local diffeomorphisms
f1, . . . , fk has a Cremer point at 0 ∈ C. Denote by Γh the pseudo-
group defined on a neighborhood V of 0 ∈ C by the mappings h−1

1 ◦
f1 ◦ h1, . . . , h

−1
k ◦ fk ◦ hk, where (h1, . . . , hk) ∈ V. Then V can be

chosen so that, for every non-empty reduced word W (a1, . . . , ak), the
element of Γh associated to W (h−1

1 ◦f1 ◦h1, . . . , h
−1
k ◦fk ◦hk) does not

coincide with the identity on any connected component of its domain
of definition.

Item (1) of the previous result concern groups at the germ level, while
item (2) concerns pseudogroups. Note that the assumption that none of the
fixed diffeomorphisms f1, . . . , fk has a Cremer point at 0 ∈ C is not nec-
essary for the first conclusion of Theorem A. This assumption is, however,
indispensable for the second item due to certain examples of dynamics near
Cremer points that were constructed by Perez-Marco.

Item (2) ensures the existence of a point p possessing an infinite orbit
of hyperbolic fixed points for the pseudogroup Γh. In other words, p has an
infinite orbit under Γh and, for every point q lying in the orbit of p, there is
an element g ∈ Γh for which q is a hyperbolic fixed point (i.e. ‖g′(q)‖ 6= 0).
In fact, the existence of this type of point p associated to a pseudogroup
whose germ at 0 ∈ C is not solvable has been known for a while (see [Lo] and
their references). However the question on whether or not these pseudo-
groups exhibit more than one single orbit of hyperbolic “fixed points”, at
least in the case of “typical” pseudogroups, has remained open. In [RR],
we provide “generic” answers for this question and for the question on the
nature of the stabilizer of points p 6= 0. This is as follows:

Theorem B ([RR]). Suppose we are given f, g in α and denote by D an
open disc about 0 ∈ C where f, g and their inverses are defined. Assume that
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none of the local diffeomorphisms f, g has a Cremer point at 0 ∈ C. Then,
there is a Gδ-dense set U ⊂ Diffα(C, 0) × Diffα(C, 0) such that, whenever

(h1, h2) lies in U , the pseudogroup Γh1,h2 generated by f̃ = h−1
1 ◦ f ◦ h1,

g̃ = h−1
2 ◦ g ◦ h2 on D satisfies the following:

(1) The stabilizer of every point p ∈ D is either trivial or cyclic.

(2) There is a sequence of points {Qi}, Qi 6= 0 for every i ∈ N∗, con-
verging to 0 ∈ C and such that every Qn is a hyperbolic fixed point of
some element Wi(f̃ , g̃) ∈ Γh1,h2. Furthermore the orbits under Γh1,h2

of Qn1, Qn2 are disjoint provided that n1 6= n2.

Let us now show how the previous theorems can be translated in terms
of nilpotent foliations in the class A2n+1. The above conducted discus-
sion can be expanded to show the existence of an injection from the set of
nilpotent foliations associated to Arnold singularities A2n+1 in the space of
subgroups of Diff (C, 0) generated by two diffeomorphisms such that one of
them has order 2 and the other has order 2n+ 1. Denote by Γ the pseudo-
group generated by f , g on a neighbourhood V of 0 ∈ C. A necessary
condition for a foliation as above to have simply connected leaves (up to a
countable set of them), is that every element on Γ cannot coincide with the
identity on any connected component of its domain of definition. Owing to
Theorem A, the diffeomorphisms f, g can be perturbed into f̃ = h−1

1 ◦f ◦h1

and g̃ = h−1
2 ◦ g ◦ h2 so as to satisfy this condition. It remains the prob-

lem of realizing these diffeomorphisms as the generators of the holonomy of
another nilpotent foliation associated to the Arnold singularity A2n+1. In
this direction, we proved that the existence of an actual correspondence be-
tween the space of these foliations and the space of subgroups of Diff (C, 0)
generated by two holomorphic diffeomorphims conjugate to the rotations
of order 2 and order 2n+ 1 (cf. [MRR]).

To formulate our statement in terms of “Krull denseness”, as in the
original questions, let X ∈ X(C2,0) be a holomorphic vector field with an
isolated singularity at the origin and defining a germ of nilpotent foliation
F of type A2n+1, in particular F possesses one unique separatrix. Now by
putting together the construction in [MRR] with Theorems A and B above,
we obtain:

Theorem C ([MRR, RR]). Let X ∈ X(C2,0) be a vector field with an iso-
lated singularity at the origin and defining a germ of nilpotent foliation F of
type A2n+1. Then, for every N ∈ N, there exists a vector field X ′ ∈ X(C2,0)

defining a germ of foliation F ′ and satisfying the following conditions:

(a) JN0 X
′ = JN0 X.

(b) F and F ′ have S as a common separatrix.
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(c) there exists a fundamental system of open neighborhoods {Uj}j∈N of
S, inside a closed ball B̄(0, R), such that the following holds for every
j ∈ N:

(c1) The leaves of the restriction of F ′ to Uj \S, F ′|(Uj\S) are simply
connected except for a countable number of them.

(c2) The countable set constituted by non-simply connected leaves is,
indeed, infinite.

(c3) Every leaf of F ′|(Uj\S) is either simply connected or homeo-
morphic to a cylinder.

The item (c1) in Theorem C appears already in [MRR] whereas
items (c2) and (c3) require Theorem B proved in [RR]. The realization
of pseudogroups as in the statement of Theorems A and B as holonomy
pseudogroups of nilpotent foliations was carried out in [MRR] and relies
heavily on the techniques of [MS].
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On the space of left-orderings of solvable
groups

Cristóbal RIVAS

1. Introduction

A left-orderable group is a group Γ which admits a total ordering � invari-
ant under multiplications, that is, f ≺ g ⇒ hf ≺ hg for all f, g, h ∈ Γ.
Equivalently Γ is left-orderable if we can find P ⊂ Γ satisfying

i) P P ⊆ P , so P is a semigroup.

ii) Γ = P t P−1 t {id}, where the unions are disjoint.

The set P is usually called the positive cone of an ordering �, since the
equivalence between the two above definitions is given by P� = {f ∈ Γ |
f � id}.

Given a left-orderable group Γ, we shall denote by LO(Γ) its associated
space of left-orderings, which consists of all possible left-orderings on Γ. A
natural topology can be put in LO(Γ) by considering the inclusion P 7→
χP ∈ {0, 1}Γ, where χP denotes the characteristic function over P , and the
topology on {0, 1}Γ is the product topology. In this way, we have that two
left-orderings are close if they coincide on a large finite set. Moreover, one
can check that the inclusion LO(Γ)→ {0, 1}Γ is closed, hence proving

Theorem 1.1 (Sikora [12]). With the above topology, LO(Γ) is compact
and totally disconnected. Moreover, if Γ is countable, then LO(Γ) is metriz-
able.

It is interesting to observe that if Γ is countable and LO(Γ) has no
isolated left-orderings, then LO(Γ) is homeomorphic to the Cantor set.
The problem of relating the topology of LO(Γ) with the algebraic structure
of Γ has been of increasing interest since the discovery by Dubrovina and
Dubrovin that the space of left-orderings of the braid groups is infinite and
yet contains isolated points [2]. Recently, more examples of groups showing
these two behaviors have appeared in the literature [1, 4, 5, 8]. Although all
this groups contain free subgroups, it is known that non-trivial free products
of groups have no isolated left-orderings [10]. In the same spirit, it is a result
of Navas [7], that for finitely generated groups with subexponential growth
(e.g. nilpotent groups), the associated space of left-orderings is either finite
or homeomorphic to the Cantor set.

c© 2013 Cristóbal Rivas
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2. Main results

In this talk I will try to convince you of the following result.

Theorem A(Rivas-Tessera [11]): The space of left-orderings of a count-
able virtually solvable group is either finite or homeomorphic to a Cantor
set.

There are at least three main ingredients, the first one being the notion
of convex subgroup of an ordered group (see for instance [6]).

Definition 2.1. A subset C of a left-ordered group (Γ,�) is convex if the
relation c1 ≺ f ≺ c2, for c1 and c2 in C, implies that f ∈ C.

For us, the main utility of this notion is the following

Proposition 2.2. Let � be a left-ordering on Γ and let H be a convex
subgroup. Then there is a continuous injection LO(H) → LO(Γ), having
� in its image. Moreover, if in addition H is normal, then there is a
continuous injection LO(H)×LO(G/H)→ LO(G) having � in its image.

Therefore, to prove Theorem A, given a left-ordering � it is enough to
find subgroup H that is convex for � and such that LO(H) has no isolated
left-orderings, or such that H is normal and LO(Γ/H) has no isolated
left-orderings.

The second main ingredient is the following nice characterization of
left-orderability (see [3])

Proposition 2.3. For a countable group Γ, the following assertions are
equivalent

• Γ is left-orderable.

• Γ acts faithfully by order preserving homeomorphisms of the real line.

This puts at our disposal the strong machinery of group actions on the
real line. For instance, of mayor importance for us will be the following
theorem.

Theorem 2.4 (Plante [9]). Every finitely generated nilpotent group of
Homeo+(R), acting without global fixed point, preserves a measure on the
real line, which is finite on compact sets and has no atoms (a Radon mea-
sure for short).



181

Finally, the last main ingredient is the notion of Conradian orderings.
Recall that a left-ordering � is called Conradian, if in addition it satisfies
that f � id, g � id⇒ fg2 � id. What it is so important about Conradian
orderings is their nice dynamical counterpart discovered by Navas in [7].

Theorem 2.5 (Navas [7]). Let � be a Conradian ordering on a group Γ.
Then, the action on the real line associated to � is an action without cross-
ings.

The easiest definition of a crossing is the following picture.

f

g

Figure 1: The graphs of the crossed homeomorphisms f and g.

Equivalently, a group Γ ⊂ Homeo+(R) is said to acts without crossings, if
whenever f ∈ Γ fixes a open interval If , but has no fixed point in it, then
for any g ∈ Γ we have that

g(If ) ∩ If =

{
If , or
∅.

This three main ingredient will be put to work together in order to
show Theorem A. We shall put some emphasis in the case where Γ is
a polycyclic group (that is when Γ is finitely generated solvable, and its
successive quotient in the derived series are cyclic), which is the simpler
non-trivial incarnation of Theorem A.
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Hopf Conjecture holds for k-basic, analytic
Finsler metrics on two tori

Rafael RUGGIERO, José Barbosa GOMES and
Mário J. DIAS CARNEIRO

1. Introduction

The theory of metric structures in the torus all of whose geodesics are
global minimizers was totally understood in the Riemannian case after the
solution of the so-called Hopf conjecture: every Riemannian metric in the
torus without conjugate points is flat. This statement was proved by Hopf
[12] in the 1940’s and by Burago-Ivanov [2] in the early 1990’s. However,
if we widen our scope to the family of Finsler metrics the theory still poses
many interesting, unsolved problems.

Definition 1. Let M be a n-dimensional, C∞ manifold, let TpM be the
tangent space at p ∈ M , and let TM be its tangent bundle. In canonical
coordinates, an element of TxM can be expressed as a pair (x, y), where
y is a vector tangent to x. Let TM0 = {(x, y) ∈ TM ; y 6= 0} be the
complement of the zero section. A Ck (k ≥ 2) Finsler structure on M is a
function F : TM → [0,+∞) with the following properties:
(i) F is Ck on TM0;
(ii) F is positively homogeneous of degree one in y, where (x, y) ∈ TM ,
that is,

F (x, λy) = λF (x, y) ∀ λ > 0

(iii) The Hessian matrix of F 2 = F · F

gij =
1

2

∂2

∂yi∂yj
F 2

is positive definite on TM0.
A Ck Finsler manifold (or just a Finsler manifold) is a pair (M,F )

consisting of a C∞ manifold M and a Ck Finsler structure F on M .

Given a Tonelli Hamiltonian in a compact manifold (i.e., a Hamiltonian
that is convex and superlinear in the vertical fibers of the cotangent bundle)
the Hamiltonian flow in a sufficiently high enery level can be reparametrized

The first author was partly supported CNPq, FAPERJ (Cientistas do Nosso Estado),
PRONEX de Geometria, ANR.
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to become the geodesic flow of a Finsler metric, so Finsler theory is as gen-
eral as Hamiltonian theory. Finsler manifolds have curvature tensors which
generalize Riemannian curvature tensors, in particular the so-called flag
curvature K(p, v) that extends the notion of Riemannian sectional curva-
ture (see [1] for instance for the basic theory of Finsler manifolds). Since
the Finsler metric is defined in the tangent bundle of the manifold, the flag
curvature depends in general on the vertical variable v. Finsler surfaces
where K(p, v) = K(p) are called k-basic. Well known examples of non-
Riemannian, k-basic Finsler surfaces are given by Randers metrics: those
obtained by adding a Riemannian norm and a one form.

Finsler manifolds have geodesics, solutions of the Euler-Lagrange equa-
tion defined by the Finsler function F . We say that a complete Finsler
manifold has no conjugate points if every geodesic is a global minimizer
of the Lagrangian action associated to the Finsler metric (i.e., the Finsler
length). Since Busemann examples [3] of non-flat Finsler metrics in the two
torus without conjugate points it is known that the Hopf conjecture is false
in the Finsler realm. Nevertheless, Finsler metrics in the torus without
conjugate points enjoy many properties in common with flat metrics. One
of them is their connection with weakly integrable systems in the sense of
[11]: there exists a continuous, Lagrangian, invariant foliation by tori of
the unit tangent bundle ([6]). The existence of a Lagrangian, Ck invari-
ant foliation of the unit tangent bundle is called in [11] Ck integrability of
the geodesic flow of the Finsler metric. Moreover, in all known examples
of smooth Finsler metrics without conjugate points ([3], [15] for instance)
such foliation is smooth. In the Riemannian case the smoothness of the
foliation follows from the rigidity of the metric: since the metric is flat the
Riemannian metric is Euclidean. The smoothness of the foliation is not
part of the proof of the Hopf conjecture but one of its consequences.

So two questions arise naturally from the above discussion. Do C0 in-
tegrable Finsler geodesic flows on tori are Ck for some k ≥ 1? Does the Ck

integrability of such geodesic flows for k ≥ 1 play any role in the proof of
rigidity results? The first question has been already considered in [6], where
it is proved that Lipschitz integrability of the geodesic flow of a Finsler met-
ric on the torus without conjugate points implies C1 integrability. However,
a full answer to the question is still open.

2. Main results

Our main results provide substantial information concerning the above
problems. The main contribution of our work is the solution of the Hopf
conjecture in the analytic, two dimensional case.
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Theorem 1. An analytic k-basic Finsler metric without conjugate points
in the two torus is flat.

This result is the combination of two results. First of all, the main
theorem in [11],

Theorem 2. C1,L integrable geodesic flows of k-basic Finsler metrics on
two tori are flat.

C1,L means C1 with Lipschitz first derivatives. The second result [8]
deals with the smoothness of the so-called Busemann foliation of Finsler
tori without conjugate points.

Theorem 3. Let (T 2, F ) be an analytic, k-basic Finsler metric without
conjugate points in the two torus T 2. Then the geodesic flow is analytically
integrable, namely, there exists an analytic foliation by invariant tori of
the unit tangent bundle of the metric which are graphs of the canonical
projection.

The last Theorem is the first result, as far as we know, to show that a
Finsler, non-Riemannian metric in the two torus without conjugate points is
smoothly integrable without using geometric rigidity. It is remarkable that
in the literature about the link between smoothness of invariant foliations
of Hamiltonian flows and geometric rigidity, the most common assumption
is hyperbolicity (see for instance [14], [5], [7], [9] with results for surfaces of
higher genus. So most of the ideas applied to such manifolds do not hold
on tori.

Outline of Proof. Let us give a sketch of the proof of the above results.
The proof of Theorem 2 involves the calculation of the Godbillon-Vey num-
ber of the Busemann foliation of a Finsler geodesic flow in the two torus
provided that the foliation is C1,L. This result in itself is very interesting
and gives a sort of generalized Gauss-Bonnet formula for Finsler geodesic
flows on tori without conjugate points which are smoothly integrable:

Proposition 1. Let (T 2, F ) be a C∞ Finsler metric without conjugate
points whose geodesic flow preserves a codimension 1, C1,L foliation F of the
unit tangent bundle. Then (T 2, F ) has no conjugate points and there exists
a Riccati operator u associated to the foliation. Moreover, the Godbillon-
Vey number of F is

gv(F) =

∫
η ∧ dη =

∫
[3(V u)2 + u2]ω1 ∧ ω2 ∧ ω3

+

∫
[4uV J − 2uXV I − IV K]ω1 ∧ ω2 ∧ ω3,
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where the integration is taken over T1M , and

(1) X is the geodesic vector field, V is a unit vertical field and the triple
X, Y, V is a Cartan frame for the unit tangent bundle with ω1, ω2, ω3

as their dual Cartan 1-forms.

(2) K is the flag curvature, I is the Cartan tensor, and J is the Landsberg
tensor.

This is essentially Proposition 2.1 in [11]. We would like to remark
that when the Finsler metric is Riemannian, we get J = I = 0 and the
Godbillon-Vey formula reduces to Mitsumatsu’s formula in [14]. Then we
show (Theorem 4.2 in [11]),

Proposition 2. Let (T 2, F ) be a C∞ Finsler metric without conjugate
points whose geodesic flow preserves a codimension 1 C1 foliation F in
the unit tangent bundle. Then F is the Busemann foliation and moreover,
if F is C1,L its Godbillon-Vey number is zero.

Finally, we use Riemann-Finsler geometry to show that when the Finsler
metric is k-basic the Landsberg tensor J and the Cartan tensor I are related
by the formula

J = uI

at every point in the unit tangent bundle. Replacing this identity in the
Godbillon-Vey formula we get that the Riccati operator must vanish every-
where, and so the flag curvature as well.

The proof of Theorem 3 [8] relies on the application of Riemann-Finsler
geometry to link the singularities of the Busemann foliation (as a foliation)
with the zeroes of the Cartan tensor in the case of k-basic Finsler metrics.
So first of all we show (Proposition 2.2 and Lemma 3.2 in [8])

Proposition 3. Let (T 2, F ) be an analytic k-basic Finsler metric without
conjugate points. Then

(1) Each leaf of the Busemann foliation is analytic.

(2) The Riccati operator associated to Busemann leaves is given by u =
J/I = X(I)/I whenever I 6= 0.

(3) The Busemann foliation is analytic in the set where I 6= 0.

So the study of the analyticity of the Busemann foliation is reduced to
show that the function u = X(I)/I has removable singularities in the unit
tangent bundle. This is proved in Lemma 3.4 in [8] where we show that the
function u has a real analytic extension.
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Riemannian manifolds not quasi-isometric to
leaves in codimension one foliations

Paul A. SCHWEITZER, S.J.

The question of when an open (i.e. noncompact) connected manifold
can be realized up to diffeomorphism as a leaf in a foliation of a compact
differentiable manifold was first posed by Sondow in 1975 for surfaces in
3-manifolds, and was solved positively for all open surfaces by Cantwell
and Conlon [3] in 1987. In the opposite direction, in 1985 Ghys [4] and
(independently) Inaba, Nishimori, Takamura and Tsuchiya [5] constructed
open 3-manifolds—infinite connected sums of lens spaces—that cannot be
leaves in a foliation of a compact 4-manifold. Attie and Hurder [2] in
1996 gave an uncountable family of smooth simply connected 6-dimensional
manifolds that are not diffeomorphic to leaves in a compact 7-manifold. It
is still an open problem whether every smooth open manifold of dimension
greater than 2 is diffeomorphic to a leaf of a foliation of codimension two
or greater.

For the related question of when an open Riemannian manifold can be
realized up to quasi-isometry as a leaf in a foliation of a compact mani-
fold, Attie and Hurder [2] also produced an uncountable family of quasi-
isometry types of Riemannian metrics on the 6-manifold S3×S2×R, each
with bounded geometry, which are not quasi-isometric to leaves in any co-
dimension one foliation of a compact 7-manifold. (Note that leaves of a
foliation on a compact Riemannian manifold must have bounded geom-
etry, such as injectivity radius and curvatures.) Their results extend to
codimension one foliations of dimensions greater than 6, but they asked
(Question 2 in [2]) whether there exist examples in the lower dimensions
3, 4, and 5. We answer this question in the following theorem.

Theorem 1. Every connected non-compact smooth p-manifold L of dimen-
sion p ≥ 2 possesses C∞ complete Riemannian metrics g with bounded
geometry that are not quasi-isometric to any leaf of a codimension one C2,0

foliation on any compact differentiable (p+ 1)-manifold.
Furthermore g can be chosen such that no end is quasi-isometric to an

end of a leaf of such a foliation, and also to have any growth type compatible
with bounded geometry. Hence there are uncountably many quasi-isometry
classes of such metrics g on every such manifold L.

May 31, 2013
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Consequently no bounded local geometric invariants of an open Rieman-
nian p-manifold with p ≥ 2 can be obstructions to its being quasi-isometric
to a leaf.

Figure 1: The manifold L with the original metric.

Figure 2: The manifold L with “balloons”.

Our construction of Riemannian metrics on open manifolds modifies
an arbitrary given metric by replacing open disks of a fixed small radius δ
by large balloons, which are the complements of δ-disks in spheres of arbi-
trarily large radius. This can be done so that the curvature and injectivity
radius remain globally bounded. By inserting these balloons in disks that
converge rapidly to the ends of the manifold, the original growth rate can
be preserved. We show that open manifolds with arbitrarily large balloons
cannot be codimension one leaves in a compact manifold.

For surfaces the theorem was proven in [7] using a certain ‘bounded
homotopy property’. For manifolds of dimension p ≥ 3, we introduce
an analogous ‘bounded homology property’ which must be satisfied for all
leaves of C2,0 codimension one foliations of compact (p + 1)-manifolds [8].
The essential idea is that an embedded vanishing cycle of limited size that
bounds on its p-dimensional leaf must bound a region C of the leaf that
in a certain sense is ‘small’. From consideration of the leaves in a Reeb
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component it is obvious that the p-volume of the bounded region may be
arbitrarily large. Hence we need a different notion of size. We consider
non-negative Morse functions on the region C that vanish on its boundary
(the vanishing cycle), and we require that there be a Morse function whose
level sets have bounded (p− 1)-volume. The minimum over all such Morse
functions of the maximum (p − 1)-volume of the level sets is called the
Morse volume of the bounded set C. A manifold L possesses the bounded
homology property if, for every constant K > 0 there is an ε > such that
for every connected embedded cycle that bounds on L and has volume less
than ε, the manifold it bounds must have Morse volume less than K.

Figure 3: Morse volume of a compact manifold C with boundary B.

It is easy to see that the leaves in a Reeb component have uniformly
bounded Morse volume.

Figure 4: The Morse volume of a set C in a leaf of a Reeb component.

We prove that leaves in a codimension one foliation of a compact (p+1)-
manifold (p ≥ 3) must have the bounded homology property. It is clear
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that a Riemannian manifold in which arbitrary large balloons have been
inserted does not have the bounded homology property, thus showing the
theorem. At a certain point in the proof of the theorem we need a weak
generalization of Novikov’s celebrated theorem on the existence of Reeb
components: Every connected (p−1)-dimensional vanishing cycle embedded
on a p-dimensional leaf in a compact foliated (p + 1-manifold must lie on
the boundary of a (generalized) Reeb component with connected boundary;
a generalized Reeb component with connected boundary is defined to be
a compact foliated (p + 1)-manifold with connected non-empty boundary
whose interior foliates over the circle with the leaves as fibers. We give a
proof of this weak generalization.

A diffeomorphism f : L → L′ between two Riemannian manifolds L
and L′ is defined to be a quasi-isometry if there exist constants C,D > 0
such that the distance functions d and d′ on L and L′ satisfy

C−1d′(f(x), f(y))−D ≤ d(x, y) ≤ Cd′(f(x), f(y)) +D

for all points x, y ∈ L. For example, any diffeomorphism between compact
smooth Riemannian manifolds is a quasi-isometry. The presence of the
constant D > 0 in this definition requires some technical details in the
definition of the bounded homology property so that it will be an invariant
of quasi-isometry.
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Several problems on groups of
diffeomorphisms

Takashi TSUBOI

1. Introduction

This is a discussion on several problems related to the study of groups of
diffeomorphisms which the author worked on for a while with some hope
to find new phenomena.

For a compact manifold M , let Diffr(M) (r = 0, 1 5 r 5∞, or r = ω)
denote the group of Cr diffeomorphisms of M . Diffr(M) is equipped with
the Cr topology and let Diffr(M)0 denote the identity component of it.
The family of diffeomorphisms generated by a time dependent vector field
is called an isotopy. A diffeomorphism near the identity is contained in an
isotopy. Diffr(M) has a manifold structure modelled on the space of Cr

vector fields. It is worth noticing that the composition (g1, g2) −→ g1 ◦ g2

in Diffr(M) (1 5 r <∞) is C∞ with respect to g1 but not continuous with
respect to g2.

2. Foliated products

A smooth singular simplex σ : ∆m −→ Diffr(M) corresponds to the multi
dimensional isotopy which is the foliation of ∆m × M transverse to the
fibers of the projection ∆m ×M −→ ∆m whose leaf passing through (t, x)
is {σ(s)σ(t)−1(x)

∣∣ s ∈ ∆}. These multi isotopies naturally match up along
the boundary and form the universal foliatedM -product over the classifying
space BDiffr(M).

The author is partially supported by Grant-in-Aid for Scientific Research (S) 24224002 and
Grant-in-Aid for challenging Exploratory Research 24654011, Japan Society for Promotion of
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Let BΓ r
n be the classifying space for Haefliger’s Γ r

n structures with triv-
ialized normal bundles. Since BΓ r

n classifies Cr foliations with trivialized
normal bundles, for an n-dimensional parallelized manifold Mn, we obtain
the map BDiffr(Mn)×Mn −→ BΓ r

n, and hence the map BDiffr(Mn) −→
Map(M,BΓ r

n). The deep result by Mather-Thurston says that the last map
induces an isomorphism in integral homology.

Theorem 2.1 (Mather-Thurston). For 1 5 r 5∞,

H∗(BDiffr(Mn);Z) ∼= H∗(Map(Mn, BΓ r
n);Z).

In particular, H∗(BDiffrc(R
n);Z) ∼= H∗(Ω

nBΓ r
n;Z) for the group Diffrc(R

n)
of Cr diffeomorphisms of Rn with compact support.

On the other hand, H1(BDiffr(Mn);Z) = 0 (1 5 r 5∞, r 6= n+1) has
been shown by Herman-Mather-Thurston. Note thatH1(BDiffr(Mn);Z) ∼=
H1(BD̃iffr(Mn)δ0;Z), where D̃iffr(Mn)0 is the universal covering group and
δ means that the group is equipped with the discrete topology when we take
its classifying space. In general, the abelianization of a group G is isomor-
phic to H1(BGδ;Z) and a group is said to be perfect if its abelianization is
trivial. Moreover, by the fragmentation technique, H1(BDiffr(Mn);Z) = 0

is equivalent to H1(BDiffrc(R
n);Z) = 0, and if D̃iffrc(R

n)0 is perfect, then

D̃iffr(Mn)0 and Diffr(Mn)0 are perfect.

Theorem 2.2 (Herman-Mather-Thurston). Diffrc(M
n)0 (1 5 r 5 ∞, r 6=

n+ 1) is a perfect group. It is a simple group if Mn is connected.

It is known that for r > 2 − 1/(n + 1), there is a characteristic co-
homology class called the Godbillon-Vey class in Hn+1(BDiffr(Mn);R).
BDiffr(Mn) is conjectured to be n-acyclic. For the higher dimensional ho-
mology, it is only known [ASPM (1985), Annals (1989)] that

H2(BDiffrc(R
n);Z) = 0 if 1 5 r < [n/2],

Hm(BDiffrc(R
n);Z) = 0 if 1 5 r < [(n+ 1)/m]− 1 and

Hm(BDiff1
c(R

n);Z) = 0 for m = 1.

The main technical reason of the above regularity conditions can be
seen in the infinite iteration construction using (Z+∗Z+)n action on Rn. As
is well-known, by the homothety of ratio A, the Cr-norm of a foliated Rn-
product is multiplied by A1−r. For the easiest case of divisible abelian m-
cycle c represented by time 1 maps of commuting vector fields, we divide it
into 2m pieces [n/m] times and we use Z2n

+ action generated by homotheties
of ratio A = 1/(2 + ε), then the infinite iteration construction converges in
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the Cr topology if 2−[n/m]/(2 + ε)1−r < 1, that is, if r − [n/m]− 1 < 0. To
treat general cycles we loose a little more regularity.

For the connectivity of BΓ r
n, it seems that it increases when r tends

to 1. It is true that in Diff1+α
c (Rn), we can construct a Zk action which

permutes open sets, where k tends to infinity as α tends to 0 [JMSJ (1995)],
and we think that we can use it to construct infinite iterations of chains.
The bound of the rank of such action has been studied by Andrés Navas
which gave rise to a new direction of study of group of diffeomorphisms.

For seeking more regular construction, it is necessary to know that
abelian cycles are null homologous.

Problem 2.3. For the action ϕ : Rm −→ Diffr(Mn), show that
B(Rm)δ −→ BDiffr(Mn) induces the trivial homomorphism in integral
homology.

Remark 2.4. It is true for Diff∞c (R) [Fourier (1981), Fete of Topology
(1988)]. It is probably true for m = 1 and Diff∞c (Rn). The first interesting
case is R2 −→ Diff∞c (R2).

To treat non abelian cycles, we notice that the theorem of Mather-
Thurston implies that any class of H2(BDiff

r
(Mn);Z) (r 6= n + 1) can be

represented by a foliated Mn product over the surface Σ2 of genus 2.
For the smooth codimension 1 foliations, there is the interesting prob-

lem of determining the kernel of the Godbillon-Vey class.

Problem 2.5. Determine the kernel of GV : H2(BDiffrc(R);Z) −→ R.

Remark 2.6. There is a group G which contains both Diffrc(R) (r >
1 + 1/2) and the group PLc(R) of piecewise linear homeomorphisms of
R with compact support, with a metric such that GV cocycle is contin-
uous [Fourier (1992)]. We know that for a G-foliated R-product F over
a surface, GV (F) = 0 if and only if F is homologous to a G-foliated R-
product H0 over a surface Σ which is the limit of G-foliated R-products Hk

over the surface Σ representing 0 in H2(G;Z) [Proc. Japan Acad (1992)].
Hk are in fact transversely piecewise linear foliations and the topology of
BPLc(R)δ has been known by the work of Peter Greenberg. It will be
nice if we can take Hk to be C1 piecewise PSL(2;R) foliated S1-products.
The group of C1 piecewise PSL(2;R) diffeomorphisms of S1 contains the
Thompson simple group (consisting of C1 piecewise PSL(2;Z) diffeomor-
phisms) which gives other interests to study this group.
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3. BΓ ω
1

Many years ago, Haefliger showed that BΓ ω
1 is a K(π, 1) space. If one

understands the definition of the Γ ω
1 structures, though π is a huge group,

it is easy to show that H1(BΓ ω
1 ;Z) = 0.

Problem 3.1. Prove or disprove that H2(BΓ ω
1 ;Z) = 0.

Remark 3.2. The homology group H2(BΓ ω
1 ;Z) is generated by cycles

represented by surfaces Σ2 of genus 2 with Cω singular foliations with 2
saddles. Since H1(BΓ ω

1 ;Z) = 0 is a K(π, 1), a homology class represented
by the map from S2 is trivial. A homology class represented by the map
from T 2 is homologous to a union of suspensions of Cω diffeomorphisms of
S1, and these are trivial because Diffω(S1)0 is perfect by a result of Arnold.

As for the perfectness of the group Diffω(Mn)0 of real-analytic diffeo-
morphisms of Mn, Herman showed that Diffω(T n)0 is simple almost 40
years ago. Rather recently, we could show that if Mn admits a nice circle
action then Diffω(Mn)0 is perfect [Ann. ENS (2009)]. These are applica-
tions of Arnold’s work on the small denominators. With this method, it
should be at least generalized to the manifolds with circle actions. There
are torus bundles which admits a flow whose orbit closures are fibers. It
might be possible to apply the argument of [Ann. ENS (2009)].

4. Uniform perfectness

For a perfect group G, every element g can be written as a product of
commutators. The least number of commutators to write g is called the
commutator length of g and written as cl(g). A group G is uniformly
perfect if cl is a bounded function. The least bound cw(G) is called
the commutator width. After the result by Burago-Ivanov-Polterovich
[ASPM (2008)], we showed that for a compact n-dimensional manifold Mn

which admits a handle decomposition without handles of the middle in-
dex n/2, cw(Diffr(Mn)0) 5 3 if n is even, cw(Diffr(Mn)0) 5 4 if n is odd
(r 6= n + 1). For a compact 2m-dimensional manifold M2m (2m = 6),
cw(Diffr(M2m)0) <∞ (r 6= 2m+ 1) [CMH (2012)].

Problem 4.1. Estimate cw(Diffr(T 2)0), cw(Diffr(CP 2)0), cw(Diffr(S2 ×
S2)0), ...

For the group of homeomorphisms, we managed to prove that for the
spheres Sn and the Menger compact space µn, cw(Homeo(Sn)0) = 1 and
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cw(Homeo(µn)) = 1 [Proc. AMS (2013)]. It is probably true that for the
Menger-type compact space µnk , cw(Homeo(µnk)+) = 1, where + means a
certain condition concerning the orientation. The idea of proof comes from
the fact that the typical homeomorphism of such a space is the one with one
source and one sink and that the conjugacy class of such a homeomorphism
should be unique.

Problem 4.2. Find other examples of groups of commutator width 1.

In 1980, Fathi showed that for the group Homeoµ(Mn)0 of homeomor-
phisms preserving a good measure µ of Mn (n = 3), the kernel of the flux
homomorphism Homeoµ(Mn)0 −→ Hn−1(Mn;R) is perfect. It seems that
he proved that the kernel is uniformly perfect (at least he proved it for the
spheres). For the group Diffvol(M

n)0 of volume preserving diffeomorphisms,
Thurston showed that the kernel of the flux homomorphism is perfect.

Problem 4.3. Prove or disprove that Diffvol(S
n)0 (n = 3) is uniformly

perfect.

Burago-Ivanov-Polterovich gave the notion of norms on the group and
studied its properties. ν : G −→ R=0 is a (conjugate invariant) norm if
it satisfies (i) ν(1) = 0; (ii) ν(f) = ν(f−1); (iii) ν(fg) 5 ν(f) + ν(g); (iv)
ν(f) = ν(gfg−1) and (v) ν(f) > 0 for f 6= 1. For a symmetric subset
K ∈ G normally generating G, any f ∈ G can be written as a product of
conjugates of elements of K and the function giving the minimum number
qK(f) of the conjugates is a norm. Then cl(f) = qK(f) for K being the set
of single commutators.

For the groups of diffeomorphism with the fragmentation property, the
perfectness implies the simplicity. For a simple group G, the norm q{g,g−1} :
G −→ Z=0 is defined for g ∈ G. If {q{g,g−1}}g∈G\{1} is bounded then G is
said to be uniformly simple. In other words, for any f ∈ G and g ∈ G\{1},
f is written as a product of a bounded number of conjugates of g or g−1.
We have a distance function d on the set {C{g,g−1}}g 6=1 of symmetrized
nontrivial conjugate classes:

d(C{f,f−1}, C{g,g−1}) = log max{q{f,f−1}(g), q{g,g−1}(f)}
For simple groups which are not uniformly simple, for example, Diffvol,c(R

n)0

(n = 3), A∞, etc, it is interesting to study the metric d. For the infinite al-
ternative group A∞, Kodama and Matsuda told me that d is quasi-isometric
to the half line.

A real valued function φ on a group G is a homogeneous quasimorphism
if (g1, g2) 7→ φ(g2)−φ(g1g2)+φ(g1) is bounded and φ(gn) = nφ(g) for n ∈ Z.
Put

D(φ) = sup{|φ(g2)− φ(g1g2) + φ(g1)|
∣∣ (g1, g2) ∈ G×G}.
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Then Bavard’s duality says that

scl(g) =
1

2
sup

φ∈Q(G)/H1(G;R)

φ(g)

D(φ)
,

where scl(g) = lim
n→∞

cl(gn)

n
(stable commutator length) and Q(G) is the

real vector space of homogeneous quasimorphisms on G. Of course, for
groups with infinite commutator width, we need to study their stable com-
mutator length function. If the commutator width of a group G is infinite,
G is not uniformly simple, hence the distance function d is unbounded.
We might have more information on the distance d by looking at rela-
tive quasimorphisms. Let Q(G,K) be the real vector space of homoge-
neous quasimorphisms on G which vanishes on K. If there is a nontrivial
element φ ∈ Q(G,K) (for example, if dimQ(G) is larger than the num-
ber of K), then φ(f) 5 (qK(f) − 1)D(φ) and qK is not bounded. Since
Entov-Polterovich, Gambaudo-Ghys, Ishida, and others have shown that
Q(Diffvol(D

2, rel∂D2)) is infinite dimensional and hence the kernel of the
Calabi homomorphism Diffvol(D

2, rel∂D2) −→ R is not uniformly simple.

Problem 4.4. For the kernel of the Calabi homomorphism
Diffvol(D

2, rel∂D2) −→ R, show that {C{g,g−1}}g 6=1 with metric d is not
quasi-isometric to the half line.

As for the group Homeovol(D
2, rel∂D2), despite attemps by many peo-

ple, its simplicity is still an open problem. The following problem seems to
be the first step to show it.

Problem 4.5. Using area preserving homeomorphisms with the Calabi
invariant being infinity, show that an area preserving diffeomorphism with
nontrivial Calabi invariant is a product of commutators.

Graduate School of Mathematical Sciences
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Hedlund’s theorem for compact laminations
by hyperbolic surfaces

Alberto VERJOVSKY

If L is a compact minimal lamination by surfaces of negative curva-
ture, we give a sufficient condition for the horocycle flow on its unit tan-
gent bundle to be minimal. The geodesic and horocycle flows over compact
hyperbolic surfaces have been studied in great detail since the pioneering
work in the 1930’s by E. Hopf and G. Hedlund. Such flows are partic-
ular instances of flows on homogeneous spaces induced by one-parameter
subgroups, namely, if G is a Lie group, K a closed subgroup and N a one-
parameter subgroup of G, then N acts on the homogeneous space K\G
by right multiplication on left cosets. One very important case is when
G = SL(n,R), K = SL(n,Z) and N is an unipotent one parameter sub-
group of SL(n,R), i.e., all elements of N consists of matrices having all
eigenvalues equal to one. In this case SL(n,Z)\SL(n,R) is the space of
unimodular lattices. By a theorem by Marina Ratner , which gives a pos-
itive answer to the Raghunathan conjecture, the closure of the orbit un-
der the unipotent flow of a point x ∈ SL(n,Z)\SL(n,R) is the orbit of
x under the action of a closed subgroup H(x). This particular case al-
ready has very important applications to number theory, for instance, it
was used by G. Margulis and Dani and Margulis to give a positive answer
to the Oppenheim conjecture. When n = 2 and Γ is a discrete subgroup
of SL(2,R) such that M := Γ\SL(2,R) is of finite Haar volume, and N
is any unipotent one-parameter subgroup acting on M , Hedlund proved
that any orbit of the flow is either a periodic orbit or dense. When Γ is
cocompact the flow induced by N has every orbit dense, so it is a minimal
flow. The horocycle flow on a compact hyperbolic surface is a homogeneous
flow of the previous type and most of the important dynamic, geometric
and ergodic features are already present in this 3-dimensional case.

On the other hand, the study of Riemann surface laminations has re-
cently played an important role in holomorphic dynamics polygonal tilings
of the Euclidean or hyperbolic plane , moduli spaces of Riemann surfaces,
etc. It is natural then to consider compact laminations by surfaces with
a Riemannian metric of negative curvature and consider the positive and
negative horocycle flows on the unit tangent bundle of the lamination. In
this paper we give a condition that guarantees that both these flows are
minimal if the lamination is minimal.

joint work with Matilde Mart́ınez
c© 2013 Alberto Verjovsky
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Uniqueness of the contact structure
approximating a foliation

Thomas VOGEL

1. Introduction

We study the relationship between foliations by surfaces and contact struc-
tures on oriented 3-manifolds. Let us recall that a positive contact structure
ξ is a smooth plane field locally defined by a 1-form α such that α∧dα > 0.
In the following we assume that all plane fields are cooriented (and hence
oriented) and all contact structures are positive. The first result indicat-
ing that there are connections between foliations and contact structures on
3-manifolds is the following theorem from [3].

Theorem 1.1 (Eliashberg-Thurston). Let F be a C2-foliation on a com-
pact 3-manifold such that F is not diffeomorphic to a foliation by spheres
on S2× S1. Then every C0-neighbourhood of F in the space of plane fields
contains a positive contact structure.

Example 1.2. The foliation of T 3 = R3/Z3 given by the 2-tori {z =
const} is approximated by the contact structures

ξk,ε = ker (αk,ε = dz + ε (cos(2πkz)dx− sin(2πkz)dy))

as 0 6= ε→ 0 provided that k is a positive integer. According to Gray’s the-
orem, contact structures which are homotopic through contact structures
are isotopic. This ensures that ξk,ε is independent from ε, so we omit the ε
from the notation. However, it is well known that the contact structures ξk
and ξl are isotopic if and only if k = l. Therefore one cannot expect that
there is a neighbourhood of F such that all positive contact structures in
that neighbourhood are pairwise isotopic.

In this talk we present a complete characterization of those foliations
which have a C0-neighbourhood in the space of plane fields such that all
positive contact structures in that neighbourhood are pairwise isotopic. Our
result can be applied to show that the space of taut foliations on certain
3-manifolds is not connected. This is of interest in view of the work of
H. Eynard [4] and this question was investigated further by J. Bowden [1].

c© 2013 Thomas Vogel
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2. Main results

It turns out that the presence of torus leaves as in Example 1.2 is the
main source of non-isotopic contact structures in arbitrarily small neigh-
bourhoods of a foliation.

Theorem 2.1 (Vogel). Let F be a C2-foliation on a closed 3-manifold such
that

(i) there is no torus leaf,

(ii) not every leaf is a plane, and

(iii) not every leaf is a cylinder.

Then there is a C0-neighbourhood of F in the space of plane fields such that
all positive contact structures in that neighbourhhood are pairwise isotopic.

This theorem remains true for confoliations (i.e. smooth plane fields
defined by a 1-form α such that α ∧ dα ≥ 0) instead of foliations. Let us
also note that the main use of the C2-assumption is through Sacksteder’s
theorem which guarantees the existence of curves with attractive holon-
omy in exceptional minimal sets. Both the existence result of Eliashberg-
Thurston and our uniqueness result remain valid for stable/unstable fo-
liations of Anosov flows on 3-manifolds although these foliations are not
C2-smooth in general.

Let recall that according to theorems of H. Rosenberg and G. Hector,
C2-foliations of the type described in (ii) respectively (iii) occur only on
T 3 respectively on parabolic T 2-bundles over S1. Thus if M is not a torus
fibration over S1, then (i) is the only restriction on the foliation in order to
ensure that the contact structures approximating the foliation are unique
up to isotopy.

Remark 2.2. It can be shown (by explicit construction) that every neigh-
bourhood of a foliation as in (i),(ii),(iii) of the above theorem contains
infinitely many pairwise non-isotopic contact structures.

The uniqueness theorem can be extended to the case when torus leaves
are present provided that the torus leaves have attractive holonomy (this
condition can be weakened a little bit, however it cannot be omitted com-
pletely). Then every two contact structures in a sufficiently small C0-
neighbourhood of F become isotopic after a stabilization operation is ap-
plied to both them.

The proof of Theorem 2.1 is rather intricate. The overall structure is
similar to the structure of the proof of Theorem 1.1 but the order of the
steps is reversed. For the purposes of this exposition we assume that F has
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only one minimal set, namely a closed leaf Σ of genus g ≥ 2. The two main
steps of the proof are then as follows:

1. Fix a pair of tubular neighbourhoods Vout(Σ) ⊃ Vin(Σ) of Σ. Given
two contact structures ξ0, ξ2 sufficiently close to F show that there is
a contact structure ξ1 on M such that ξ0 is isotopic to ξ1 and ξ1 = ξ2

on the complement of Vin(Σ). This step uses an adaptation of the
methods used in [2] by V. Colin.

2. Show that the restriction of ξ1, ξ2 to Vout(Σ) \ Vin(Σ) completely de-
termines ξ1 and ξ2 on Vout(Σ) up to isotopy relative to the boundary
provided that ξ2 is sufficiently close to F . For this we appeal to clas-
sification results of K. Honda, W. Kazez and G. Matić [6] and we use
the technique developed in [5] by E. Giroux.

The above strategy works if a finite list of assumptions on the distance
of the contact planes from F is satisfied. We thus obtain the required
neighbourhood of F in the space of plane fields. Above we have constructed
a homotopy through contact structures which is turned into an isotopy by
Gray’s theorem.

3. Applications and a question

Theorem 1.1 has the following applications: Every construction of an inter-
esting foliation on a 2-manifold can be viewed as construction of a poten-
tially interesting contact structure. Conversely, Theorem 2.1 allows us to
associate every invariant of a contact structure to a foliation which satisfies
the hypothesis of Theorem 2.1. It is rather easy to show that this invariant
does not change when the foliation F is deformed through a continuous
path of foliations satisfying the hypotheses. Therefore, Theorem 2.1 can
be used to show that the space of taut foliations is not connected on some
manifolds.

For this recall that on the one hand foliations without torus leaves are
always taut. On the other hand if a foliation has no Reeb components, then
all torus leaves are incompressible. Hence contact invariants can be applied
effectively to the study of connectivity properties of spaces of taut foliations
on atoroidal manifolds. This should be compared with theorems of H. Ey-
nard which imply that two taut foliations are homotopic through foliations
(which may have Reeb components) provided that the two foliations are
homotopic through plane fields.

Question 3.1. Theorem 2.1 can be viewed as a statement about the rela-
tionship between the topology space of contact structures and the topology
of the C0-closure of the space of contact structures. What else can be said?
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On a peculiar conformally defined class
of surfaces and foliations

Pawe l G. WALCZAK

In [LW1], the authors proposed to study the extrinsic conformal ge-
ometry of foliations on 3-manifolds of constant sectional curvatures. By
extrinsic conformal geometry, we mean such geometric properties which (1)
can be expressed in terms of the second fundamental form (of the leaves)
and (2) are invariant under Möbius transformations.

The simplest property of this sort is umbilicity : a surface (in particular,
a leaf) L is umbilical whenever the two principal curvatures k1 and k2 of L
are equal. In [LW1], the authors proved that umbilical foliations (that is,
foliations by umbilical leaves) on compact manifolds of non-zero constant
curvature do not exist.

Since then, we (working, in different configurations, together with Adam
Bartoszek, Gilbert Hector and Rémi Langevin), obtained a number of neg-
ative results concerning existence of foliations by leaves enjoying several
geometric properties. For example, we proved that (nonsingular!) folia-
tions by Dupin cyclides [LW1] and surfaces with constant local conformal
invariants [BW] (see [CSW] for the definitions) do not exist on compact
manifolds of constant non-zero curvature and that foliations by canal sur-
faces (that is envelopes of one-parameter families of spheres) do not exist
on closed hyperbolic manifolds [HLW].

Positive results of this sort have been obtained as well: on the sphere
S3, nonsingular foliations by canal surfaces (and by special canal surfaces
defined and studied in [BLW]) and singular foliations by Dupin cyclides do
exist and have been classified ([LW2] and [LS]).

In this talk, we will define and discuss a new (?) class S of surfaces:
those built of pieces of canals and pieces of spheres. Roughly speaking, a
surface L belongs to S whenever one of its principal conformal curvatures
(again, see [CSW] for a definition) vanishes at all the non-umbilical points.
We will show that, from the topological point of view, any ”reasonable”
surface can be represented by a surface of our class S and that there exist
many foliations of 3-manifolds by the leaves of this class. In particular, we
shall show that

(1) all the surfaces listed as generic leaves in either [CC] or [Gh] can
be represented by elements of this class,

(2) several closed 3-manifolds (like T 3, S3 and some others) admit

c© 2013 Pawe l G. Walczak
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foliations by surfaces of class S.
It seems that our class S should be interesting not only from the point of

view of pure mathematics (geometry) but also for computer aided geometric
design (CAGD) 1.
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On Lagrangian submanifolds in the
Euclidean spaces

Naohiko KASUYA and Toru YOSHIYASU

1. Introduction

In this paper, we study the problem of realizing an n-manifold Mn as a
Lagrangian submanifold in the 2n-dimensional Euclidean space R2n with a
not fixed symplectic structure.

For the standard symplectic structure, there are several conditions on
Lagrangian submanifolds.

Theorem 1.1 (Gromov [5]). Let Ln be a closed Lagrangian submanifold of
the 2n-dimensional Euclidean space with the standard symplectic structure,
(R2n, ω0). Then

[ω0] 6= 0 ∈ H2(R2n, L;R),

and therefore H1(L;R) 6= 0.

Theorem 1.2 (Fukaya [3]). Let (R6, ω0) be the 6-dimensional Euclidean
space with the standard symplectic structure and L be an oriented con-
nected closed prime 3-manifold. Then L can be embedded in (R6, ω0) as a
Lagrangian submanifold if and only if L is diffeomorphic to S1×Σg, where
Σg is an oriented closed 2-dimensional manifold of genus g ≥ 0.

By Theorem 1.1 and Theorem 1.2, the topology of a Lagrangian sub-
manifold of R2n with the standard symplectic structure is strongly re-
stricted. On the other hand, we will see that almost of all the closed
parallelizable manifolds can be Lagrangian submanifolds of the Euclidean
spaces with not fixed symplectic structures.

2. Main Result

The main result is the following.

Theorem 2.1. Let Mn be a closed parallelizable n-manifold. If n 6= 7, or
if n = 7 and the Kervaire semi-characteristic χ 1

2
(M7) is zero, then for any

embedding of Mn in R2n, there exists a symplectic structure on R2n such
that the embedding is Lagrangian.

c© 2013 Naohiko Kasuya and Toru Yoshiyasu
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Remark 2.2. For n = 2, the only closed parallelizable 2-manifold is the
2-torus and for n = 3, any closed orientable 3-manifold is parallelizable.
There are infinitely many isotopy classes of embeddings of the 2-torus in
the 4-dimensional Euclidean space. For n ≥ 3, there is a surjection from the
set of isotopy classes of embeddings of Mn in the 2n-dimensional Euclidean
space R2n to the homology group H1(Mn;Z) if n is odd, and to H1(Mn;Z2)
if n is even [9], [10].

3. Preliminary

To obtain a Lagrangian embedding of an n-manifold in R2n, we embed its
cotangent bundle in R2n and extend its canonical symplectic structure to
R2n.

Proposition 3.1. Let Mn be a closed parallelizable n-manifold embedded
in R2n. Then its normal bundle is trivial.

Proof. It is an immediate consequence of Kervaire’s theorem that for any
stably parallelizable manifold Kd embedded in R2d, the normal bundle is
trivial [7].

Therefore, for a closed parallelizable n-manifold Mn, any embedding of
Mn in R2n extends to an embedding of T ∗Mn in R2n. To extend the canon-
ical symplectic structure on T ∗Mn, we review Gromov’s h-principle for
symplectic structures on an open manifold and the space of non-degenerate
2-forms on R2n.

Theorem 3.2 (Gromov [4]). Let N2n be a triangulated open 2n-manifold
and ω be a non-degenerate 2-form on N2n. Then there is a symplectic
form ω̃ on N2n. Moreover, if ω is closed on a neighborhood of a subset
M of a core C of N2n, then we can choose ω̃ which coincides with ω on a
neighborhood of M .

By Theorem 3.2, to extend the canonical symplectic structure, it is
sufficient to extend the canonical symplectic structure as a non-degenerate
2-form. We prepare some propositions to apply Theorem 3.2.

Proposition 3.3 (See the section 4.3 of [2]). Let N be a triangulated open
manifold. Then there exists a subpolyhedron C ⊂ N such that dimC <
dimN and N can be compressed by an isotopy ϕt : N → N , t ∈ [0, 1], into
any neighborhood of C.

We call C a core of the open manifold N .
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Proposition 3.4. There is a diffeomorphism from the space of linear sym-
plectic structures on R2n to the quotient space GL(2n;R)/Sp(2n). More-
over, the connected component GL+(2n;R)/Sp(2n) corresponds to the space
of linear symplectic structures on R2n which give the positive orientation on
R2n where

GL+(2n;R) = {A ∈ GL(2n;R) | detA > 0}.

Proof. For a linear symplectic structure Ω on R2n, we can take a symplec-
tic basis 〈u1, v1, . . . , un, vn〉 which is determined up to linear transformations
by the symplectic group Sp(2n). That is, the map

Ω 7→ [A] ∈ GL(2n;R)/Sp(2n)
(
A = (u1 · · ·un v1 · · · vn)

)
is well defined. Its inverse is given by

[A] 7→ tA−1Ω0A
−1

(
Ω0 =

(
0 1
−1 0

)
∈ GL(2n;R)

)
.

Then we can identify a positive non-degenerate 2-form on R2n with a
smooth map

R2n → GL+(2n;R)/Sp(2n).

We note that the map represents a symplectic basis of the non-degenerate
2-form at each point of R2n.

Proposition 3.5 (See the section 2.2 of [8]). The map

GL+(2n;R)/Sp(2n)→ SO(2n)/U(n), [A] 7→ [B],

where (tA−1Ω0A
−1 tA−1 tΩ0A

−1)−
1
2 (tA−1Ω0A

−1) = BΩ0B
−1, is a homotopy

equivalence.

By Proposition 3.4 and 3.5, we can identify the canonical symplectic
structure ω on T ∗Mn with the continuous map

ω : T ∗Mn → SO(2n)/U(n).

Actually, the possibility of extending the canonical symplectic structure ω
as a non-degenerate 2-form depends only on the homotopy type of ω.

Remark 3.6. For an n-manifold Mn, the existence of a Lagrangian em-
bedding of Mn in R2n with a not fixed symplectic structure is equivalent
to the existence of a totally real embedding of Mn in Cn. Indeed, we can
check it by applying Theorem 3.2 and Gromov’s h-principle for totally real
embeddings [6]. Audin gave a necessary and sufficient condition for the
existence of a totally real embedding of Mn in Cn in [1]. In particular, the
existence part of Theorem 2.1 is a part of Audin’s theorem if n 6= 7.
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4. Outline of the Proof of Theorem 2.1

Proof. We prove only the case where n = 3. It suffices to show that the
map ω : T ∗M3 → SO(6)/U(3) is null-homotopic. Let us take a triangulation
of M3, M (0) ⊂ M (1) ⊂ M (2) ⊂ M (3) = M3 be the skeletons, f : M3 → R6

be the embedding. First, we denote the Gauss map of f by g0. Since M3

is parallelizable, the Gauss map of f takes the value in the Stiefel manifold
V6,3,

g0 : M3 → V6,3.

The map g0 is null-homotopic on M (2) because V6,3 is 2-connected. Thus

there exists a homotopy g
(2)
t : M (2) → V6,3, t ∈ [0, 1], with g

(2)
0 = g0 |M(2)

and g
(2)
1 is a constant map. By the covering homotopy property of the

fibration SO(6)→ V6,3, we can take the lift G
(2)
t of g

(2)
t ,

G
(2)
t : M (2) → SO(6).

Since the fiber of the fibration SO(6) → V6,3 is SO(3) and the homotopy

group π2

(
SO(3)

)
= 0, G

(2)
0 extends to the map G0 : M3 → SO(6) which

formed by an orthonormal tangent 3-frame field and an orthonormal nor-

mal 3-frame field of M3. On the other hand, G
(2)
1 extends to a constant

map G1 : M3 → SO(6). Next, we composes these map with the projection

π : SO(6)→ SO(6)/U(3) which we denote Ḡ0 = π ◦G0, Ḡ
(2)
t = π ◦G(2)

t , and
Ḡ1 = π ◦G1. We note that the map Ḡ0 = ω : T ∗M3 → SO(6)/U(3) and the
map Ḡ1 is a constant map. Lastly, since the homotopy group π3

(
SO(6)/

U(3)
)

= 0, Ḡ
(2)
t extends to the map Ḡt : M

3 → SO(6)/U(3). Therefore, ω
is null-homotopic.

The remaining cases are similar by using the Kervaire semi-characteristic.
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Entropy-like invariants for groups,
pseudogroups and foliations

Andrzej BIŚ

1. Introduction

In classical dynamical systems one of the most fundamental invariants of a
continuous map f : X → X is its topological entropy htop(f) which measure
the complexity of the system. When the entropy is positive, it reflects some
chaotic behavior of the map f. In foliation theory, any so called nice covering
U of a compact foliated manifold (M,F ) determines a finitely generated
holonomy pseudogroup (HU , HU1) generated by a finite generating set HU1.
Also, there exists a corresponding notion of a topological entropy for a group
action or pseudogroup action on a compact metric space. For any foliated
manifold (M,F ), the action of a holonomy pseudogroup on a complete
transversal contains complete information about the dynamics of (M,F ).
It does not depend on the choice of the transversal up to an equivalence
of pseudogroups. Therefore, a foliated manifold can be considered as a
generalized dynamical system.

In classical theory of dynamical systems a continuous map f : X → X
determines an f-invariant measure µ and one can define a measure entropy
hµ(f) with respect to µ. The important relation between topological entropy
and measure entropy of a map f : X → X is established by the Variational
Principle, which asserts that

htop(f) = sup{hµ(f) : µ ∈M(X, f)}
i.e. topological entropy equals to the supremum hµ(f), where µ ranges over
the set M(X, f) of all f-invariant Borel probability measures on X.

In classical dynamical systems there are relations between the topolog-
ical entropy of a continuous map f : X → X and Hausdorff dimension.
More than thirty years ago Bowen [4] provided a definifion of topological
entropy of a map which resembles the definition of Hausdorff dimension.
A dimensional type approach to topological entropy of a single continuous
map one can find for example in [1], [10] or [7]. A cyclic group or semigroup
< f > generated by a single map f : X → X has linear growth. Therefore
it is difficult to adopt ideas and techniques presented for groups of linear
growth to finitely generated groups or pseudogroups which growth is rarely
linear. The goal of the talk is to present interrelations between dimension
theory and the theory of generalized dynamical systems.

c© 2013 Andrzej Bís
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2. Topological entropy of a pseudogroup and local
measure entropy

In [6] Ghys, Langevin and Walczak defined the topological entropy of a
finitely generated pseudogroup and introduced a notion of a geometric en-
tropy of a foliation. The problem of defining good measure theoretical
entropy for foliated manifolds which would provide an analogue of the vari-
ational principle for geometric entropy of foliations is still open. In general,
there are many examples of foliations that do not admit any non-trivial
invariant measure. Even in a case when an invariant measure exists, it is
not clear how to define its measure-theoretic entropy.

We generalize the notion of local measure entropy introduced by Brin
and Katok [5] for a single map f : X → X to a finitely generated pseu-
dogroup (G,G1) acting on a metric space X. We define a local upper mea-
sure entropy hGµ (x) and a local lower measure entropy hµ,G(x) of (G,G1)
at a point x ∈ X with respect to a Borel probability measure µ on X.

The main result of [2] is an analogue of the partial Variational Principle
for pseudogroups which reads as follows:

Theorem 2.1. Let (G,G1) be a finitely generated group of homeomor-
phisms of a compact closed and oriented manifold M. Let E is a Borel
subset of M, s > 0 and µvol the natural volume measure on M.

If the local measure entropy hGµvol(x) ≤ s, for all x ∈ E, then the topo-
logical entropy htop((G,G1), E) ≤ s.

Theorem 2.2. Let (G,G1) be a finitely generated pseudogroup on a com-
pact metric space X. Let E is a Borel subset of X and s > 0. Denote by µ
a Borel probability measure on X.

If the local measure entropy hµ,G(x) ≥ s, for all x ∈ E, and µ(E) > 0
then the topological entropy htop((G,G1), E) ≤ s.

Next, we introduce a special class class of measures, called G− homo-
geneous measures, on X.

Theorem 2.3. If a finitely generated pseudogroup (G,G1) acting on a
compact metric space (X, d) admits a G−homogeneous measure then the
local measure entropy hGµ (x) is constant and it does not depend on the point
x ∈ X. Moreover:

For a finitely generated pseudogroup (G,G1) acting on a compact metric
space X and admitting a G− homogeneous measure µ on X we have

htop(G,G1) = hGµ ,

where hGµ is the common value of local measure entropies hGµ (x).
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3. New entropy-like invariants

In the talk we present and apply the theory of Carathéodory structures (or
C-structures), studied by Pesin ( [8], [9]) and Pesin and Pitskel ( [10]), which
are the powerful generalization of the classical construction of Hausdorff
measure. Pesin introduced a C-structure axiomatically by describing its
elements and relation between them. A Carathéodory structure τ defined
on a metric space X determines the Carathéodory dimension dimC,τ (Z) of
a subset Z ⊂ X. Another procedure leads to definition of two other basic
characteristics of dimensional type: the lower and upper capacity of a set
Z ⊂ X.

The main results of [3] are as follows.

Theorem 3.1. For a finitely generated pseudogroup (G,G1) there exists a
C- structure with upper capacity that coincides with the topological entropy
of (G,G1).

We denote by E a class of continuous and decreasing functions f :
[0,∞)→ [0,∞) with limx→∞ f(x) = 0. Now, we fix a pseudogroup (H,H1)
acting on a metric space X. Any function f ∈ E and the pseudogroup
(H,H1) determine a class of C-structures Γ(f)δ = {(Fδ, ξ, η, ψ) : δ > 0}
and the limit C-structure Γ(f) on X. The upper capacity of a set Z ⊂ X,

with respect the limit C-structure Γ(f), is denoted here by CP (f)Z .
We apply the Theorem 3.1 to get some estimations of the geometric

entropy hgeom(F, g) of a compact foliated manifold (M,F ), which describes
the global dynamics of (M,F ). It is known that a compact foliated manifold
(M,F ) with fixed so called nice covering U determines a finitely generated
holonomy pseudogroup (H(U), H1(U)) acting on the transversal TU . Here,
the finite generating set H1(U) consists of elementary holonomy maps cor-
responding to overlapping charts of U.

Theorem 3.2. Given a finitely generated pseudogroup (H,H1) acting on a
compact metric space X. Assume that for f, g ∈ E and for any x ∈ [0,∞)
the inequalities f(x) ≤ e−x ≤ g(x) hold. Then, for any subset Z ⊂ X we
get

CP (f)Z ≤ htop((H,H1), Z) ≤ CP (g)Z .

As a corollary we get two classes of dimensional type estimations of the
geometric entropy of foliations.

Theorem 3.3. Assume that for f1, f2 ∈ E and for any x ∈ [0,∞) the
inequalities f1(x) ≤ e−x ≤ f2(x) hold. For any nice covering U of a compact
foliated manifold(M,F ) endowed with a Riemannian structure g, denote by
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diam(U) the maximum of the diameters of the plaques of U measured with
respect to the Riemannian structures induced on the leaves. Then

hlowergeom (F, f1) ≤ hgeom(F, g) ≤ huppergeom (F, f2),

where

hlowergeom (F, f1) = sup{ 1

diam(U)
CP (f1)(H(U), H1(U))TU : U−nice cover of M},

huppergeom (F, f2) = sup{ 1

diam(U)
CP (f2)(H(U), H1(U))TU : U−nice cover of M}.
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Index theory for basic Dirac operators on
Riemannian foliations

Jochen BRÜNING, Franz W. KAMBER and Ken RICHARDSON

Let (M,F) be a smooth, closed manifold endowed with a Riemannian
foliation. Let DE

b : Γb (M,E+) → Γb (M,E−) be a basic, transversally el-
liptic differential operator acting on the basic sections of a foliated complex
vector bundle E over M , of rank N . The basic index indb

(
DE
b

)
is known to

be a well-defined integer, and it has been an open problem since the 1980s
to write this integer in terms of the geometric and topological data. Our
main theorem expresses indb

(
DE
b

)
as a sum of integrals over the different

strata of the Riemannian foliation, and it involves the eta invariant of asso-
ciated equivariant elliptic operators on spheres normal to the strata. The
result is

indb
(
DE
b

)
=

∫
M̃0�F

A0,b (x) |̃dx|+
r∑
j=1

β (Mj) ,

β (Mj) =
1

2

∑
τ

1

nτ rank W τ

(
−η
(
DS+,τ
j

)
+ h

(
DS+,τ
j

))∫
M̃j�F

Aτj,b (x) |̃dx| .

Here, the integrands A0,b (x) and Aτj,b (x) are the familiar Atiyah-Singer
integrands corresponding to local heat kernel supertraces of induced elliptic
operators over closed manifolds, DS+,r

j is a first order differential operator
on a round sphere, explicitly computable from local information provided
by the operator and the foliation, while η(DS+,r

j ) and h(DS+,r
j ) denote its

eta-invariant and kernel, respectively. Even in the case when the operator
D is elliptic, such a result was not known previously. We emphasize that
every part of the formula is local in the data, even η(DS+,r

j ) is calculated

directly from the principal transverse symbol of the operator DE
b at any

point of a singular stratum. The de Rham operator provides an important
example illustrating the computability of the formula, yielding the basic
Gauss-Bonnet Theorem.

The Theorem is proved by first writing indb
(
DE
b

)
as the invariant index

of a G-equivariant, transversally elliptic operator D over a G-manifold Ŵ

2010 Mathematics Subject Classifiation. Primary: 53C12, 57R30, 58G10, secondary: 58C40,
58D19, 58J28.
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associated to the foliation, where G is a compact Lie group of isometries.

Precisely, we lift the given foliation F to a foliation F̂ on the principal frame

bundle, M̂ , associated to Q⊗ E, with structure group G := O(q)× U(N),
where Q is the normal bundle to F of rank q. Then F is transversally
parallelizable. Hence we deduce from Molino’s structure theory that the

leaf closures of F̂ are the fibers of the basic fibration π̂ : M̂ → Ŵ . Since G

acts isometrically on Ŵ , we have reduced the problem to the computation
of a G-equivariant index. Using our equivariant index theorem, we obtain

an expression for this index in terms of the geometry and topology of Ŵ
and then rewrite this formula in terms of the original data on the foliation.

We note that a recent paper of Gorokhovsky and Lott addresses this
transverse index question on Riemannian foliations in a rather special case.
Using a different technique, the authors prove a formula for the index of
a basic Dirac operator that is distinct from our formula, assuming that
all the infinitesimal holonomy groups of the foliation are connected tori
and that Molino’s commuting sheaf is abelian and has trivial holonomy.
Our result requires only mild topological assumptions on the transverse
structure of the strata of the Riemannian foliation. In particular, the Gauss-
Bonnet Theorem for Riemannian foliations is a corollary and requires no
assumptions on the structure of the Riemannian foliation.

We add some remarks on the proof of the Theorem. Using the notions
of basic sections, holonomy-equivariant vector bundles, basic Clifford bun-
dles, and basic Dirac-type operators, we describe the Fredholm properties

of these basic operators, and we show how to construct the G-manifold Ŵ
of leaf closures and the G-equivariant operator D, using a slight generaliza-
tion of Molino theory. We also use our construction to obtain asymptotic
expansions and eigenvalue asymptotics of transversally elliptic operators
on Riemannian foliations, which are of independent interest. We also con-
struct bundles associated to representions of the isotropy subgroups of the
G-action; these bundles are used in the main theorem. In the course of the
proof, we describe the construction of the desingularization of a Whitney
stratified space, i. e. a method of cutting out tubular neighborhoods of the
singular strata and doubling the remainder to produce a Whitney stratified
space with fewer strata. We also deform the operator and the metric and
determine the effect of this desingularization and deformation operation
on the basic index. Finally, we prove a generalization of this theorem to
representation-valued basic indices.

The theorem is illustrated with a collection of examples. These in-
clude foliations by suspension, a Transverse Signature, and the Basic Gauss-
Bonnet Theorem.

One known application of our theorem is Kawasaki’s Orbifold Index
Theorem. It is known that every orbifold is the leaf space of a Riemannian
foliation, where the leaves are orbits of an orthogonal group action such
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that all isotropy subgroups have the same dimension. In particular, the
contributions from the eta invariants in our Transverse Signature Theorem
agree exactly with the contributions from the singular orbifold strata when
the orbifold is four-dimensional.
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Contact manifolds with symplectomorphic
symplectizations

Sylvain COURTE

1. Introduction

Contact geometry and symplectic geometry are very much related. Given a
contact manifold (M, ξ), we can associate a symplectic manifold (SξM,ωξ),
called its symplectization. Topologically, the symplectization of M is just
the product R×M . There is an R-action on SξM which allows to reinter-
pret contact geometry as R-equivariant symplectic geometry without any
loss of information. On one hand, many contact invariants are constructed
from symplectizations using holomorphic curves techniques. It is therefore
tempting to think that contact manifolds with symplectomorphic symplec-
tizations are contactomorphic. On the other hand, in smooth topology it is
well-known that there exist manifolds M and M ′ that are not diffeomorphic
but for which R×M and R×M ′ are diffeomorphic (see [2]). Using flexibil-
ity results of Eliashberg and Cieliebak [4], we can realize these examples in
a symplectic setting to construct non-diffeomorphic contact manifolds with
symplectomorphic symplectizations.

Definition 1.1. Let (M, ξ = kerα) be a contact manifold. The symplec-
tic manifold (SξM,ωξ) = (R ×M,d(etα)) is called the symplectization of
(M, ξ). It is endowed with an R-action given by translation in the R factor.

Proposition 1.2. Any R-equivariant symplectomorphism SξM → Sξ′M
′

induces a contactomorphism (M, ξ)→ (M ′, ξ′).

Now if we relax the hypothesis that the symplectomorphism is R-
equivariant in the proposition above, does it still follow that M and M ′

are contactomorphic?

2. Main results

Theorem 2.1. [1] For any closed contact manifold (M, ξ) of dimension
at least 5 and any closed manifold M ′ such that R ×M and R ×M ′ are
diffeomorphic, there is a contact structure ξ′ on M ′ such that SξM and
S ′ξM

′ are symplectomorphic.

c© 2013 Sylvain Courte
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Outline of proof. The diffeomorphism Ψ : R ×M → R ×M ′ produces
two h-cobordisms (W,M,M ′) and (W ′,M ′,M) such that the compositions
in both senses are trivial :

W ∪W ′ ' [0, 1]×M and W ′ ∪W ' [0, 1]×M ′

(for example, W is obtained as the region in R×M between {0} ×M and
Ψ−1({c} ×M ′) for a sufficiently large positive number c).

Using Eliashberg and Cieliebak’s results from [4] we can endow W and
W ′ with flexible symplectic structures that induce the contact structure
ξ on M and a new contact structure ξ′ on M ′ and we still have, now
symplectically :

W ∪W ′ ' [0, 1]×M and W ′ ∪W ' [0, 1]×M ′.

We apply the Mazur trick (see [2]) and consider the infinite composition V :

· · · (W ∪W ′) ∪ (W ∪W ′) · · · = · · · (W ′ ∪W ) ∪ (W ′ ∪W ) · · ·

We get from the left hand side that V symplectomorphic to SξM and from
the right hand side that V is symplectomorphic to Sξ′M

′.

For example, let us consider M = L(7, 1)×S2 endowed with the canon-
ical contact structure ξ coming from the unit tangent bundle of L(7, 1).
It was proved by Milnor (see [3]) that M is not diffeomorphic to M ′ =
L(7, 2) × S2 but they are h-cobordant. It follows from the s-cobordism
theorem and the Mazur trick as in the proof above that R×M and R×M ′

are diffeomorphic (see [2]). Hence theorem 2.1 provides a contact structure
ξ′ on M ′ such that SξM and Sξ′M

′ are symplectomorphic.
We now discuss an application of this result to the symplectic topology

of Stein manifolds. Stein manifolds (of finite type) admit contact man-
ifolds at infinity, given by level sets above any critical value of positive
proper plurisubharmonic functions. However we may wonder if this con-
tact manifold depends only on the Stein manifold or may change when we
pick a different proper plurisubharmonic function. Again using results from
[4] to go from Weinstein to Stein, we can apply the method of Theorem 2.1
to provide different contact boundaries for a given Stein manifold.

Corollary 2.2. [1] Let V be a Stein manifold of finite type. Let (M, ξ)
be the contact manifold at infinity given by a plurisubharmonic function
φ. Then for any closed manifold M ′ such that R × M and R × M ′ are
diffeomorphic, there is a plurisubharmonic function ψ on V with contact
manifold at infinity diffeomorphic to M ′.
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3. Questions

Does there exist contact structures ξ and ξ′ on a given manifold M such that
ξ and ξ′ are not conjugated by a diffeomorphism ofM but SξM and S ′ξM are
symplectomorphic? Any contact invariant which is functorial with respect
to symplectic cobordisms (such as contact homology) could not distinguish
between ξ and ξ′.
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Transverse Ricci flow as a tool for
classification of Riemannian flows

Andrzej CZARNECKI

1. Introduction

A Riemannian flow is a 1-dimensional Riemannian foliation. It provides
just enough structure (an invariant metric on the normal bundle) with just
enough flexibility (the flow need not to be isometric) to be both treatable
and interesting for geometers. For similar reasons, it is also of interest to
people working in dynamical systems.

In 1984 Yves Carrière gave a classification of Riemannian flows on 3-
manifolds, [1]. This stemed from his previous work on the topic, but with
more emphasis on Molino’s structural approach. Indeed, not long after
Molino and Almeida classified Riemannian flows on 4-manifolds, [2]. The
two theorems can be summarized as folows

Theorem 1.1 (Carrière). A 3-manifold with a Riemannian flow

• is either foliated-diffeomorphic to a dense linear flow on a torus, or

• a suspension of a prescribed type, or

• foliated-diffeomorphic to a prescribed flow on a torus, or

• foliated-diffeomorphic to a prescribed flow on a lens space, or

• a Seifert fibration,

and those instances are distinguished by presence or absence of dense or
closed leaves and their holonomy. Only the second dot cannot be endowed
with a metric that makes the flow isometric.

Theorem 1.2 (Molino, Almeida). A 4-manifold with a Riemannian flow

• is either foliated-diffeomorphic to a dense linear flow on a torus, or

• a suspension of a prescribed type, or

• foliated-diffeomorphic to a prescribed flow on a (twisted) double of
T2 × D2, or

• has a 2-dimensional orbifold with boundary as the space of leaves, or

Partly supported by IPhDPP of the FNP cofinanced by the EU under ERDF.
c© 2013 Andrzej Czarnecki
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• is a Seifert fibration,

and, again, those instances are distinguished by occuring closures of leaves
and their holonomy. This time both the second and the fourth dots provide
examples of non-isometric flows.

It seems there was no substantial progress in classifying Riemannian
flows in higher dimensions and this is not very surprising – this problem
essentially generalizes classification of manifolds. We emphasize that both
proofs rely on Molino’s theory and structural approach presented in [3].

We would like to recover those theorems using different methods, namely
geometric flows. In 1986 Min-Oo and Ruh restated Hamilton’s result on
Ricci flow in terms of flow of Cartan connections, [4]. Recently, with Lovrić,
in [5], they were able to apply this technique to a flow of connections on
transverse bundle of a foliation, essentially obtaining the Ricci flow on the
transverse manifold – with usual consequences:

Theorem 1.3 (Lovrić, Min-Oo, Ruh). Suppose a codimension 3 Rieman-
nian foliation with positive definite Ricci curvature. Then the metric can
be deformed to a metric of constant sectional curvature.

The metric here is understood only on the transverse bundle. We would
like to better comprehend and to apply this transverse Ricci flow.

2. Main results

The present work is concerned with recovering Theorems 1.1 and 1.2 with
methods developed in [5].

Proposition 2.1. Holonomy and stratification that classify codimension
2 and 3 Riemannian flows can be deduced from curvature properties of the
deformed metric.

It is plausible that transverse Ricci flow in those codimensions should
prove as useful as it’s usual, non-transverse counterpart. Of course, topo-
logical considerations threaten to be much more involved (we have metric
information only in a normal, non-integrable direction), but on the other
hand, we know – a posteriori – that spaces in question are quite simple.

Another step is a geometric proof of the following

Theorem 2.2. Compact, connected, orientable, irreducible, atoroidal 3-
orbifold is geometric.
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This is one possible statement of Thurston’s Geometrization Conjecture
for orbifolds. Recall that an orbifold is a topological space locally home-
omorphic to an euclidean space divided by a finite group action. Original
(quite involved) proofs are due to Cooper, Hodgson, Kerckhoff (cf. [6])
and Boileau, Leeb, Porti (cf. [7]) and carefully reduce the problem to
Geometrization Conjecture for manifolds. Recently, Kleiner and Lott pro-
vided in [8] a direct proof, describing Ricci flow on orbifolds. It still seems
a worthwile task to prove Theorem 2.2 using the folowing desingularization
procedure (cf. [9])

Theorem 2.3. Every orbifold can be realized as a space of leaves of a
Riemannian foliation. Geometry of the orbifold is the transverse geometry
of that foliation.

and using [5]. Note that this realization may produce a foliation of
high dimension, although the codimension is preserved.

Proposition 2.4. Transverse flow of Cartan connections of [5] and Ricci
flow on orbifolds of [8] coincide.
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Classsification of maximal codimension
totally geodesic foliations

of the complex hyperbolic space

Maciej CZARNECKI

1. Totally geodesic foliations of Hn

Totally geodesic foliations of the real hyperbolic space Hn in codimension
1 are well understood. The first classification given by Ferus in [5] con-
centrates on geometry of orthogonal transversal. Browne observed that it
is enough to study vector fields along geodesics (cf. [2]). Lastly, Lee and
Yi classified totally geodesic codimension 1 foliations of Hn through closed
curves on Sn−1 which represent the ideal boundary of leaves. For short
explanation compare [4] and [1].

2. Complex hyperbolic space and complex de Sitter
space

The complex hyperbolic space CHn is one of the easiest examples of the
Hadamard manifold with nonconstant sectional curvature. Even here there
is no (real) codimesion 1 totally geodesic submanifolds; in fact only totally
geodesic submanifolds are totatlly complex or totally real (cf. [6]).

Define complex de Sitter space CΛn as the (complex) projectivization
of positive vectors with respect to the Hermitian form in Cn+1 given by

〈Z,W 〉 = −Z0W0 + Z1W1 + . . .+ ZnWn.

Recall that CHn is simply projectivization of negative vectors in Cn+1.
Every totally geodesic codimension 2 submanifold of CHn is the pro-

jectivization of complex hyperplane which is complex-time-like. Thus it is
represented by a positive vector i.e. belonging to CΛn.

3. Classsification of totally geodesic codimension 2 fo-
liations of CHn

In [4] Czarnecki and Walczak stated the problem of geometric classifica-
tion of foliations of CHn with leaves isometric to CHn−1, i.e. of the real
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codimension 2.
This problem could be studied similarly to the real case when the con-

formal geometry is applied. Using methods developed in [7] Czarnecki and
Langevin (see [3]) gave local and global conformal condition for curves in
de Sitter space Λn+2 to represent a totally geodesic codimension 1 folations
of Hn.

Totally geodesic codimension 2 foliations are curves in CΛn such that its
tangent vector is of complex-time-like. Therefore, totally geodesic maximal
codimension foliations of CHn are those which are orthogonal to a complex
curve of holomorphic curvature bounded by 1. Such a curve is an Hadamard
2–dimensional submanifold of bounded negative curvature.
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Birkhoff sections for geodesic flows of
hyperbolic surfaces

Norikazu HASHIGUCHI

1. Birkhoff section

Definition 1.1. A Birkhoff section for a flow ϕt defined on a closed 3-
manifold is an embedded surface satisfying that its interior is transverse to
ϕt and that its boundaries are consist of closed orbits of ϕt.

Example 1.2. 1. Let T 2 be a flat torus. Now we construct a Birkhoff
section for the geodesic flow gt of T 2 in the unit tangent vector bundle
T1T

2. We take closed geodesics C1, C2, C3, C4 of T 2 (see Figure 1).
The complement of these closed geodesics is 4 rectangles. We choose
two rectangles R1 and R2 which are not adjacent. Next we consider
a family Ci (i = 1, 2) of convex simple closed curves which fills the
interior of Ri with one singularity deleted. Let S be the closure of the
union of unit tangent vectors of all curves of C1 and C2. Then, S is a
torus with 8 discs deleted and the boundaries of S are close oriented
geodesics corresponding to C1, C2, C3, C4.

Figure 1: Geodesics and rectangles of T 2
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S is a Birkhoff section for gt. The first return map of gt associated with
S is topologically semiconjugate to the toral automorphism induced
by

A1 =

(
1 0
4 1

)
.

2. In the hyperbolic case, we construct a genus one Birkhoff section of
the geodesic flow by the same method of the above case.
Let Σg (g ≥ 2) be a genus g orientable closed surface with a hyper-
bolic metric. The geodesic flow of Σg has genus one Birkhoff sec-
tions [1, 2, 3]. The first return maps associated with these sections
are topologically semiconjugate to hyperbolic toral automorphisms.
These toral automorphisms are induced by

Ag =

(
2g2 − 1 2g(g − 1)

2g(g + 1) 2g2 − 1

)
and

Bg =

(
4g2 − 2g − 1 2g2 − 2g

8g2 − 2 4g2 − 2g − 1

)
[1, 4].

Figure 2: Branched covering γ : T 2 → P

3. Let P be a flat pillowcase i.e. a 2-dimensional sphere with 4 singular
points. P is also considered as a quotient space R2/Γ where Γ is
the group of isometries of R2 generated by π-rotations centered at
(0,±1

2
) and (±1

2
, 0). We consider a branched covering γ : T 2 → P
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(see Figure 2). The differential T1γ of γ preserves geodesic flows and
S ′ = T1γ(S) is also a genus one Birkhoff section for the geodesic flow
ft of P . The double covering T1γ|S : S → S ′ is induced by the matrix

D =

(
1 0
0 2

)
. Hence, the first return map of ft associated with S ′

is topologically semiconjugate to a toral automorphism induced by

DA1D
−1 =

(
1 0
8 1

)
.

2. Main Results

In [1], Brunella showed the method to construct genus one Birkhoff sections.
We apply this method to geodesic flows of 2-spheres with singularities.

For any three positive integers p, q, r satisfying that the hyperbolic
condition 1

p
+ 1

q
+ 1

r
< 1, let S(p, q, r) be a 2-sphere with three singular

points whose cone angles are 2π
p
, 2π
q
, 2π
r

. If we consider the hyperbolic metric

on S(p, q, r), then the geodesic flow Ft of S(p, q, r) is an Anosov flow on a
triangular Seifert fibred space.

Using Scott’s result about closed geodesics of Ft [5], we have the next
theorem.

Theorem 2.1. If (p, q, r) is not (2, 3, u) (u ≥ 7) nor (2, 4, u) (u ≥ 5)
up to permutation of p, q, r, then the geodesic flow Ft of S(p, q, r) has a
genus one Birkhoff section and Ft is topologically constructed by doing Dehn
surgeries along two closed orbits of the suspension of the hyperbolic toral
automorphism induced by a matrix Ap,q,r ∈ SL(2; Z).

In some special cases, we can calculate Ap,q,r by the same way of the
above flat pillowcase case. There exist branched coverings Σg → S(2g +
2, 2g + 2, g + 1) and Σg → S(2g + 1, 2g + 1, 2g + 1). Since these branched
covering preserve the geodesic flows, they are used to calculateA2g+2,2g+2,g+1

and A2g+1,2g+1,2g+1.

Theorem 2.2.

A2g+2,2g+2,g+1 =

(
2g2 − 1 g(g2 − 1)

4g 2g2 − 1

)

A2g+1,2g+1,2g+1 =

(
4g2 − 2g − 1 2g(g − 1)(2g + 1)

2(2g − 1) 4g2 − 2g − 1

)
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Lie foliations transversely modeled on
nilpotent Lie algebras

Naoki KATO

1. Introduction

Let M be an n-dimensional closed orientable smooth manifold and let F
be a codimension q transversely orientable smooth foliation of M . Let g be
a q-dimensional Lie algebra over R.

Definition 1.1. The foliation F is a Lie g-foliation if there exists a non-
singular Maurer-Cartan form ω ∈ A1(M, g) such that TF = Ker(ω).

P. Molino [4] proved that the following structure theorem.

Theorem 1.2 (Molino).

1. There exists a locally trivial fibration π : M → W such that each fiber
is the closure of a leaf of F .

2. There exists a Lie subalgebra h ⊂ g which is uniquely determined by
F such that, for each fiber F of the fibration π, the induced foliation
F|F is a Lie h-foliation.

The Lie algebra h is called the structure Lie algebra of F .
By Theorem 1.2, to each Lie foliation F , there are associated two Lie

algebras, the model Lie algebra g and the structure Lie algebra h. Hence,
we have a natural question to determine the pair of Lie algebras (g, h) which
can be realized as a Lie g-foliation F of a closed manifold M with structure
Lie algebra h.

Definition 1.3. Let g be a Lie algebra and h ⊂ g be a subalgebra. (g, h)
is realizable if there exists a closed manifold M and a Lie g-foliation F of
M such that the structure Lie algebra of F is h.

If F is a flow, then the structure Lie algebra h is abelian and thus it is
isomorphic to Rm for some m.

Definition 1.4. Let g be a Lie algebra and m be an integer. (g,m) is
realizable if there exists a closed manifold M and a Lie g-flow F of M such
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that the structure Lie algebra of F is Rm, that is the dimension of the
structure Lie algebra is equal to m.

E. Gallego, B. Herrera, M. Llabrés and A. Reventós completely solved
this problem in the case where the dimension of the Lie algebras g is three
(cf. [2], [3]).

We study the realizing problems of (g, h) and (g,m) in the case where
g is nilpotent Lie algebras of general dimensions.

2. Main results

Theorem 2.1. Let g be a nilpotent Lie algebra which has a rational struc-
ture. Then (g,m) is realizable if and only if m ≤ dim c(g), where c(g) is
the center of g.

Theorem 2.2. Let g be a nilpotent Lie algebra and h be a subalgebra of g.
Then (g, h) is realizable if and only if h is an ideal of g and the quotient
Lie algebra h\g has a rational structure.

Corollary 2.3. For any nilpotent Lie algebra g, there exists a minimal Lie
g-foliation F of a closed manifold M .

Since nilpotent Lie algebras has a non-trivial center, by Theorem 2.1,
any nilpotent Lie algebra g with a rational structure can be realized as a
Lie g-flow. On the other hand, there exists a nilpotent Lie algebra g with
no rational structures which can not be realized as a Lie g-flow.

Example 2.4 (Chao). Let ckij, 1 ≤ i, j ≤ m, 1,≤ k ≤ n be real numbers

such that ckij = −ckji. Assume that ckij are algebraically independent over
Q. Let g be the Lie algebra defined by a basis

{X1, . . . , Xm, Y1, . . . , Yn}

with the products

[Xi, Xj] =
n∑
k=1

ckijYk

for i, j = 1, . . . ,m and all other products being zero. Then g is nilpotent
a Lie algebra and [g, g] = 〈Y1, . . . , Yn〉R. This Lie algebra g has no rational
structure if (n/2)(m2 −m) > m2 + n2.

Proposition 2.5. Let g be the Lie algebra constructed above. If (n/2)(m2−
m) > (m+ 1)2 + (n+ 1)2, then g can not be realized as a Lie g-flow.
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However there exists a nilpotent Lie algebra with no rational structures
which can be realized as a Lie flow.

Proposition 2.6. There exists a nilpotent Lie algebra g which has no ra-
tional structures such that g can be realized as a Lie g-flow.
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Superheavy subsets and noncontractible
Hamiltonian circle actions

Morimichi KAWASAKI

1. Introduction

Let (M,ω) be a symplectic manifold. In this paper a diffeomorphism f of
M is called a symplectomorphism if f preserves the symplectic form ω.

Our result is as follows:

Theorem 1.1. Let (T2, ωT2) = (R2/Z2, ωT2) be the 2-torus with the co-
ordinates (p, q) and the symplectic form dp∧dq. The union M∪L of the
meridian curve M and the longitude curve L is a “[T2]-superheavy” subset
of (T2, ωT2).

As a corollary of Proposition 1.1, we have the following result:

Corollary 1.2. Let (CP n, ωFS) be the complex projective space with the
Fubini-Study form ωFS and C be the Clifford torus {[z0 : · · · : zn] ∈
CP n; |z0| = · · · = |zn|} of CP n. Then there exists no symplectomorphism
f of (CP n × T2, ωFS ⊕ ωT2) such that C×(M ∪ L) ∩ f(C×(M ∪ L)) = ∅.

2. Preliminaries

2.1. Definitions

For a function F : M → R with compact support, we define the Hamiltonian
vector field sgradF associated with F by

ω(sgradF, V ) = −dF (V ) for any V ∈ X (M),

where X (M) denotes the set of smooth vector fields on M .
For a function F : M×[0, 1] → R and t ∈ [0, 1], we define Ft : M → R

by Ft(x) = F (x, t). We denote by {ft} the isotopy which satisfies f0 = id
and d

dt
ft(x) = (sgradFt)ft(x). We call this the Hamiltonian path generated

by the Hamiltonian function F . The time-1 map f1 of {ft} is called the
Hamiltonian diffeomorphism generated by the Hamiltonian function F . A
diffeomorphism f is called a Hamiltonian diffeomorphism if there exists a
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Hamiltonian function with compact support generating f . A Hamiltonian
diffeomorphism is a symplectomorphism.

For a symplectic manifold (M,ω), we denote by Symp(M,ω), Ham(M,ω)

and H̃am(M,ω), the group of symplectomorphisms, the group of Hamilto-
nian diffeomorphisms of (M,ω) and its universal cover, respectively. We
denote by Symp0(M,ω) the identity component of Symp(M,ω). Note that
Ham(M,ω) is a normal subgroup of Symp0(M,ω).

Definition 2.1. For functions F andG and a symplectic manifold (M,ω),
the Poisson bracket {F,G} ∈ C∞(M) is defined by

{F,G} = ω(sgradG, sgradF ).

Definition 2.2 ([1]). Let (M,ω) be a symplectic manifold.
A subset U of M is called displaceable if there exists a Hamiltonian

diffeomorphism f ∈ Ham(M,ω) such that f(U)∩Ū = ∅.
A subset U of M is called strongly displaceable if there exist a symplec-

tomorphism f ∈ Symp(M,ω) such that f(U)∩Ū = ∅.
We consider the cotangent bundle T ∗S1 = R× S1 of the circle S1 with

the coordinates (r, θ) and the symplectic form dr ∧ dθ. A subset U of M
is called stably displaceable if U × {r = 0} is displaceable in M × T ∗S1

equipped with the split symplectic form ω̄ = ω ⊕ (dr ∧ dθ).

If U is displaceable, then U is stably displaceable. Since Ham(M,ω) ⊂
Symp(M,ω), if U is displaceable, then U is strongly displaceable.

2.2. Spectral invariants

For a closed connected symplectic manifold (M,ω), define

Γ =
π2(M)

Ker(c1) ∩Ker([ω])
,

where c1 is the first Chern class of TM with an almost complex structure
compatible with ω. The Novikov ring of the closed symplectic manifold
(M,ω) is defined as follows:

Λ =

{∑
A∈Γ

aAA; aA ∈ Q,#{A; aA 6= 0,

∫
M

ω < R} <∞ for any real number R

}

The quantum homologyQH∗(M,ω) is a Λ-module isomorphic toH∗(M ;Q)⊗Q
Λ and QH∗(M,ω) has a ring structure with the multiplication called quan-
tum product [3]. To each element a ∈ QH∗(M,ω), a functional c(a, ·) : C∞(M×
[0, 1])→ R is defined in terms of Hamiltonian Floer theory. The functional
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c(a, ·) is called spectral invariant ([3]). To describe the properties of a spec-
tral invariant, we define the spectrum of a Hamiltonian function as follows:

Definition 2.3 ([3]). Let H ∈ C∞(M × [0, 1]) be a Hamiltonian function
on a closed symplectic manifold M . Spectrum Spec(H) of H is defined as
follows:

Spec(H) =

{∫ 1

0

H(ht(x), t)dt+

∫
D2

u∗ω

}
⊂ R,

where {ht}t∈[0,1] is the Hamiltonian path generated by H and x ∈ M is
a fixed point of h1 whose orbit defined by γx(t) = ht(x) (t ∈ [0, 1]) is a
contractible loop and u : D2→M is a disc in M such that u|∂D2 = γx.

We define the non-degeneracy of Hamiltonian functions as follows:

Definition 2.4. H ∈ C∞(M×[0, 1]) is called non-degenerate if the graph
of the Hamiltonian diffeomorphism h generated by H is transverse to the
diagonal in M×M .

The followings are well-known properties of spectral invariants ([3], [4]).

Non-degenerate spectrality c(a,H) ∈ Spec(H) for every non-degenerate
H ∈ C∞(M×[0, 1]).

Hamiltonian shift property c(a,H + λ(t)) = c(a,H) +
∫ 1

0
λ(t)dt.

Monotonicity property If H1 ≤ H2, then c(a,H1) ≤ c(a,H2).

Lipschitz property The map H 7→c(a,H) is Lipschitz on C∞(M × [0, 1])
with respect to the C0-norm.

Symplectic invariance c(a, f ∗H) = c(a,H) for any f ∈ Symp0(M,ω)
and any H ∈ C∞(M × [0, 1]).

Homotopy invariance c(a,H1) = c(a,H2) for any normalized H1 and

H2 generating the same h ∈ H̃am(M). Thus one can define c(a, ·) : H̃am(M)→
R by c(a, h) = c(a,H), where H is a normalized Hamiltonian function
generating h.

Triangle inequality c(a ∗ b, fg) ≤ c(a, f) + c(b, g) for elements f and

g ∈ H̃am(M,ω), where ∗ denotes the quantum product.

2.3. Heaviness and superheaviness

M. Entov and L. Polterovich ([1]) defined the heaviness and the super-
heaviness of closed subsets in closed symplectic manifolds and gave stably
non-displaceable subsets and strongly non-displaceable subsets.
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For an idempotent a of the quantum homology QH∗(M,ω), define the
functional ζa : C∞(M)→ R by

ζa(H) = lim
l→∞

c(a, lH)

l
,

where c(a,H) is the spectral invariant ([3], see Section 2.2).

Definition 2.5 ([1]). Let (M,ω) be a 2n-dimensional closed symplectic
manifold. Take an idempotent a of the quantum homology QH∗(M,ω).

A closed subset X of M is called ζa-heavy (or a-heavy) if

ζa(H) ≥ inf
X
H for any H ∈ C∞(M),

and is called ζa-superheavy (or a-superheavy) if

ζa(H) ≤ sup
X
H for any H ∈ C∞(M).

A closed subset X of M is called heavy (respectively, superheavy) if X is ζa-
heavy (respectively, ζa-superheavy) for some idempotent a of QH∗(M,ω).

For a oriented closed manifold M , we denote its fundamental class by
[M ].

Theorem 2.6 (A part of Theorem 1.4 of [1]). For a non-trivial idempotent
a of QH∗(M,ω), the followings hold.

(1) Every ζa-superheavy subset is ζa-heavy.

(2) Every ζa-heavy subset is stably non-displaceable.

(3) Every [M ]-superheavy subset is strongly non-displaceable.

�

Example 2.7. (1) Let (T2, ωT2) = (R2/Z2, ωT2) be the 2-torus with the
coordinates (p, q) and the symplectic form dp∧dq. Then the meridian
curve M = {(p, q) ∈ T2; q = 0} and the longitude curve L = {(p, q) ∈
T2; p = 0} are [T2]-heavy subsets of (T2, ωT2), hence they are stably
non-displaceable ([1] Example 1.18).

(2) Let (CP n, ωFS) be the complex projective space with the Fubini-
Study form. The Clifford torus C = {[z0 : · · · : zn] ∈ CP n; |z0| =
· · · = |zn|} ⊂ CP n is a [CP n]-superheavy subset of (CP n, ωFS), hence
they are strongly non-displaceable ([1] Theorem 1.8).
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Definition 2.8. Let (M,ω) be a 2n-dimensional closed symplectic man-
ifold. Take an idempotent a of the quantum homology QH∗(M,ω). An
open subset U of M is said to be ζa-null if for G ∈ C∞(U),

ζa(G) = 0.

An open subset U of M is said to be strongly ζa-null if for F ∈ C∞(M)
and G ∈ C∞(U) such that {F,G} = 0,

ζa(F +G) = ζa(F ).

A subset X of M is said to be (strongly) ζa-null if there exists a (strongly)
ζa-null open neighborhood U of X.

3. Main proposition

Definition 3.1. A closed symplectic manifold (M,ω) is called rational if
ω(π2(M)) is a discrete subgroup of R.

The main result is the following proposition. We use this proposition to
prove Theorem 1.1 by using the argument of stems.

Proposition 3.2. Let (M,ω) be a rational closed symplectic manifold. Let
α be a nontrivial free homotopy class of free loops on M ; α ∈ [S1,M ], α 6= 0.
Let U be an open subset of M . Assume that there exists a Hamiltonian
function H ∈ C∞(M × [0, 1]) which satisfies the followings:

(1) h1|U = idU ,

(2) for any x ∈ U , the free loop γx : S1 → M defined by γx(t) = ht(x)
belongs to α, and

(3) α /∈ i∗([S1, U ]).

Here i : U→M is the inclusion map and {ht}t∈[0,1] is the Hamiltonian path
generated by H. Then U is strongly ζa-null for any idempotent a of QH∗(M,ω).

�

The proof of Theorem 3.2 is based on the idea of K. Irie in the proof
of Theorem 2.4 of [2].

4. Proof of Theorem 1.1

M. Entov and L. Polterovich defined stems to give examples of superheavy
subsets. We define ζa-stems which generalizes a little the notion of stems
and there exhibits ζa-superheaviness.

We generalize the argument of Entov and Polterovich as follows.
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Definition 4.1. Let A be a finite-dimensional Poisson-commutative sub-
space of C∞(M) and Φ: M → A∗ be the moment map defined by 〈Φ(x), F 〉 =
F (x). Let a be a non-trivial idempotent of QH∗(M,ω). A non-empty fiber
Φ−1(p), p ∈ A∗ is called a ζa-stem of A if all non-empty fibers Φ−1(q) with
q 6= p is strongly ζa-null. If a subset of M is a ζa-stem of a finite-dimensional
Poisson-commutative subspace of C∞(M), it is called just a ζa-stem.

Theorem 4.2. For every idempotent a of QH∗(M,ω), every ζa-stem is a
ζa-superheavy subset.

�

Proof of Theorem 1.1.
Note that (T2, ωT2) is rational. Consider a momentum map Φ ∈ C∞(T2)

such that Φ(x) = 0 if x ∈ M ∪ L and Φ(x) > 0 if x /∈ M ∪ L. Take a real
number ε 6= 0. Then there exist a positive number δ and an open neigh-
borhood U of Φ−1(ε) such that U ⊂ (δ, 1 − δ) × (δ, 1 − δ). Consider a
Hamiltonian function H ∈ C∞(T2 × [0, 1]) such that H((p, q), t) = p for
any p ∈ [δ, 1− δ].

Define the free loop γ : S1 → T2 by γ(t) = (0, t). Let α ∈ [S1,T2] be
the homotopy class of free loops represented by γ. Then α, U and H satisfy
the assumptions of Theorem 3.2, hence U satisfies is strongly ζa-null. Thus
M ∪ L is a ζa-stem, hence it is ζa-superheavy.

�

5. Proof of Corollary 1.2

We use the following theorem to prove Corollary 1.2.

Theorem 5.1 ([1] Theorem 1.7). Let (M1, ω1) and (M2, ω2) be closed sym-
plectic manifolds. Take non-zero idempotents a1, a2 of QH∗(M1), QH∗(M1),
respectively. Assume that for i = 1, 2, Xi be a ai-heavy (respectively, ai-
superheavy) subset. Then the product X1×X2 is a1⊗a2-heavy (respectively,
a1⊗a2-superheavy) subset of (M1×M2, ω1 ⊕ ω2) of QH∗(M1×M2).

�

Proof of Corollary 1.2. By Example 2.7 and Theorem 1.1, Theorem 5.1,
C×(M ∪ L) is [C×(M ∪ L)]-superheavy subset of (CP n × T2, ωFS ⊕ ωT2).
Thus Theorem 2.6 implies that there exists no symplectomorphism f such
that C×(M ∪ L) ∩ f(C×(M ∪ L)) = ∅.

�
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Minimal C1-diffeomorphisms of the circle
which admit measurable fundamental

domains

Hiroki KODAMA

1. Abstract

This is a joint work with Shigenori Matsumoto (Nihon University).

The concept of ergodicity is important not only for measure preserv-
ing dynamical systems but also for systems which admits a natural quasi-
invariant measure. Given a probability space (X,µ) and a transformation
T of X, µ is said to be quasi-invariant if the push forward T∗µ is equivalent
to µ. In this case T is called ergodic with respect to µ, if a T -invariant
Borel subset in X is either null or conull.

A diffeomorphism of a differentiable manifold always leaves the Rie-
mannian volume (also called the Lebesgue measure) quasi-invariant, and
one can ask if a given diffeomorphism is ergodic with respect to the Lebesgue
measure (below ergodic for short) or not. Answering a question of A. Denjoy
[D], A. Katok (see for instance Chapt. 12.7, p. 419, [KH]), and indepen-
dently M. Herman (Chapt. VII, p. 86, [H]) showed the following theorem.

Theorem 1.1. A C1-diffeomorphism of the circle with derivative of bounded
variation is ergodic provided its rotation number is irrational.

At the opposite extreme of the ergodicity lies the concept of measurable
fundamental domains. Given a transformation T of a standard probability
space (X,µ) leaving µ quasi-invariant, a Borel subset C of X is called a
measurable fundamental domain if T nC (n ∈ Z) is mutually disjoint and
the union ∪n∈ZT nC is conull. In this case any Borel function on C can
be extended to a T -invariant measurable function on X, and an ergodic
component of T is just a single orbit. The purpose of this talk is to show
the following theorem.

Theorem 1.2 ([KM]). For any irrational number α, there is a minimal
C1-diffeomorphism of the circle with rotation number α which admits a
measurable fundamental domain with respect to the Lebesgue measure.

Partly supported by the project “iBMath”. Also partly supported by the Grant-in-Aid for
Exploratory Research, The Ministry of Education, Culture, Sports, Science and Technology,
Japan.
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To prove the theorem, first we construct a Lipschitz homeomorphism F
with rotation number α which admits a measurable fundamental domain.
We regard the circle S1 as R/Z. Suppose R denotes the rotation by α.

Claim 1.3. For any irrational number α, we can construct a Cantor set
C ∈ S1 so that RnC ∩RmC = ∅ for any integers n 6= m.

Admitting this claim, fix a probability measure µ0 on C without atom
such that supp(µ0) = C. We also choose a sequence (ai)i∈Z of positive
numbers satisfying

∑
i∈Z ai = 1. Now we can define a probability measure

µ on S1 by

(1.4) µ :=
∑
i∈Z

aiR
i
∗µ0.

The Radon-Nikodym derivative dR−1
∗ µ
dµ

is equal to ai+1

ai
on the set RiC. Now

we assume that ai+1

ai
∈ [ 1

D
, D] for some D > 1, then it follows that dR−1

∗ µ
dµ
∈

L∞(S1, µ).
We define a homeomorphism h of S1 by h(0) = 0 and h(x) = y if and

only if Leb[0, x] = µ[0, y], where Leb denotes the Lebesgue measure on S1;
or more briefly, h∗ Leb = µ. Finally define a homeomorphism F of S1 by
F := h−1 ◦R ◦ h, then

(1.5)
dF−1
∗ Leb

dLeb
=
dR−1
∗ µ

dµ
◦ h ∈ L∞(S1,Leb),

i.e. the map F is a Lipschitz homeomorphism. The set C ′ = h−1C is a
measurable fundamental domain of F .

To prove Theorem 1.2, it is enough to make the Radon-Nikodym deriva-

tive g = dR−1
∗ µ
dµ

continuous on S1. Assume that g is continuous, set φ = log g

and

φ(m)(x) =
m−1∑
i=0

φ(Rix) (m > 0),

φ(−m)(x) = −
m∑
i=1

φ(R−ix) (m > 0),

φ(0)(x) = 0,

(1.6)

then we can conclude that ai = exp(φ(i)(x0))a0 for any point x0 ∈ C. Since∑
i∈Z ai = 1, the sum

∑
i∈Z exp(φ(i)(x0)) has to be finite.

Fix an integer n ∈ N. Since R−2nC, . . . , C, . . . , R2n−1C are disjoint
compact sets, for a sufficiently small ε-neighbourhood N of C, R−2nN, . . . ,
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N, . . . , R2n−1N are also disjoint. Take a bump function f : S1 → R so that
supp f ⊂ N , f(x) = (3/4)n for x ∈ C and 0 ≤ f(x) < (3/4)n for x ∈ NrC.
Define φn : S1 → R by

(1.7) φn(x) =


−f(R−ix) x ∈ RiN, i = 0, 1, . . . , 2n − 1

f(R−ix) x ∈ RiN, i = −2n,−2n + 1, . . . ,−1

0 otherwise

and φ =
∑∞

i=1 φn, then φ is a continuous function satisfying

(1.8)
∑
i∈Z

exp(φ(i)(x0)) <∞.

Employing this φ, set µ̃ =
∑

i∈Z(exp ◦φ(i) ◦ R−i)Ri
∗µ0 and µ = µ̃∫

S1 dµ̃
.

The function F : S1 → S1 constructed from this µ is C1.
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Configuration spaces of linkages on
Riemannian surfaces

Mickaël KOURGANOFF

1. Introduction

A mechanical linkage is a mechanism made of rigid rods linked together by
flexible joints, in which some vertices are fixed and others may move. The
configuration space of a linkage is the set of all its possible positions.

There has been a lot of work on mechanical linkages. Many papers
deal with linkages on the Euclidean plane R2, but the Definition of linkages
extends naturally to any Riemannian manifold.

On the Euclidean plane, Kempe [Kem75] has shown in 1875 that for
any algebraic curve C, for any euclidian ball B ⊆ R2, there exists a linkage
L, and one vertex of this linkage v such that C ∩B is exactly the set of the
possible positions of v (his proof was flawed, but there is a rather simple
way to make it correct, see [Abb08]). In particular, the famous Peaucellier-
Lipkin straight-line motion linkage (Figure 1) forces a vertex to move on a
straight line.

More recently, Kapovich and Millson [KM02] have shown that for any
smooth compact manifold without boundary M , there exists a linkage for
which the configuration space is diffeomorphic to a finite disjoint union of
copies of M . Jordan and Steiner proved a weaker version of this theorem
with more elementary techniques [JS99]. Thurston already gave lectures on
a similar theorem in the 1980’s but never wrote a proof.

When we consider the same linkage on two different Riemannian sur-
faces, for example on the Euclidean plane and on the sphere, the configu-
ration space may be very different. Therefore, it is natural to ask what the
two results above become on surfaces other than the plane. Is there a way
of characterizing the curves which may be drawn ? May any smooth com-
pact manifold be seen as the configuration space of some linkage ? As far as
we know, it is an open problem whether it is possible in general to force a
vertex to move on a geodesic. On the sphere, the answer is easy : just take
a fixed vertex linked to a moving vertex by an edge of length π/2. Some
solutions also exist on the hyperbolic plane or on the Minkowski plane.

The analogue of the second result in RP2 (with the metric induced by
the natural covering S2 −→ RP2) is shown in [KM02] using the methods
of Mnëv [Mnë88]. The result also applies to S2 with slight modifications.

c© 2013 Mickaël Kourganoff
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However, it seems difficult to show the analogue of Kempe’s theorem on
the sphere with these methods, because the projective point of view does
not distinguish opposite points on the sphere.

d e
a

Figure 1: On the plane, the Peaucellier-Lipkin straight-line motion linkage
forces the point a to move on a straight line. The vertices d and e are fixed
to the plane.

2. Main results

Definition 2.1. An abstract linkage L on a Riemannian manifold N is a
graph (V,E) together with :

1. A function l : E −→ R+ (which gives the length of each edge) ;

2. A subset F ⊆ V of fixed vertices ;

3. A function φ0 : F −→ N which indicates where the edges of F are
fixed.

Definition 2.2. Let L be an abstract linkage on a manifold N . Let M
be a manifold containing N . A realization of a linkage L onM is a function
φ : V −→M such that :

1. φ|F = φ0 ;

2. For each edge v1v2 ∈ E, δ(φ(v1), φ(v2)) = l(v1v2), where δ is the
Riemannian distance on M.

Definition 2.3. Let L be an abstract linkage on a manifold N . Let
W ⊆ V . Let M be a manifold containing N . The partial configuration
space of L on M with respect to W , written E(W,M), is the following set
of functions from W to M :

E(W,M) = {φ|W | φ realization of L} .

Definition 2.4. A semi-algebraic subset of (Sd)n is a set A ⊆ (Sd)n such
that there exist N ≥ n, m ∈ N and f : (Rd+1)N = R(d+1)N −→ Rm a
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polynomial such that :

A =
{
a ∈ (Sd)n

∣∣ ∃b ∈ (Sd)N−n, f(a, b) = 0
}
.

A is called an algebraic subset of (Sd)n when we can choose N = n.
In other words, the semi-algebraic subsets of (Sd)n are the projections

of the algebraic subsets of (Sd)N for any N ≥ n.

Using techniques similar to [KM02], but with different elementary link-
ages, we proved :

Theorem 2.5 (Kempe’s theorem on Sd, d ≥ 2). Let d ≥ 2 and n ≥ 1. Let
A be a semi-algebraic subset of (Sd)n. Then there exists an abstract linkage
L = (V,E, l, F, φ0) and W ⊆ V such that E(W,Sd) = A.

Note that for any linkage L, and for any W ⊆ V , E(W ) is a semi-
algebraic subset of (Sd)n, so this theorem describes exactly the sets which
are partial configuration spaces.

Kempe’s original theorem on the plane was only for n = 1 and for
algebraic subsets of R2 intersected with an euclidian ball. However, the
corresponding theorem for linkages on R2, semi-algebraic subsets of R2 and
n ≥ 1 is a direct consequence of Kapovich and Millson’s results [KM02].
A similar theorem for linkages in Rd has been proved by Timothy Good
Abbott [Abb08].

Our proof for Theorem 2.5 also gives a new proof for the following
result :

Theorem 2.6 (Differential universality theorem on Sd, d ≥ 2). Let M be
a smooth compact manifold. There exists a linkage L on Sd for which
E(V, Sd) is diffeomorphic the disjoint union of a finite number of copies of
M .

3. Questions

Question 3.1. Is it possible to replace “a finite number of copies” by
“one copy” in Theorem 2.6 ? (This question is also open on the plane.)

Question 3.2. What happens when Sd is replaced by any Riemannian
manifold in Theorems 2.5 and 2.6 ?
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Some remarks on the reconstruction
problems of symplectic and cosymplectic

manifolds

Agnieszka KOWALIK

1. Introduction

The presentation will contain some results concerning reconstruction prob-
lems of symplectic and cosymplectic manifolds.
In both cases following theorems of M. Rubin will be used:

Theorem 1.1 (M. Rubin [2]). Let X and Y be regular topological spaces
and let H(X), H(Y ) denote groups of all homeomorphisms on X, Y re-
spectively. Let G ≤ H(X) and H ≤ H(Y ) be factorizable and non-fixing.
Assume that there is an isomorphism ϕ : G → H. Then there is a
unique homeomorphism τ : X → Y such that for any g ∈ G one have
ϕ(g) = τgτ−1.

Theorem 1.2 (M. Rubin [2]). Let X, Y be regular topological spaces and
let G ≤ H(X), H ≤ H(X). Assume that

1. There are G1 ≤ G and H1 ≤ H such that G1, H1 are factorizable and
non-fixing groups of X and Y respectively.

2. For every x ∈ X, intG(x) 6= ∅ and for every y ∈ Y , intH(y) 6= ∅.

Suppose that there is a group isomorphism ϕ : G → H. Then there is a
homeomorphism τ : X → Y such that ϕ(g) = τgτ−1 for any g ∈ G.

In the case of symplectic manifold (M,ω) the symbol Symp(M,ω) will
stand for the group of all symplectomorphisms on (M,ω). In the case of
cosymplectic manifold (M, θ, ω) symbols Cosymp(M, θ, ω), Ham(M, θ, ω),
Grad(M, θ, ω) and Ev(M, θ, ω) will stand for the groups of all cosymplecto-
morphisms and hamiltonian, gradient and evolution cosymplectomorphisms
respectively. In both symplectic and cosymplectic cases if G is a group then
Gc denotes its subgroup of all compactly supported elements and G0 de-
notes its subgroup of all elements that are isotopic with the identity.

c© 2013 Agnieszka Kowalik
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2. Main results

Our first result is an extension of theorem of A. Banyaga [1]. This can be
done by using Thorem 1.2. Using it we obtain the following:

Theorem 2.1. Let (Mi, ωi) for i = 1, 2 be symplectic manifolds and let ϕ :
Symp(M1, ω1) → Symp(M2, ω2) or ϕ : Symp(M1, ω1)0 → Symp(M2, ω2)0

be an isomorphism. Then there is a unique diffeomorphism τ : M1 → M2

such that ϕ(f) = τfτ−1 for any f ∈ Symp(M1, ω1) and τ ∗ω2 = λω1 for
some constant λ.

In [1] one can find a similar result, but with stronger assumptions. Namely
it must be fullfiled that both Mi are compact or that stmplectic pairing for
both ωi is identically equal to zero.

Our next results deal with cosymplectic manifolds. Among the others
we obtain an analogon of above theorem for cosymplectic manifolds.
Our first result is the following:

Proposition 2.2. Groups Ham(M, θ, ω) and Grad(M, θ, ω) are factoriz-
able and non-fixing.

By using above Proposition and Theorem 1.1 we obtain immediately:

Corollary 2.3. Let (M1, θ1, ω1) and (M2, θ2, ω2) be cosymplectic manifolds
and let G(Mi) = Hamc(Mi, θi, ωi) or G(Mi) = Gradc(Mi, θi, ωi) for i = 1, 2.
If there is an isomorphism ϕ : G(M1) → G(M2) then there is a unique
homeomorphism τ : M1 → M2 such that for any g ∈ G(M1) one have
ϕ(g) = τgτ−1.

Our next result is the following extension of Theorem of Takens [4] to the
cosymplectic case.

Theorem 2.4. Let (M1, θ1, ω1) and (M2, θ2, ω2) be cosymplectic manifolds
with complete Reeb vector fields. Let

τ : (M1, θ1, ω1)→ (M2, θ2, ω2)

be a homeomorphism such that

τhτ−1 ∈ Cosymp(M2)⇔ h ∈ Cosymp(M1)

or
τhτ−1 ∈ Grad(M2, θ2, ω2)⇔ h ∈ Grad(M1, θ1, ω1),

or
τhτ−1 ∈ Ev(M2, θ2, ω2)⇔ h ∈ Ev(M1, θ1, ω1).



269

Then τ is a C∞ diffeomorphism.

Theorem 2.5. Let (M1, θ1, ω1) and (M2, θ2, ω2) be cosymplectic manifolds.
Let G(Mi) be either G(Mi) = Cosymp(Mi, θi, ωi) or G(Mi) = Ev(Mi, θi, ωi)
or G(Mi) = Grad(Mi, θi, ωi) for i = 1, 2. If there exists an isomorphism ϕ :
G(M1) → G(M2) then there is a unique smooth diffeomorphism τ : M1 →
M2 such that for any f ∈ G(M1) there is ϕ(f) = τfτ−1 and τ ∗ω1 = λω2.
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Generalized Newton transformation and its
applications to extrinsic geometry

Wojciech KOZ LOWSKI

Analyzing the study of Riemannian geometry we see that its basic
concepts are related with some operators, such as shape, Ricci, Schouten
operator, etc. and functions constructed of them, such as mean curvature,
scalar curvature, Gauss-Kronecker curvature, etc. The most natural and
useful functions are the ones derived from algebraic invariants of these oper-
ators, e.g., by taking trace, determinant and in general the r-th symmetric
functions σr. However, the case r > 1 is strongly nonlinear and there-
fore more complicated. The powerful tool to deal with this problem is the
Newton transformation Tr of an endomorphism A (strictly related with the
Newton’s identities) which, in a sense, enables a linearization of σr,

(r + 1)σr+1 = tr (ATr).

Although this operator appeared in geometry many years ago (see, e.g.,
[21, 29]), there is a continues increase of applications of this operator in
different areas of geometry in the last years (see, among others, [1, 2, 3, 8,
10, 17, 18, 23, 24, 25, 28]).

All these results cause a natural question, what happen if we have a
family of operators i.e. how to define the Newton transformation for a family
of endomorphisms. A partial answer to this question can be found in the
literature (operator Tr and the scalar Sr for even r [5, 15]), nevertheless,
we expect that this case is much more subtle. This is because in the case of
family of operators we should obtain more natural functions as in the case of
one operator and consequently more information about geometry. In order
to do this, for any multi–index u and generalized elementary symmetric
polynomial σu we introduce transformations depending on a system of linear
endomorphisms. Since these transformations have properties analogous to
the Newton transformation (and in the case of one endomorphism coincides
with it) we call this new object generalized Newton transformation (GNT)
and denote by Tu. The concepts of GNT is based on the variational formula
for the r–th symmetric function

d

dτ
σr+1(τ) = tr

(
Tr ·

d

dτ
A(τ)

)
,

Extended Abstract (joint paper with K. Andrzejewski and K. Niedzialomski)
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which is crucial in many applications and, as we will show, characterize
Newton’s transformations. Surprisingly enough, according to knowledge of
the authors, GNT has never been investigated before.

1. Generalized Newton transformation (GNT)

Let A be an endomorphism of a p–dimensional vector space V . The Newton
transformation of A is a system T = (Tr)r=0,1,... of endomorphisms of V
given by the recurrence relations:

T0 = 1V ,

Tr = σr1V − ATr−1, r = 1, 2, . . .

Here σr’s are elementary symmetric functions of A. If r > p we put σr = 0.
Equivalently, each Tr may be defined by the formula

Tr =
r∑
j=0

(−1)jσr−jA
j.

Observe that Tp is the characteristic polynomial of A. Consequently, by
Hamilton–Cayley Theorem Tp = 0. It follows that Tr = 0 for all r ≥ p.

The Newton transformation satisfies the following relations [21]:

(N1) Symmetric function σr is given by the formula

rσr = tr (ATr−1).

(N2) Trace of Tr is equal
trTr = (p− r)σr.

(N3) If A(τ) is a smooth curve in End (V ) such that A(0) = A, then

d

dτ
σr+1(τ)τ=0 = tr (

d

dτ
A(τ)τ=0 · Tr), r = 0, 1, . . . , p.

Condition (N3) is the starting point to define generalized Newton trans-
formations.

Let V be a p–dimensional vector space (over R) equipped with an
inner product 〈 , 〉. For an endomorphism A ∈ End (V ), let A> denote the
adjoint endomorphism, i.e. 〈Av,w〉 = 〈v, A>w〉 for every v, w ∈ V . The
space End (V ) is equipped with an inner product

〈〈A,B〉〉 = tr (A>B), A,B ∈ End (V ).

Let N denote the set of nonnegative integers. By N(q) denote the set
of all sequences u = (u1, . . . , uq), with uj ∈ N. The length |u| of u ∈ N(q)
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is given by |u| = u1 + . . . + uq. Denote by End q(V ) the vector space
End (V ) × . . . × End (V ) (q–times). For A = (A1, . . . , Aq) ∈ End q(V ),
t = (t1, . . . , tq) ∈ Rq and u ∈ N(q) put

tu = tu1
1 . . . tuqq ,

tA = t1A1 + . . .+ tqAq

By a Newton polynomial of A we mean a polynomial PA : Rq → R of
the form PA(t) = det(1V + tA). Expanding PA we get

PA(t) =
∑
|u|≤p

σut
u,

where the coefficients σu = σu(A) depend only on A. Observe that σ(0,...,0) =
1. It is convenient to put σu = 0 for |u| > p.

Consider the following (music) convention. For α we define functions
α] : N(q)→ N(q) and α[ : N(q)→ N(q) as follows

α](i1, . . . , iq) = (i1, . . . , iα−1, iα + 1, iα+1, . . . , iq),

α[(i1, . . . , iq) = (i1, . . . , iα−1, iα − 1, iα+1, . . . , iq),

i.e. α] increases the value of the α–th element by 1 and α[ decreases the
value of α–th element by 1. It is clear that α] is the inverse map to α[.

Now, we may state the main definition. The generalized Newton trans-
formation of A = (A1, . . . , Aq) ∈ End q(V ) is a system of endomorphisms
Tu = Tu(A), u ∈ N(q), satisfying the following condition (generalizing
(N3)):

For every smooth curve τ 7→ A(τ) in End q(V ) such that A(0) = A

d

dτ
σu(τ)τ=0 =

∑
α

〈〈 d
dτ
Aα(τ)τ=0)>|Tα[(u)〉〉

=
∑
α

tr

(
d

dτ
Aα(τ)τ=0 · Tα[(u)

)
.

(GNT)

From the above definition it is not clear that generalized Newton trans-
formation exists. In order to show the existence of Generalized Newton
transformation, we introduce the following notation.

For q, s ≥ 1 let N(q, s) be the set of all q × s matrices, whose entries
are elements of N. Clearly, the set N(1, s) is the set of multi–indices i =
(i1, . . . , is) with i1, . . . , is ∈ N, hence N(s) = N(1, s). Moreover, every
matrix i = (iαl ) ∈ N(q, s) may be identified with an ordered system i =
(i1, . . . , iq) of multi–indices iα = (iα1 , . . . , i

α
s ).

If i = (i1, . . . , is) ∈ N(s) then its length is simply the number |i| =
i1 + . . .+ is. For i = (i1, . . . , iq) ∈ N(q, s) we define its weight as an multi–
index |i| = (|i1|, . . . , |iq|) ∈ N(q). By the length ‖i‖ of i we mean the length
of |i|, i.e., ‖i‖ =

∑
α |iα| =

∑
α,l i

α
l .
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Denote by I(q, s) a subset of N(q, s) consisting of all matrices i satisfying
the following conditions:

(1) every entry of i is either 0 or 1,

(2) the length of i is equal to s,

(3) in every column of i there is exactly one entry equal to 1, or equiva-
lently |i>| = (1, . . . , 1).

We identify I(q, 0) with a set consisting of the zero vector 0 = [0, . . . , 0]>.
Let A ∈ End q(V ), A = (A1, . . . , Aq), and i ∈ N(q, s). By Ai we mean

an endomorphism (composition of endomorphisms) of the form

Ai = A
i11
1 A

i21
2 . . . A

iq1
q A

i12
1 . . . A

iq2
q . . . A

i1s
1 . . . A

iqs
q .

In particular, A0 = 1V .

Theorem 1.1. For every system of endomorphisms A = (A1, . . . , Aq),
there exists unique generalized Newton transformation T = (Tu : u ∈ N(q))
of A. Moreover, each Tu is given by the formula

(1.2) Tu =

|u|∑
s=0

∑
i∈I(q,s)

(−1)‖i‖σu−|i|A
i,

where σu−|i| = σu−|i|(A).

As a consequence of above theorem we obtain:

Theorem 1.3 (Generalized Hamilton–Cayley Theorem). Let T = (Tu :
u ∈ N(q)) be the generalized Newton transformation of A. Then for ev-
ery u ∈ N(q) of length greater or equal to p we have Tu = 0.

Moreover the generalized Newton transformation T = (Tu : u ∈ N(q))
of A satisfies the following recurrence relations:

Theorem 1.4.

T0 = 1V , where 0 = (0, . . . , 0),(1.5)

Tu = σu1V −
∑
α

AαTα[(u)

= σu1V −
∑
α

Tα[(u)Aα,
where |u| ≥ 1.(1.6)
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2. Applications to extrinsic geometry

Let (M, g) be an oriented Riemannian manifold, D a p–dimensional
(transversally oriented) distribution on M . Let q denotes the codimension
of D. For each X ∈ TxM there is unique decomposition

X = X> +X⊥,

where X> ∈ Dx and X⊥ is orthogonal to Dx. Denote by D⊥ the bundle
of vectors orthogonal to D. Let ∇ be the Levi–Civita connection of g.
∇ induces connections ∇> and ∇⊥ in vector bundles D and D⊥ over M ,
respectively.

Let π : P →M be the principal bundle of orthonormal frames (oriented
orthonormal frames, respectively) of D⊥. Clearly, the structure group G of
this bundle is G = O(q) (G = SO(q), respectively).

Every element (x, e) = (e1, . . . , eq) ∈ Px, x ∈M , induces the system of
endomorphisms A(x, e) = (A1(x, e), . . . , Aq(x, e)) of Dx, where Aα(x, e) is
the shape operator corresponding to (x, e), i.e.

Aα(x, e)(X) = − (∇Xeα)> , X ∈ Dx.

Let T (x, e) = (Tu(x, e))u∈N(q) be the generalized Newton transformation
associated with A(x, e).

The bundle π : P → M and the vector bundles TM → M , D → M ,
D⊥ →M induce the pull–back bundles

E = π−1TM, E ′ = π−1D and E ′′ = π−1D⊥ over P ,

each with a fiber (π−1TM)(x,e) = TxM , (π−1D)(x,e) =Dx and (π−1D⊥)(x,e) =
D⊥x , respectively. We have

E = E ′ ⊕ E ′′.

Moreover, the connections ∇,∇>,∇⊥ of g induce pull–back connections
∇E,∇E′ and ∇E′′ in E, E ′ and E ′′, respectively.

Define the section Yu ∈ Γ(E), u ∈ N(q) as follows

(2.1) Yu(x, e) =
∑
α,β

Tβ[α[(u)(x, e)(∇eαeβ)> +
∑
α

σα[(u)(x, e)eα.

Observe that the first component of Yu is a section of E ′, whereas the
second component is a section of E ′′. The section Yu and the vector field

Ŷu ∈ Γ(TM) obtained from Yu by integration on the fibers of P play a
fundamental role in our considerations.
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Lemma 2.2. The divergence of Yu is given by the formula

divEYu = −|u|σu +
∑
α,β

[
tr (Rα,βTβ[α[(u)) + g(divE′T

∗
β[α[(u), (∇eαeβ)>)

− g(HD⊥ , Tβ[α[(u)(∇eαeβ)>) +
∑
γ

g((∇eαeγ)
>, Tβ[α[(u)(∇eγeβ)>)

]
,

where HD⊥ denotes the mean curvature vector of the distribution D⊥.

Put

(2.3) σ̂u(x) =

∫
Px

σu(x, e) de =

∫
G

σu(x, e0a) da,

where (x, e0) is a fixed element of Px. We call σ̂u’s extrinsic curvatures of
a distribution D. Moreover, we define total extrinsic curvatures

(2.4) σMu =

∫
M

σ̂u(x) dx.

Since the projection π in the bundle P is a Riemannian submersion, then
by Fubini theorem

σMu =

∫
P

σu(x, e) d(x, e).

Theorem 2.5. Assume M is closed. Then, for any u ∈ N(q), the total
extrinsic curvature σMu satisfies

|u|σMu =
∑
α,β

∫
P

(
tr (Rα,βTβ[α[(u)) + g(divE′T

∗
β[α[(u), (∇eαeβ)>)

− g(HD⊥ , Tβ[α[(u)(∇eαeβ)>) +
∑
γ

g((T ∗β[α[(u)(∇eαeγ)
>, (∇eγeβ)>)

)
,

(2.6)

where HD⊥ denotes the mean curvature vector of distribution D⊥.

By Theorem 2.5, we have in particular

σMα](0,...,0) = 0

and

(2.7) 2σMα]β](0,...,0) =

∫
P

(
(RicD)α,β − g(HD⊥ , (∇eαeβ)>)

+
∑
γ

g((∇eαeγ)
>, (∇eγeβ)>)

)
,
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where (RicD)α,β = RicD(eα, eβ) and RicD is the Ricci curvature operator in
the direction of D, i.e.,

RicD(X, Y ) =
∑
i

g(R(fi, X)Y, fi),

where (fi) is an orthonormal basis of D.
If D is integrable i.e. D defines a foliation F then above theorems

generalized some well known facts:

Corollary 2.8. Assume M is closed. Then, for any u ∈ N(q), total ex-
trinsic curvature σMu of a distribution D with totally geodesic normal bundle
is of the form

|u|σMu =
∑
α,β

∫
P

tr (Rα,βTβ[α[(u)).

Corollary 2.9. Assume (M, g) is closed and of constant sectional curva-
ture κ. Let F be a foliation on M with totally geodesic and integrable
normal bundle F⊥. Then the total extrinsic curvatures of F depend on κ,
the volume of M and the dimension of F only.

Moreover we may also obtain formulae of Brito and Naveira [13] for
mean extrinsic curvature Sr

∫
M

Sr =


( p

2
r
2

)(
q+r−1
r

)( q+r−1
2
r
2

)−1

κ
r
2 vol(M) for p even and q odd

2r
((

r
2

)
!
)−1 ( q

2
+ r

2
−1

r
2

)( p
2
r
2

)
κ
r
2 vol(M) for p and q even

0 otherwise
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On the homeomorphism and diffeomorphism
groups fixing a point

Jacek LECH and Ilona MICHALIK

1. Introduction

Let M be a topological metrizable manifold and let H(M) be the identity
component of the group of all compactly supported homeomorphisms of M .
By H(M, p), where p ∈M , we denote the identity component of the group
of all h ∈ H(M) with h(p) = p.

Definition 1.1. A group G is called perfect if it is equal to its own
commutator subgroup [G,G], that is H1(G) = 0.

Definition 1.2. A manifold M admits a compact exhaustion iff there
is a sequence {Mi}∞i=1 of compact submanifolds with boundary such that
M1 ⊂ IntM2 ⊂M2 ⊂ . . . and M =

⋃∞
i=1Mi.

Theorem 1.3. [3] Assume that either M is compact (possibly with bound-
ary), or M is noncompact boundaryless and admits a compact exhaustion.
Then H(M) is perfect.

The proof of Theorem 1.3 is a consequence of J.N.Mather’s paper
combined with results of R.D.Edwards and R.C.Kirby. A special case of
Theorem 1.3 was already showed by G.M.Fisher.

2. Main results

Definition 2.1. A group is called bounded if it is bounded with respect
to any bi-invariant metric.

Definition 2.2. For g ∈ [G,G] the least k such that g is a product of k
commutators is called the commutator length of g and is denoted by clG(g).
For any perfect group G denote by cldG the commutator length diameter
of G, i.e. cldG := supg∈GclG(g).

Definition 2.3. A group G is called uniformly perfect if G is perfect and
cldG <∞.

c© 2013 Jacek Lech and Ilona Michalik
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Definition 2.4. Let G be a group. A conjugation-invariant norm on G
is a function ν : G→ [0,∞) for every g, h ∈ G we have

1. ν(g) > 0 if and only if g 6= e,

2. ν(g−1) = ν(g),

3. ν(gh) 6 ν(g) + ν(h),

4. ν(hgh−1) = ν(g).

It is easy to see that G is bounded if and only if any conjugation-
invariant norm on G is bounded.

Observe that the commutator length clG is a conjugation-invariant
norm on [G,G], or on G if G is a perfect group.

Proposition 2.5. Let G be perfect and bounded group. Then G is uni-
formly perfect.

Our main results are the following

Theorem 2.6. 1. The groups H(Rn, 0) and H(Rn+, 0) are perfect, where
Rn+ = [0,∞)× Rn−1.

2. Assume that either M is compact (possibly with boundary), or M is
noncompact boundaryless and admits a compact exhaustion. Then the
group H(M, p) is perfect.

A similar result was obtained by T.Tsuboi. He proved that H([0, 1]) is
perfect by using different argument than that for Theorem 2.6. Next he gen-
eralized the result for Lipschitz homeomorphisms and for C1-diffeomorphisms
(resp. C∞-diffeomorphisms) tangent (resp. infinitely tangent) to the iden-
tity at the endpoints. Observe as well that Theorem 2.6 was proved for M
closed by K.Fukui in [2]. However, our proof is different than that in [2]
and it leads to following theorem.

Theorem 2.7. The group H(Rn, 0) is uniformly perfect and its commuta-
tor length diameter is less or equal 2. The same is true for H(Rn+, 0).

Let Dr(M) (resp. Dr(M, p)) be the identity component of the group
of all compactly supported Cr-diffeomorphisms of M (resp. fixing p ∈M).
It is easy to see that Dr(M, p) is not perfect for r > 1. Moreover, K.Fukui
calculated that H1(D∞(Rn, 0)) = R.

Theorem 2.8. 1. H(Rn, 0) is bounded group.

2. Assume that either M is compact (possibly with boundary), or M is
noncompact boundaryless and admits a compact exhaustion. Then the
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group H(M) is bounded whenever H(M, p) is bounded.

Note that this theorem is no longer true in the Cr category for r > 1. Choose
a chart at p. Then there is the epimorphism Dr(M, p) 3 f 7→ jacpf ∈ R+,
where jacpf is the jacobian of f at p in this chart. From Proposition 1.3 in
[1] an abelian group is bounded if and only if it is finite and Lemma 1.10
in [1] implies that Dr(M, p) is unbounded.

3. Questions

Question 3.1. (1) Let HLip(M, p) be the compactly supported identity
component of Lipschitz homeomorphism group fixing point p. The
question is, whether the group HLip(M, p) is perfect or bounded.

(2) Denote by Symp(M,ω; p) the compactly supported identity compo-
nent of symplectomorphism group fixing point p. The problem is to
calculate H1(Symp(M,ω; p)).

(3) The same questions could be asked for contactomorphism groups and
volume preserving diffeomorphism groups.
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1. The Volume of a Tube

1.1. The second fundamental forms of the tubular hypersurfaces

Definition 1.1. Let P be a topologically embedded sub-manifold (pos-
sibly with boundary) in a Riemannian manifold M , then a tube T (P, r) of
radius r ≥ 0 about P is the set

T (P, r) ={m ∈M : there exists a geodesic ξ of length L(ξ) ≤ r(1.2)

from m meeting P orthogonally}.

We shall also need a notation closely related to that of tube.

Definition 1.3. We call a hypersurface of the form

Pt = {m ∈ T (P, r) : distance(m,P ) = t}

the tubular hypersurface at distance t from P.

For 0 < t ≤ r the tubular hypersurfaces Pt form a natural foliation of the
tubular region T (P, r)− P .

1.2. The volume of a tube in terms of the infinitesimal change
of volume function

We assume that P is topologically embedded submanifold with compact
closure of a complete Riemannian manifold M . For all r ≥ 0 both T (P, r)
and Pr are measurable sets. Let

VM
P (r) =the n− dimensional volume of T (P, r),

AM
P (r) =the (n− 1)− dimensional volume of Pr.

It is easy to show that AMP (r) is the derivative of V M
P (r). We use the lemma:

c© 2013 Magdalena Lużyńczyk
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Lemma 1.4. Suppose that expν : {(p, v) ∈ ν :‖ v ‖≤ r} 7−→ T (P, r) is a
diffeomorphism. Then

AMP (r) = rn−q−1

∫
P

∫
Sn−q−1(1)

Vu(r)dudP.

Lemma 1.5. Suppose that expν : {(p, v) ∈ ν :‖ v ‖≤ r} 7−→ T (P, r) is a
diffeomorphism. Then

d

dr
V M
P (r) = AMP (r)

= rn−q−1

∫
P

∫
Sn−q−1(1)

Vu(r)dudP.

Proofs of this lemmas are available at [3].

2. Riemannian manifolds with singularities

In this section we work with Riemannian geometry of manifolds equipped
with a pair of orthogonal plane fields. We want to generalize it to the case
of plane fields with singularities, that is defined on a compact manifold
except of singular set, the union of submanifolds of lower dimension. Till
now, author produced a new integral formula ( see[4] ) obtained from inte-
gration of the divergence of a vector field built from Newton transforms of
Weingarten operators applied to the mean curvature vectors of the plane
fields under consideration. This formula, in a sense, analogous to the one
obtained by Walczak in the 1990 [5].

We get reasonable applications of this formulae leading to provide ob-
structions for the existence of geometric structures - here, pairs of distri-
butions - satisfying some geometric conditions (for example: being totally
geodesic, minimal, umbilical and so on) on some special (locally symmetric,
of constant curvature, positively/negatively curved and so on) Riemann-
ian manifolds.

Let M be a Riemannian manifold, dimM ≥ 3, equipped with two
complementary distributions D1 and D2. We assume that

p+ q = n, where p = dimD1, q = dimD2 and n = dimM.

Let us take a local orthonormal frame e1, . . . , en adapted to D1 and D2,
i.e., we assume that ei is tangent to D1 for i = 1, . . . , p and eα is tangent
to D2 for α = p+ 1, . . . , n.
The second fundamental forms Bm of Dm (m = 1, 2) are defined as follows:

B1(X1, Y1) =
1

2
(∇X1Y1 +∇Y1X1)⊥, B2(X2, Y2) =

1

2
(∇X2Y2 +∇Y2X2)>
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for vector fields Xm and Ym tangent to Dm.
The integrability tensors Tm of Dm (m = 1, 2) are defined as follows:

T1(X1, Y1) =
1

2
[X1, Y1]⊥, T2(X2, Y2) =

1

2
[X2, Y2]>

for vector fields Xm and Ym tangent to Dm.
Then the mean curvature vectors Hm of Dm are given by

H1 = TraceB1 =
∑
i

B1(ei, ei) =
∑
i

(∇eiei)
⊥

H2 = TraceB2 =
∑
α

B2(eα, eα) =
∑
i

(∇eαeα)>.

Let us define the Weingarten operators by

A1 : D1 ×D2 → D1,
〈
A1(X,N), Y

〉
=
〈
B1(X, Y ), N

〉
for X, Y ∈ D1, N ∈ D2

A2 : D2 ×D1 → D2,
〈
A2(X ′, N ′), Y ′

〉
=
〈
B2(X ′, Y ′), N ′

〉
for X ′, Y ′ ∈ D2, N

′ ∈ D1.

Assume now that M has bounded geometry (i.e., bounded sectional
curvature and injectivity radii rx, x ∈ M , separated away from zero). Let
A be a finite set of singularities(points, closed curve, etc.) on M and
codimensionA = n − 2. Moreover, let f : M/A → [0,+∞) be a function
defined on M outside a finite set A.
We denote the tube T (A, r) of radius r ≥ 0 about set A by NA(r) and
δNA(r) as the tubular hypersurface at a distance r ≥ 0 from A.
We shall also need an one the well-known formula volumeδNγ(r) w L(γ) ·
volumeSn−1(r), where γ ⊂ A is closed curve, L(γ) is length of the the curve
γ and Sn−1(r) ⊂ Rn is sphere of radius r. In particular:

• in R2 we obtain volume δNγ(r) = 2r · L(γ)

• in R3 we obtain volume δNγ(r) = πr2 · L(γ)

It leads to the following and useful lemma.

Lemma 2.1.

If lim
r→0+

inf

∫
δNγ(r)

f > 0, then

∫
M

f 2 = 0.

These lemma will be used extensively and will allow us to proof the
following theorems.
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Theorem 2.2. Let M being a compact Riemannian manifold of dimension
n ≥ 3 and A a finite subset of M . If

∫
M
‖ H1 ‖< ∞ and

∫
M
‖ H2 ‖<

∞ then

(2.3)

∫
M

||B1||2+||B2||2−||H1||2−||H2||2−||T1||2−||T2||2 =

∫
M

K(D1, D2),

where K(D1, D2) is a generalization on the Ricci curvature equal to the sum∑
i,α

< R(ei, eα)eα, ei >

and called the mixed scalar curvature.

Theorem 2.4. Let M being a compact Riemannian manifold of dimension
n ≥ 3 and A a finite subset of M . If

∫
M
‖ A1 ‖<∞ and

∫
M
‖ A2 ‖<∞ then∫

M

〈
Ric(H2), H1

〉
=∫

M

〈
H1, (∇H2H1)⊥

〉
+
〈
H2, (∇H1H2)>

〉
+〈

Tr⊥
(
∇•T1

)
(•, H2), H1

〉
+
〈
Tr>

(
∇•T2

)
(•, H1), H2

〉
+〈

AH1
1 ,∇>•H2

〉
+
〈
AH2

2 ,∇⊥•H2

〉
+∑

i

〈
A1

(
H2, (∇eiH1)⊥

)
, ei
〉

+
∑
α

〈
A2

(
H1, (∇eαH2)>

)
, eα
〉
+

2
∑
i

〈(
∇T1(ei,H2)ei

)⊥
, H1

〉
+ 2

∑
α

〈(
∇T2(eα,H1)eα

)>
, H2

〉
−〈

A2(H1, H2), H1

〉
−
〈
A1(H2, H1), H2

〉
.(2.5)

Corollary 2.6. Equality (2.3) holds if and only if K(D1, D2) > 0.

Proposition 2.7. If distributions D1 and D2 are totally geodesic and D2

is the orthogonal complement of D1, then H1 = 0 and H2 = 0 and we get∫
M

K(D1, D2) =

∫
M

(
||T1||2 + ||T2||2

)
,

where Hm and Tm (m=1, 2) denote mean curvature vectors and integrability
tensors of distributions Dm, respectively.
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Almost Contact Confoliations
and their Dimensionality Reductions

Atsuhide MORI

1. Introduction

The following two recent results suggest that the topology of codimension
one foliations of high dimensional manifolds has two opposite possibilities.
Namely, the absence/presence of leafwise symplectic structures could make
it dissimilar/similar to the 3-dimensional topology of foliations.

Theorem 1.1 (Meigniez [3]). Let F be a transversely oriented codimen-
sion one foliation of a closed (n+ 3)-manifold Mn+3 which is just smooth.
Then we can deform F to a minimal (all leaves dense) foliation F ′ such that
TF ′ is homotopic to TF as a tangent hyperplane field on Mn+3 (n > 0).

Theorem 1.2 (Mart́ınez Torres [2]). Let F be an oriented codimension one
foliation of an oriented closed (2n+3)-manifold M2n+3. Suppose that there
exists a closed 2-form ω on M with ωn+1|TF > 0. Then Donaldson-Auroux
approximately holomorphic geometry provides a codimension 2n submani-
fold N3 such that G = F|N3 is a taut foliation and N3 meets each leaf of
F at a single leaf of G (i.e.,M2n+3/F = N3/G).

Mitsumatsu found another kind of leafwise symplectic foliation which has
the same leaf space as a non-taut foliation of a 3-manifold.

Theorem 1.3 (Mitsumatsu [4]). The Lawson foliation of S5, which is a
leafwise fattening of the Reeb foliation of S3, admits a leafwise symplectic
structure. (It is the restriction of a non-closed 2-form on S5).

The Eliashberg-Thurston 3-dimensional confoliation theory discretized the
vast whole of foliations into contact structures. In [6], the author defined
higher dimensional confoliations by means of almost contact geometry:

Definition 1.4. Let ([α], [ω]) be the pair of conformal classes of a 1-form
α and a 2-form ω on a closed oriented (2n+ 1)-manifold M2n+1.

1. We say that ([α], [ω]) (or [α] itself) is an almost contact structure if

c© 2013 Atsuhide Mori
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it satisfies [α] ∧ [ω]n > 0 (for some [ω]).

2. We say that an almost contact structure is a contact structure (resp.
a foliation) if kerα is contact (resp. tangent to a foliation).

3. We say that an almost contact structure is a confoliation if it satisfies
[α ∧ dαn] ≥ 0. If moreover it belongs to the closure of the space of
contact structures or to the space of foliations (in the space of pairs
([α], [ω]) with smooth topology), it is called a strict confoliation.

Though we omit the precise construction in this abstract, we fix a situation
where we can obtain a family of higher dimensional strict confoliations
which goes to a leafwise symplectic foliation (§2).

Outside the Donaldson-Auroux approximately holomorphic geometry,
convex hypersurface theory due to Giroux is the most powerful tool in con-
tact topology. In 3-manifold case, it can be considered as a contact version
of sutured manifold theory due to Gabai (Honda-Kazez-Matić [1]). Further
Honda’s category theory regards a contact structure between convex sur-
faces as a morphism. This author is now trying to generalize this theory
in order to understand the (perhaps proper and natural) affinity between
high dimensional contact topology and 3-dimensional one (§3).

2. Confoliations

We start with the Thurston-Winkelnkemper-Giroux construction of contact
structure on a closed (2n + 1)-manifold M2n+1 equipped with a pagewise
exact symplectic open-book structure O. One may say that this construc-
tion is an extension (or a fattening) of a contact structure kerµ on the
binding B of O under the presence of exact symplectic filling pages. In [5],
the author pointed out that we can further construct a family of contact
structures convergent to a foliation F in the case where the Reeb field of
µ is tangent to a Riemannian foliation G of B defined by a closed 1-form ν
(n > 1). The foliation F consists of a closed leaf L = B × S1, page leaves
coiling into L, and a trivial extension of G also coiling into L. (One might
remember the Calabi conjecture theorem of Friedl-Vidussi.)

Theorem 2.1 ([6]). Assume that the Reeb field of µ is tangent to ker ν.
Suppose moreover that there exists a closed 2-form Ω on B such that

1. ν ∧ (dµ+ εΩ)n > 0 holds for small ε > 0, and

2. Ω extends to a closed 2-form on the page.

Then we can construct a family of pairs (αt, ωt) on M2n+1 such that

1. αt ∧ (dαt)
n > 0 for 0 ≤ t < 1,

2. ω0 = dα0, kerα1 = TF ,
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3. αt ∧ ωnt > 0 for 0 ≤ t ≤ 1 , and

4. ω1|F is leafwise symplectic.

Example 2.2. The Milnor fibration of x3 + y3 + z3 = 0 on C3 naturally
defines a pagewise exact symplectic open-book on (small) S5. In this case
Mitsumatsu [4] found the above 2-form Ω. Then the strict confoliations
([αt], [ωt]) starts with the standard contact structure on S5 and goes to the
Lawson foliation with leafwise symplectic structure.

3. Convex hypersurfaces

Let Σ be a compact oriented hypersurface in a contact manifold. Suppose
that, for a suitable representative α ∈ [α], the sign of dαn|TΣ defines a
dividing Σ \ Γ = Σ+ ∪ (−Σ−) along a submanifold Γ ⊂ Σ into strongly
pseudo-convex domains Σ±. Then Σ is called a convex hypersurface. (One
may generalize this notion in various ways, e.g., for leafwise symplectic
foliations, one may consider a union of pseudo-convex domains on leaves
connected with cylindrical “sutures” transverse to the foliation.)

In [5], the author generalized the Lutz modification of 3-dimensional
contact structure by using convex hypersurface theory. In general, this
modification changes the contact structure drastically (indeed makes it
non-fillable) and produces a convex hypersurface which contains a strongly
pseudo-convex domain with disconnected boundary. We call such a domain
on a convex hypersurface a Calabi hypersurface.

Question 3.1. Is there any Calabi hypersurface in S2n+3 ⊂ Cn+2 ?

We consider a certain generalization of the convex version of Thurston-
Bennequin inequality in higher dimension since the natural generalization
of the usual inequality does not hold even locally. On the other hand, if
a convex hypersurface violates the inequality, it contains a Calabi hyper-
surface. Here we notice that, while a surfaces in contact 3-manifolds are
smoothly approximated by convex ones, that is not the case with hyper-
surfaces in higher dimension. Anyway the generalized Lutz modification
produces a convex hypersurface which violates the inequality.

The existence problem of convex hypersurfaces is also interesting. First
we see that the boundary of the standard neighbourhood of a Legendrian
submanifold is naturally convex. Such a convex hypersurface is said to be
tubular. On the other hand, the Donaldson-Auroux approximately holo-
morphic geometry is the main source of non-tubular convex hypersurfaces.
For example it provides a pagewise exact symplectic open-book described
in §2, and a pair of pages forms a convex hypersurface. (Of course, it
is tubular if the page is a cotangent bundle.) Then Theorem 1.2 suggests
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that a convex hypersurface theory could embody some affinity between high
dimensional contact topology and 3-dimensional one.

Further as is described in §1, convex surfaces are objects in Honda’s
category theory. In [7], the author is trying to generalize this theory to
higher dimension. His aim is to show that some quotient of higher dimen-
sional contact category becomes equivalent to Honda’s category.

In summary,

Question 3.2. Can we “split” the 2n+ 3-dimensional topology of almost
contact confoliation into 2n + 2-dimensional (not 2n-dimensional !) sym-
plectic geometry and 3-dimensional confoliation theory ?
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Pretzel knot with no R-covered foliation and

left-orderable groups
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1. Main theorem and its background

A codimension one, transversely oriented foliation F on a closed 3-manifold
M is called a Reebless foliation if F does not contain a Reeb component.
By the theorems of Novikov, Rosenberg, and Palmeira, if M is not home-
omorphic to S2 × S1 and contains a Reebless foliation, then M has prop-

erties that the fundamental group of M is infinite, the universal cover M̃

is homeomorphic to R3 and all leaves of its lifted foliation F̃ on M̃ are
homeomorphic to a plane. In this case we can consider a quotient space

T = M̃/F̃ , and T is called a leaf space of F . The leaf space T becomes
a simply connected 1-manifold, but it might be a non-Hausdorff space. If
the leaf space is homeomorphic to R, F is called an R-covered foliation.

The fundamental group π1(M) of M acts on the universal cover M̃ as deck

transformations. Since this action maps a leaf of F̃ to a leaf, it induces an
action of π1(M) on the leaf space T . In fact, it is known that the action
has no global fixed point and it acts on T as a homeomorphism.

In 2004, J.Jun proved the following theorem.

Theorem 1.1. (J. Jun [10, Theorem 2]) Let K be a (−2, 3, 7)-Pretzel knot
in S3 and EK(p/q) be a closed manifold obtained by Dehn surgery along K
with slope p/q. If p/q = 10 and p is odd, then EK(p/q) does not contain
an R-covered foliation.

Dehn surgery along a knot K in S3 is a procedure which yields a new
closed 3-manifold by digging a solid torus along the knot K and successively
attaching a solid torus non-trivially along its boundary. The resultant man-
ifold is determined by the knot K and a rational number ρ which represents
a slope of meridian of the attaching solid torus on the boundary torus of
the digged sphere. For basic definition and properties of Dehn surgery, see
Boyer [1].

We proved the following theorem in [14] which is an extension of The-
orem 1.1 to the case of (−2, 3, 2s+ 1)-type Pretzel knot (s = 3).

c© 2013 Yasuharu Nakae
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Theorem 1.2. (Main Theorem) Let Ks be a (−2, 3, 2s + 1)-type Pretzel
knot in S3 (s = 3). If q > 0, p/q = 4s+ 7 and p is odd, then EKs(p/q) does
not contain an R-covered foliation.

In [16], Roberts, Shareshian and Stein proved that there exist infinitely
many closed orientable hyperbolic 3-manifolds which do not contain a Reeb-
less foliation. J.Jun also proved in [10] conditions for Dehn surgery slopes
that (−2, 3, 7)-Pretzel knot K yields closed 3-manifolds which do not con-
tain a Reebless foliation. In [6], Fenley showed that there exist infinitely
many closed hyperbolic 3-manifolds which do not admit essential lamina-
tions.

These theorems are proved by a similar strategy as follows. Let M
be a closed 3-manifold and F be a Reebless foliation in M . Then, the
fundamental group π1(M) acts on the leaf space T of F as an orientation
preserving homeomorphism which has no global fixed point. By the theo-
rem of Palmeira, F is determined by its leaf space T . Therefore, for any
simply connected 1-manifold T , if there exists a point of T which is fixed
by any action of π1(M) then M cannot contain a Reebless foliation.

In order to use above method to prove our main theorem, we will need
an explicit presentation of the fundamental group. Moreover, it is better
for proving our theorem that its presentation has simpler form because
our investigation of existence of a global fixed point becomes easy if its
presentation has fewer generators.

In the next section, we will explain how to get a good presentation
of the fundamental group of closed 3-manifold obtained by Dehn surgery
along our Pretzel knots Ks. We do not explain the proof of Main theorem
here, please see [14].

2. A good presentation of fundamental groups

In the proof of [10], Jun uses the presentation of a knot group of (−2, 3, 7)-
pretzel knot which obtained by the computer program, SnapPea [18]. Let
Ks be a (−2, 3, 2s + 1)-type Pretzel knot in S3. In order to obtain a good
presentation of the knot group of Ks and its meridian-longitude pair, we
take the following procedure.

We first notice that Ks is a tunnel number one knot for all s = 3 by
the theorem of Morimoto, Sakuma and Yokota [13]. A knot K is called a
tunnel number one knot if there is an arc τ in S3 which intersects K only
on its endpoints and the closure of S3 \ (K ∪ τ) is homeomorphic to a genus
two handlebody. Therefore the knot group of Ks can have a presentation
which has two generators and one relator.

It is well known that two groups G and G′ are isomorphic if there
is a sequence of Tietze transformations such that a presentation of G is
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transformed into its of G′ along this sequence. Although it is generally
difficult to find such a sequence, we can find the required sequence by
applying the procedure which appeared in the paper of Hilden, Tejada and
Toro [7] as follows. At the first step, we obtain the Wirtinger presentation
G1 of the knot K. Then we collapse one crossing of the knot diagram and
get a graph Γ which is thought as a resulting object K ∪ τ because the
exteriors of Γ and K ∪ τ in S3 are homeomorphic. We modify Γ with local
moves in sequence forward to the shape S1 ∨ S1, and in the same time
we modify the presentations by a Tietze transformation which corresponds
to each local move. In the sequel we finally obtain the graph which is
homeomorphic to S1 ∨ S1 and the corresponding presentation which has
two generators and one relator.

In order to apply this procedure to the case of Ks, we add some new
local moves which are not treated in [7], and we refer the sequence of
modifications which appeared in the paper of Kobayashi [11] to obtain our
sequence of modifications. Then we obtain the following presentation.

GKs = π1(S3 \Ks) = 〈c, l | clcl̄c̄l̄sc̄l̄clcls−1〉
In order to obtain a presentation of GKs(p, q) = π1(EKs(p/q)), we have

to get a presentation of a meridian-longitude pair. The way of the cal-
culation is as follows. We first fix a meridian c and get a presentation of
a longitude L1 which are compatible with the Wirtinger presentation by
using the method which appeared in the book of Burde and Zieschang [3].
Then we continue to modify Li from i = 1 along the steps of sequence of
Tietze transformations.

By modifying the last presentation of the longitude slightly, we finally
obtain the following presentation.

L = c̄2s−2lclsclsclc̄2s+9

In summary we obtain the following.

Proposition 2.1. Let Ks be a (−2, 3, 2s + 1)-type Pretzel knot (s = 3).
Then the knot group of Ks has a presentation

GKs = 〈c, l | clcl̄c̄l̄sc̄l̄clcls−1〉,

and an element which represents the meridian M is c and an element of
the longitude L is c̄2s−2lclsclsclc̄2s+9.

By Proposition 2.1, we obtain a presentation of GKs(p, q) as follows:

GKs(p, q) = 〈c, l | clcl̄c̄l̄sc̄l̄clcls−1,MpLq〉.
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3. Problems and related topics

We will discuss some related topics and problems in this section.
We first mention about future problems. In Theorem 1.2 we explore

the case when the leaf space T is homeomorphic to R. It is the first prob-
lem that we extend Theorem 1.2 to the general case that a leaf space T
is homeomorphic to a simply connected 1-manifold which might not be a
Hausdorff space similar to the result of Jun [10]. In this case, the situa-
tion of a leaf space T is very complicated. But we already obtained the
explicit presentation of the fundamental group of EKs(p/q), we are going to
investigate the action of the fundamental group to a leaf space referring the
discussions used in [16] and [10]. One of other directions of investigations is
that we extend Theorem 1.2 to the case for (−2, 2r+1, 2s+1)-type Pretzel
knot Kr,s (r = 1, s = 3). Although we need the explicit presentation of the
fundamental group π1(S3 \ Kr,s), A.Tran already presented the presenta-
tion of π1(S3 \Kr,s) with two generators and one relator in [17]. Using this
presentation we are going to calculate the meridian-longitude pair which
compatible with this presentation, and also extend Theorem 1.2 to the case
of Kr,s cooperating with him.

Next we discuss about some related topics. We first discuss our result in
the viewpoint of Dehn surgery on knots. A knotK in S3 has a finite or cyclic
surgery if the resultant manifold EK(p/q) obtained by a non-trivial Dehn
surgery along K with a slope p/q has a property that its fundamental group
is finite or cyclic respectively. Determining and classifying which knots and
slopes have a finite or cyclic surgery are an interesting problem. If EK(p/q)
contains a Reebless foliation, we can conclude that EK(p/q) does not have
a finite and cyclic surgery. For example, Delman and Roberts showed that
no alternating hyperbolic knot admits a non-trivial finite and cyclic surgery
by proving the existence of essential laminations [5]. Our Pretzel knots Ks

are in the class of a Montesinos knot. In [9], Ichihara and Jong showed that
for a hyperbolic Montesinos knot K if K admits a non-trivial cyclic surgery
it must be (−2, 3, 7)-pretzel knot and the surgery slope is 18 or 19, and if
K admits a non-trivial acyclic finite surgery it must be (−2, 3, 7)-pretzel
knot and the slope is 17, or (−2, 3, 9)-pretzel knot and the slope is 22 or 23.
In contrast, by this theorem, infinitely many knots in the family of pretzel
knot {Ks} which appeared in Theorem 1.2 do not admit cyclic or finite
surgery. Then we have following corollary directly.

Corollary 3.1. There are infinitely many pretzel knots which does not ad-
mit finite or cyclic surgery, but they admit Dehn surgery which produces a
closed manifold which cannot contain an R-covered foliation.

We had expected that proving the existence of Reebless foliations, es-
pecially R-covered foliations, or essential laminations is of use for determin-
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ing and classifying a non-trivial finite or cyclic surgery on other hyperbolic
knots in the same way as [5], but Corollary 3.1 means that in the case of
pretzel knots, an R-covered foliation is not of use for it. However, we think
there are another applications of non-existence of an R-covered foliation,
an approach of Cosmetic surgery conjecture [12] (or see [8]) as an example.

Next we discuss our result in the viewpoint of a left-orderable group.
A group G is left-orderable if there exists a total ordering < of the elements
of G which is left invariant, meaning that for any elements f , g, h of G, if
f < g then hf < hg. It is known that a countable group G is left-orderable
if and only if there exists a faithful action of G on R, that is, there is
no point of R which fixed by any element of G. By this fact, if a closed
3-manifold M contains an R-covered foliation, the fundamental group of
M is left-orderable. The fundamental groups GKs(p, q) which satisfy the
assumptions of Theorem 1.2 do not have a faithful action on R by the proof
of Theorem 1.2. Therefore we conclude the following corollary:

Corollary 3.2. Let Ks be a (−2, 3, 2s+1)-type Pretzel knot in S3 (s = 3),
G = GKs(p, q) denotes the fundamental group of the closed manifold which
obtained by Dehn surgery along Ks with slope p/q. If q > 0, p/q = 4s + 7
and p is odd, G is not left-orderable.

Roberts and Shareshian generalize the properties of the fundamental
groups treated in [16]. They present conditions when the fundamental
groups of a closed manifold obtained by Dehn filling of a once punctured
torus bundle is not right-orderable [15, Corollary 1.5]. These are exam-
ples of hyperbolic 3-manifolds which has non right-orderable fundamental
groups.

Clay and Watson showed the following theorem.

Theorem 3.3. (A. Clay, L. Watson, 2012, [4, Theorem 28]) Let Km be
a (−2, 3, 2m + 5)-type Pretzel knot. If p/q > 2m + 15 and m = 0, the
fundamental group π1(EKm(p/q)) is not left-orderable.

By the fact mentioned before, these fundamental groups do not have
a faithful action on R, then these EKm(p/q) do not admit an R-covered
foliation. Although the method of the proof of Theorem 3.3 is different
from our strategy, it concludes a stronger result than ours in the sense of
an estimation of surgery slopes. By the aspects getting from these results,
there are many interaction between a study of R-covered foliations and a
study of left-orderability of the fundamental group of a closed 3-manifold,
so we think that these objects will be more interesting.
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Foliations via frame bundles

Kamil NIEDZIALOMSKI

1. Introduction

Let (M, g) be a Riemannian manifold. Denote by L(M) and O(M) frame
and orthonormal frame bundles over M , respectively. We consider on M
the Levi–Civita connection. We can equip these bundles with a Rieman-
nian metric such that the projection π : L(M) → M (π : O(M) → M ,
respectively) is a Riemannian submersion. The classical example is the
Sasaki–Mok metric [6, 1, 2]. There are many, so called natural, metrics
considered by Kowalski and Sekizawa [3, 4, 5] and by the author [7]. De-
note such fixed Riemannian metric by ḡ.

Assume M is equipped with k–dimensional foliation F . Then F in-
duces two subbundles L(F) of L(M) and O(F) of O(M) as follows

L(F) = {u = (u1, . . . , un) ∈ L(M) | u1, . . . , uk ∈ TF},
O(F) = {u = (u1, . . . , un) ∈ O(M) | u1, . . . , uk ∈ TF}.

Hence L(F) and O(F) are submanifolds of the Riemannian manifolds
(L(M), ḡ) and O(M), ḡ), respectively.

2. Results

For simplicity denote by P the bundle L(M) or O(M) and by P (F) the
corresponding subbundle L(F) or O(F).

The objective is to state the correspondence between the geometry of
a foliation F and the geometry of a submanifold P (F) in P . The approach
to the stated problem is the following.

1. The submanifold P (F) of P is the subbbundle with the structure
group H of matrices of the form(

A 0
∗ B

)
.

This induces the vertical distribution of P (F). The horizontal dis-
tribution is induced from the horizontal distribution of P . The aim
is to obtain the correspondence between the horizontal lifts to P (F)
and P . It appears that it depends on the second fundamental form
of F .

c© 2013 Kamil Niedzialomski
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2. The horizontal lift Xh to P and Xh,F to P (F) and the formula for the
Levi–Civita connection of (P, ḡ) imply the formula for the connection
and second fundamental form of P (F). The scope is to derive the
explicit formula for these operators in terms of the connection on M
and the second fundamental form of F .

3. The formula for the second fundamental of P (F) determines the ex-
trinsic geometry of this submanifold. It appears that the conditions
such as being totally geodesic, minimality, umbilicity of P (F) are re-
lated with corresponding conditions of foliation F . We state these
correspondences.

3. Further research

The further research, initiated by the author, includes the following two
problems:

1. Generalize the results to the case of a single manifold. More precisely,
any submanifold N of M induces a subbundle P (N) in L(M) or
O(M). We may consider the geometry of the submanifold P (N) and
the relation with the geometry of N .

2. The subbundle L(F) of L(M) induced by the foliation F does not
require the integrability of F . Hence, we may consider L(F) if F
is non–integrable distribution. In particular, we may choose F to
be the horizontal distribution Hϕ of any submersion ϕ : M → N .
Therefore we may lift ϕ to a map Lϕ : L(Hϕ)→ L(N) and study the
geometry of Lϕ. Partial results of the author show that horizontal
conformality of Lϕ is equivalent to horizontal conformality of ϕ under
some additional conditions (such as the restriction on ḡ).
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The mixed scalar curvature flow and
harmonic foliations

Vladimir ROVENSKI

A flow of metrics, gt, on a manifold is a solution of evolution equa-
tion ∂tg = S(g), where S(g) is a symmetric (0, 2)-tensor usually related to
some kind of curvature. The mixed sectional curvature of a foliated mani-
fold (M,F) regulates the deviation of leaves along the leaf geodesics. (In
the language of mechanics it measures the rate of relative acceleration of
two particles moving forward on neighboring geodesics). Let {εα, ei}α≤p,i≤n
be a local orthonormal frame on TM adapted to TF and the orthogonal
distribution D := TF⊥.

The mixed scalar curvature is defined by Scmix =
∑n

i=1

∑p
α=1R(εα, ei,

εα, ei), where R is the Riemannain curvature. For a codimension-one fo-
liation with a unit normal N , we have Scmix = Ric(N,N). For a surface
(M2, g), i.e., n = p = 1, we obtain Scmix = K – the gaussian curvature.

We study the flow of metrics on a foliation, whose velocity along D is
proportional to Scmix:

(1) ∂tg = −2(Scmix(g)− Φ)ĝ.

Here Φ: M → R is leaf-wise constant. The D-truncated metric tensor ĝ is
given by ĝ(X1, X2) = g(X1, X2) and ĝ(Y, · ) = 0 for Xi ∈ D, Y ∈ TF . We
show relations of (1) with Burgers equation (the prototype for non-linear
advection-diffusion processes in gas and fluid dynamics) and Schrödinger
heat equation (which is central to all of quantum mechanics).

Let hF , h be the second fundamental forms and HF , H the mean
curvature vectors of TF and the distribution D, respectively. Also denote
T the integrability tensor of D. Then, see [2],

(2) Scmix(g) = div(H +HF) + ‖H‖2 + ‖T‖2 − ‖h‖2 + ‖HF‖2 − ‖hF‖2.

The flow (1) preserves total geodesy (i.e. hF = 0) and harmonicity
(i.e. HF = 0) of foliations and is used to examine the question [1]: Which
foliations admit a metric with a given property of Scmix (e.g., positive or nega-
tive)? Suppose that the leaves of F are compact minimal submanifolds.
We observe that (1) yields the leaf-wise evolution equation for the vector
field H:

(3) ∂tH +∇Fg(H,H) = n∇F(DivFH) + n∇F(‖T‖2
g − ‖hF‖2

g − nβD).

c© 2013 Vladimir Rovenski

305



306

The function βD := n−2
(
n‖h‖2 − ‖H‖2

)
≥ 0 is time-independent, it serves

as a measure of “non-umbilicity” of D, since βD = 0 for totally umbilical D.
For dimF = 1 we have βD = n−2

∑
i<j(ki− kj)2, where ki are the principal

curvatures of D.
Suppose that H0 = −n∇F(log u0) (leaf-wise conservative) for a func-

tion u0 > 0.
If ‖T‖g0 > ‖hF‖g0 then its potential obeys the leaf-wise non-linear
Schrödinger heat equation

(4) (1/n)∂tu = ∆Fu+ (βD + Φ/n)u− (Ψ/n)u−3, u( · , 0) = u0,

where Ψ := u4
0(‖T‖2

g0
− ‖hF‖2

g0
), moreover, the solution obeys u =

Ψ1/4(‖T‖2
gt − ‖hF‖

2
gt)
−1/4.

If Ψ ≡ 0 (e.g., T (g0) = 0 and hF(g0) = 0) then (3) reduces to a forced
Burgers equation

(5) ∂tH +∇Fg(H,H) = n∇F(DivFH)− n2∇FβD,
moreover, the leaf-wise potential function for H may be chosen as a solution
of the linear PDE (1/n)∂tu = ∆Fu+βDu, u( · , 0) = u0. The first eigenvalue
λ0 ≤ 0 of Schrödinger operator H(u) = −∆Fu−βDu corresponds to the unit
L2-norm eigenfunction e0 > 0 (called the ground state). Under certain
conditions (on any leaf F )
(6)

Φ>−nβD, |nλ0 + Φ| ≥max
F

(‖T‖2
g0
− ‖hF‖2

g0
)
(

max
F

(u0/e0)
/

min
F

(u0/e0)
)4

the asymptotic behavior of solutions to (4) is the same as for the linear
equation, when (5) has a single-point global attractor: Ht → −n∇F(log e0)
as t→∞. Using the scalar maximum principle, we show that there exists
a positive solution ũ of the linear PDE (1/n)∂tũ = ∆F ũ+ (βD + λ0)ũ such
that for any α ∈

(
0,min{λ1 − λ0, 4|λ0|}

)
and k ∈ N the following hold:

(i) u = e−λ0t(ũ+ θ(x, t)), where ‖θ( · , t)‖Ck = O(e−αt) as t→∞;

(ii) ∇F(log u) = ∇F(log e0) + θ1(x, t), where ‖θ1( · , t)‖Ck = O(e−αt) as
t→∞.

In this case, (1) has a unique global solution gt (t ≥ 0), whose Scmix con-
verges exponentially to nλ0 ≤ 0. The metrics are smooth on M when
all leaves are compact and have finite holonomy group. After rescaling of
metrics on D, we also obtain convergence to a metric with Scmix > 0.

Proposition 1. Let (M, g) be endowed with a harmonic compact foliation
F . Suppose that ‖hF‖g < ‖T‖g and H = −n∇F(log u0) for a function
u0 > 0.

(i) If λ0 < 0 then there exists D-conformal to g metric ḡ with
Scmix(ḡ) < 0.
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(ii) If λ0 > − 1
n
( u0

ũ0e0
)4(‖T‖2

g − ‖hF‖2
g) then there is D-conformal to g

metric ḡ with Scmix(ḡ) > 0.

For surfaces of revolution Mt : [ρ(x, t) cos θ, ρ(x, t) sin θ, h(x)] (0 ≤ x ≤ l,
|θ| ≤ π) with (ρ,x)

2 + (h,x)
2 = 1, (1) reads as ∂tg = −2(K(g) − Φ)ĝ. This

yields the PDE ∂tρ = ρ,xx + Φρ. For Φ = const and appropriate initial and
end conditions for ρ, we have the following. If Φ < (π/l)2 then Mt converge
to a surface with K = Φ, and if Φ = (π/l)2 then lim

t→∞
ρ(x, t) = A sin(πx/l),

and Mt converge to a surface with K = Φ (a sphere of radius l/π when
A = l/π).
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Generalizations of a theorem of Herman and
a new proof of the simplicity of Diff∞c (M)0

Tomasz RYBICKI

Let M be a smooth manifold of dimension n. By Diff∞c (M) we will
denote the group of compactly supported diffeomorphisms of M . We shall
consider a Lie group structure on Diff∞c (M) in the sense of the convenient
setting of Kriegl and Michor [10]. In particular, we assume that Diff∞c (M)
is endowed with the c∞-topology [10, Section 4], i.e. the final topology with
respect to all smooth curves. For compact M the c∞-topology on Diff∞(M)
coincides with the Whitney C∞-topology, cf. [10, Theorem 4.11(1)]. In
general the c∞-topology on Diff∞c (M) is strictly finer than the one induced
from the Whitney C∞-topology, cf. [10, Section 4.26]. The latter coincides
with the inductive limit topology limK Diff∞K (M) where K runs through all
compact subsets of M .

Given smooth complete vector fields X1, . . . , XN on M , we consider the
map

K : Diff∞c (M)N → Diff∞c (M),(1)

K(g1, . . . , gN) := [g1, exp(X1)] ◦ · · · ◦ [gN , exp(XN)].

Here exp(X) denotes the flow of a complete vector field X at time 1, and
[k, h] := k ◦ h ◦ k−1 ◦ h−1 denotes the commutator of two diffeomorphisms
k and h. It is readily checked that K is smooth. Indeed, one only has to
observe that K maps smooth curves to smooth curves, cf. [10, Section 27.2].
Clearly K(id, . . . , id) = id.

A smooth local right inverse at the identity for K consists of an open
neighborhood U of the identity in Diff∞c (M) together with a smooth map

σ = (σ1, . . . , σN) : U → Diff∞c (M)N

so that σ(id) = (id, . . . , id) and K ◦ σ = idU . More explicitly, we require
that each σi : U → Diff∞c (M) is smooth with σi(id) = id and, for all g ∈ U ,

g = [σ1(g), exp(X1)] ◦ · · · ◦ [σN(g), exp(XN)].

The aim of this talk is to present the following two results which gen-
eralize a well-known theorem of Herman for M being the torus [8, 9].

Key words and phrases. diffeomorphism group; perfect group; simple group; fragmentation;
convenient calculus; foliation.

Joint with Stefan Haller and Josef Teichmann.
c© 2013 Tomasz Rybicki
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Theorem 1. Suppose M is a smooth manifold of dimension n ≥ 2. Then
there exist four smooth complete vector fields X1, . . . , X4 on M so that the
map K, see (1), admits a smooth local right inverse at the identity, N = 4.
Moreover, the vector fields Xi may be chosen arbitrarily close to zero with
respect to the strong Whitney C0-topology. If M admits a proper (circle
valued) Morse function whose critical points all have index 0 or n, then the
same statement remains true with three vector fields.

Particularly, on the manifolds M = Rn, Sn, T n, n ≥ 2, or the total
space of a compact smooth fiber bundle M → S1, three commutators are
sufficient. At the expense of more commutators, it is possible to gain further
control on the vector fields. More precisely, we have:

Theorem 2. Suppose M is a smooth manifold of dimension n ≥ 2 and set
N := 6(n + 1). Then there exist smooth complete vector fields X1, . . . , XN

on M so that the map K, see (1), admits a smooth local right inverse at
the identity. Moreover, the vector fields Xi may be chosen arbitrarily close
to zero with respect to the strong Whitney C∞-topology.

Either of the two theorems implies that Diff∞c (M)o, the connected com-
ponent of the identity, is a perfect group, provided M is not R. Our proof
rests on Herman’s result similarly as that of [17] (see [2]), but is otherwise
elementary and different from Thurston’s approach. In fact we only need
Herman’s result in dimension 1.

The perfectness of Diff∞c (M)0 was already proved by Epstein [5] using
ideas of Mather [11, 12] who dealt with the Cr-case, 1 ≤ r < ∞, r 6=
n+ 1. The Epstein–Mather proof is based on a sophisticated construction,
and uses the Schauder–Tychonov fixed point theorem. The existence of a
presentation

g = [h1, k1] ◦ · · · ◦ [hN , kN ]

is guarantied, but without any further control on the factors hi and ki.
Theorem 1 or 2 actually implies that the universal covering of Diff∞c (M)o
is a perfect group. This result is known, too, see [17]. Thurston’s proof is
based on a result of Herman for the torus [8, 9]. Note that the perfectness of
Diff∞c (M)o implies that this group is simple, see Epstein [4]. The methods
used in [4] are elementary and actually work for a rather large class of
homeomorphism groups.

One could believe that the phenomenon of smooth perfectness de-
scribed in Theorems 1 and 2 would be also true for some classical diffeo-
morphism groups which are simple, e.g. for the Hamiltonian diffeomorphism
group of a closed symplectic manifold [1], or for the contactomorphism
group of an arbitrary co-oriented contact manifold [15]. However, the avail-
able methods seem to be useless for possible proofs of their smooth per-
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fectness. Another open problem related to the above theorems is whether
a smooth global right inverse at the identity for K would exist. A possible
answer in the affirmative seems to be equally difficult. Consequently, it
would be difficult to improve Theorems 1 and 2 as they are in any possible
direction.

Another essential and important way to generalize the simplicity the-
orems for Diff∞c (M)o, where 1 ≤ r ≤ ∞, r 6= n + 1, is to consider the
uniform perfectness or, more generally, the boundedness of the groups in
question. In particular, we ask if the presentation g = [h1, k1]◦· · ·◦ [hN , kN ]
is available for all g ∈ Diff∞c (M)o with N bounded. This property has been
proved in the recent papers by Burago, Ivanov and Polterovich [3], and
Tsuboi [18], [19], [20], for a large class of manifolds. For instance, N = 10
was obtained in [3] for any closed three dimensional manifold, and then it
was improved in [18] to N = 6 for any closed odd dimensional manifold. It
seems that the methods of [3], [18], [19] and [20] combined with our The-
orem 2 would give some analogue of Theorem 1, but certainly not with the
presentation (1) and the condition on Xi. Also N could not be smaller in
this way. Another advantage of Theorem 1 is that it is valid for all smooth
paracompact manifolds. See also [16] for diffeomorphism groups with no
restriction of support.

Let T n := Rn/Zn denote the torus. For λ ∈ T n we let Rλ ∈ Diff∞(T n)
denote the corresponding rotation. The main ingredient in the proof of
Theorems 1 and 2 is the following result of Herman [9, 8].

Theorem 3 (Herman). There exist γ ∈ T n so that the smooth map

T n ×Diff∞(T n)→ Diff∞(T n), (λ, g) 7→ Rλ ◦ [g,Rγ],

admits a smooth local right inverse at the identity. Moreover, γ may be
chosen arbitrarily close to the identity in T n.

Herman’s result is an application of the Nash–Moser inverse function
theorem. When inverting the derivative one is quickly led to solve the
linear equation Y = X − (Rγ)

∗X for given Y ∈ C∞(T n,Rn). This is
accomplished using Fourier transformation. Here one has to choose γ suf-
ficiently irrational so that tame estimates on the Sobolev norms of X in
terms of the Sobolev norms of Y can be obtained. The corresponding small
denominator problem can be solved due to a number theoretic result of
Khintchine.

We shall make use of the following corollary of Herman’s result.

Proposition 1. There exist smooth vector fields X1, X2, X3 on T n so that
the smooth map Diff∞(T n)3 → Diff∞(T n),

(g1, g2, g3) 7→ [g1, exp(X1)] ◦ [g2, exp(X2)] ◦ [g3, exp(X3)],
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admits a smooth local right inverse at the identity. Moreover, the vector
fields Xi may be chosen arbitrarily close to zero with respect to the Whitney
C∞-topology.

The following lemma leads to a decomposition of a diffeomorphism
into factors which are leaf preserving. If F is a smooth foliation of M we
let Diff∞c (M ;F) denote the group of compactly supported diffeomorphisms
preserving the leaves of F . This is a regular Lie group modelled on the con-
venient vector space of compactly supported smooth vector fields tangential
to F .

Lemma 1. Suppose M1 and M2 are two finite dimensional smooth mani-
folds and set M := M1 ×M2. Let F1 and F2 denote the foliations with
leaves M1×{pt} and {pt}×M2 on M , respectively. Then the smooth map

F : Diff∞c (M ;F1)×Diff∞c (M ;F2)→ Diff∞c (M), F (g1, g2) := g1 ◦ g2,

is a local diffeomorphism at the identity.

Now we need a version of the exponential law.

Lemma 2. Suppose B and T are finite dimensional smooth manifolds,
assume T compact, and let F denote the foliation with leaves {pt} × T on
B × T . Then the canonical bijection

C∞c (B,Diff∞(T ))
∼=−→ Diff∞c (B × T ;F)

is an isomorphism of regular Lie groups.

Another ingredient of the proof is a smooth fragmentation of diffeo-
morphisms.

Suppose U ⊆M is an open subset. Every compactly supported diffeo-
morphism of U can be regarded as a compactly supported diffeomorphism
of M by extending it identically outside U . The resulting injective ho-
momorphism Diff∞c (U) → Diff∞c (M) is clearly smooth. Note, however,
that a curve in Diff∞c (U), which is smooth when considered as a curve in
Diff∞c (M), need not be smooth as a curve into Diff∞c (U). Nevertheless, if
there exists a closed subset A of M with A ⊆ U and if the curve has sup-
port contained in A, then one can conclude that the curve is also smooth
in Diff∞c (U).

Proposition 2 (Fragmentation). Let M be a smooth manifold of dimen-
sion n, and suppose U1, . . . , Uk is an open covering of M , ie. M = U1 ∪
· · · ∪ Uk. Then the smooth map

P : Diff∞c (U1)×· · ·×Diff∞c (Uk)→ Diff∞c (M), P (g1, . . . , gk) := g1◦· · ·◦gk,
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admits a smooth local right inverse at the identity.

Proceeding as in [3] permits to reduce the number of commutators
considerably, see also [18] and [19].

Proposition 3. Let M be a smooth manifold of dimension n ≥ 2 and
put N = 6(n + 1). Moreover, let U an open subset of M and suppose
φ ∈ Diff∞(M), not necessarily with compact support, such that the closures
of the subsets

U, φ(U), φ2(U), . . . , φN(U)

are mutually disjoint. Then there exists a smooth complete vector field X
on M , a c∞-open neighborhood U of the identity in Diff∞c (U), and smooth
maps %1, %2 : U → Diff∞c (M) so that %1(id) = %2(id) = id and, for all g ∈ U ,

g = [%1(g), φ] ◦ [%2(g), exp(X)].

Moreover, the vector field X may be chosen arbitrarily close to zero in the
strong Whitney C∞-topology on M .

Now, by applying the Morse theory ([13], [14]) we get

Lemma 3. Let M be a smooth manifold of dimension n. Then there exists
an open covering M = U1 ∪ U2 ∪ U3 and smooth complete vector fields
X1, X2, X3 on M so that exp(X1)(U1) ⊆ U2, exp(X2)(U2) ⊆ U3, and such
that the closures of the sets

U3, exp(X3)(U3), exp(X3)2(U3), . . .

are mutually disjoint. Moreover, the vector fields X1, X2, X3 may be chosen
arbitrarily close to zero with respect to the strong Whitney C0-topology. If
M admits a proper (circle valued) Morse function whose critical points all
have index 0 or n, then we may, moreover, choose U1 = ∅ and X1 = 0.

Theorem 1 is then a consequence of Lemma 3.
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Prevalence of non-uniform hyperbolicity
at the first bifurcation of Hénon-like families

Hiroki TAKAHASI

Hyperbolicity and structural stability are key concepts in the develop-
ment of the theory of dynamical systems. Nowadays, it is known that these
two concepts are essentially equivalent to each other, at least for C1 diffeo-
morphisms or flows of a compact manifold. Then, a fundamental problem
in the bifurcation theory is to study transitions from hyperbolic to non
hyperbolic regimes. When the loss of hyperbolicity is due to the formation
of a cycle (i.e., a configuration in the phase space involving non-transverse
intersections between invariant manifolds), an incredibly rich array of com-
plicated behaviors is unleashed by the unfolding of the cycle (See e.g. [12]
and the references therein). Many important aspects of this complexity are
poorly understood.

To study bifurcations of diffeomorphisms, we work within a framework
set up by Palis: consider arcs of diffeomorphisms losing their hyperbolicity
through generic bifurcations, and analyze which dynamical phenomena are
more frequently displayed (in the sense of the Lebesgue measure in param-
eter space) in the sequel of the bifurcation. More precisely, let {ϕa}a∈R be
a parametrized family of diffeomorphisms which undergoes a first bifurca-
tion at a = a∗, i.e., ϕa is hyperbolic for a > a∗, and ϕa∗ has a cycle. We
assume {ϕa}a∈R unfolds the cycle generically. A dynamical phenomenon P
is prevalent at a∗ if

lim inf
n→∞

1

ε
Leb{a ∈ [a∗ − ε, a∗] : ϕa displays P} > 0,

where Leb denotes the one-dimensional Lebesgue measure.
Particularly important is the prevalence of hyperbolicity. The pioneer-

ing work in this direction is due to Newhouse and Palis [8], on the bifur-
cation of Morse-Smale diffeomorphisms. The prevalence of hyperbolicity
in arcs of surface diffeomorphisms which are not Morse-Smale has been
studied in the literature [7, 10, 11, 13, 14]. However, even with all these
and other subsequent developments, including [15, 16], we still lack a good
understanding as to in which case the hyperbolicity becomes prevalent.

In [7, 10, 11, 13, 14], unfoldings of tangencies of surface diffeomorphisms
associated to basic sets have been treated. One key aspect of these models
is that the orbit of tangency at the first bifurcation is not contained in
the limit set. This implies a global control on new orbits added to the

c© 2013 Hiroki Takahasi
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underlying basic set, and moreover allows one to use its invariant foliations
to translate dynamical problems to the problem on how two Cantor sets
intersect each other. Then, the prevalence of hyperbolicity is related to the
Hausdorff dimension of the limit set. This argument is not viable, if the
orbit of tangency, responsible for the loss of the stability of the system, is
contained in the limit set. Let us call such a first bifurcation an internal
tangency bifurcation.

We are concerned with an arc {fa}a∈R of planar diffeomorphisms of the
form

fa(x, y) = (1− ax2, 0) + b · Φ(a, b, x, y), 0 < b� 1.

Here Φ is bounded continuous in (a, b, x, y) and C4 in (a, x, y). This par-
ticular arc, often called an “Hénon-like family”, is embedded in generic
one-parameter unfoldings of quadratic homoclinic tangencies associated to
dissipative saddles [6], and so is relevant in the investigation of structurally
unstable surface diffeomorphisms.

Let Ωa denote the non wandering set of fa, which is a compact fa-
invariant set. It is known [5] that for sufficiently large a > 0, fa is Smale’s
horseshoe map and Ωa admits a hyperbolic splitting into uniformly con-
tracting and expanding subspaces. As a decreases, the infimum of the
angles between these two subspaces gets smaller, and the hyperbolic split-
ting disappears at a certain parameter. This first bifurcation is an internal
tangency bifurcation. Namely, for sufficiently small b > 0 there exists a
parameter a∗ = a∗(b) near 2 with the following properties [1, 2, 3, 5].:

• if a > a∗, then Ωa is a hyperbolic set, i.e., there exist constants C > 0,
ξ ∈ (0, 1) and at each x ∈ Ωa a non-trivial decomposition TxR2 =
Es
x ⊕ Eu

x with the invariance property such that ‖Dxf
n
a |Es

x‖ ≤ Cξn

and ‖Dxf
−n
a |Eu

x‖ ≤ Cξn for every n ≥ 0;

• there is a quadratic tangency between stable and unstable manifolds
of the fixed points of fa∗ . The orbit of this tangency at a = a∗ is
accumulated by transverse homoclinic points, and thus it is contained
in the limit set.

The orbit of tangency of fa∗ is in fact unique, and {fa}a∈R unfolds
this tangency generically. The next theorem gives a partial description of
prevalent dynamics at a = a∗.

Theorem 1. For sufficiently small b > 0 there exist ε0 = ε0(b) > 0 and a
set ∆ ⊂ [a∗− ε0, a

∗] of a-values containing a∗ with the following properties:

(a) lim
ε→+0

(1/ε)Leb(∆ ∩ [a∗ − ε, a∗]) = 1;

(b) if a ∈ ∆, then the Lebesgue measure of the set

K+
a := {x ∈ R2 : {fna x}n∈N is bounded}
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is zero. In particular, for Lebesgue almost every x ∈ R2, |fna x| → ∞
as n→∞.

In addition, if a ∈ ∆ then fa is transitive on Ωa. In other words,
for “most” diffeomorphisms immediately right after the first bifurcation,
the topological dynamics is similar to that of Smale’s horseshoe before the
bifurcation.

We suspect that the dynamics is non hyperbolic for all, or “most”
parameters in ∆. Nevertheless, the proof of the above theorem tells us that
the dynamics of fa, a ∈ ∆ is fairly structured, and this may yield a weak
form of hyperbolicity. A natural question then is the following:

To what extent the dynamics is hyperbolic for a ∈ ∆?

The main result of this paper gives one answer for this question. For mea-
suring the extent of hyperbolicity we estimate Lyapunov exponents, the
asymptotic exponential rates at which nearby orbits are separated (or draw
together).

Let us say that a point x ∈ Ωa is regular if there exist number(s)
χ1 < · · · < χr(x) and a decomposition TxR2 = E1(x) ⊕ · · · ⊕ Er(x)(x) such
that for every v ∈ Ei(x) \ {0},

lim
n→±∞

1

n
log ‖Dxf

n
a v‖ = χi(x) and

lim
n→±∞

1

n
log | detDxf

n
a | =

r(x)∑
i=1

χi(x)dimEi(x).

By the theorem of Oseledec [9], the set of regular points has total prob-
ability. If µ is ergodic, then the functions x 7→ r(x), λi(x) and dimEi(x)
are invariant along orbits, and so are constant µ-a.e. From this and the
Ergodic Theorem, one of the following holds for each ergodic µ:

• there exist two numbers χs(µ) < χu(µ), and for µ-a.e. x ∈ Ωa a
decomposition TxR2 = Es

x ⊕ Eu
x such that for any vσ ∈ Eσ

x \ {0} and
σ = s, u,

lim
n→±∞

1

n
log ‖Dxf

n
a v‖ = χσ(µ) and∫

log | detDfa|dµ = χs(µ) + χu(µ);

• there exists χ(µ) ∈ R such that for µ-a.e. x ∈ Ωa and all v ∈
TxR2 \ {0},

lim
n→±∞

1

n
log ‖Dxf

n
a v‖ = χ(µ) and
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log | detDfa|dµ = 2χ(µ).

The number(s) χs(µ) and χu(µ), or χ(µ) is called a Lyapunov exponent(s)
of µ.

Let Me(fa) denote the set of fa-invariant Borel probability measures
which are ergodic. We call µ ∈ Me(fa) a hyperbolic measure if µ has two
Lyapunov exponents χs(µ), χu(µ) with χs(µ) < 0 < χu(µ). Our main
theorem indicates a strong form of non-uniform hyperbolicty for a ∈ ∆.

Theorem 2. For sufficiently small b > 0, the following holds for all a ∈ ∆:

(a) any µ ∈Me(fa) is a hyperbolic measure;

(b) for each µ ∈Me(fa),

χs(µ) <
1

3
log b < 0 <

1

4
log 2 < χu(µ).

It must be emphasized that this kind of uniform bounds on Lyapunov ex-
ponents of ergodic measures are compatible with the non hyperbolicity of
the system, and therefore, Theorem A does not imply the uniform hyper-
bolicity for a ∈ ∆. Indeed, a∗ ∈ ∆ and fa∗ is genuinely non hyperbolic,
due to the existence of tangencies. See [3, 4] for the first examples of non
hyperbolic surface diffeomorphisms of this kind. As already mentioned, we
suspect that the dynamics is non hyperbolic for all, or “most” parameters
in ∆.

Little is known on the prevalence of hyperbolicity at internal tangency
bifurcations. The only previously known result in this direction is due to
Rios [15], on certain horseshoes in the plane with three branches. However,
certain hypotheses in [15] on expansion/contraction rates and curvatures of
invariant manifolds near the tangency, are no longer true for {fa}a∈R due
to the strong dissipation.
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1. Introduction

Since the early work of M. Herman [1], we have a very good understanding
of the typical features, in the Baire sense, of Cr-diffeomorphisms of the
circle S1.

Here, we propose to depict the landscape in Diff1
+(S1) from a measur-

able point of view. In fact it is possible to consider a very natural probability
measure on the group of C1-diffeomorphisms of the circle, first introduced
by P. Malliavin and E.T. Shavgulidze [3, 5].

Definition 1.1. Let (Ω,B,P) be a probability space and let (Bs)s∈[0,1]

be a Brownian bridge on Ω, and λ ∈ [0, 1[ a uniform random variable
independent of B. Then for any σ > 0, it is possible to define the following
random variable f taking values in the space Diff1

+(S1):

f(t) = fσ(t) =

∫ t
0
eσBsds∫ 1

0
eσBsds

+ λ .

The law of fσ defines a probability Radon measure µσ on Diff1
+(S1) that is

called the Malliavin-Shavgulidze measure.

The very important property of Malliavin-Shavgulidze measures µσ is
that they are Haar-like: every µσ is quasi-invariant under left translations
by elements belonging to a dense subgroup (of zero measure!). This implies
in particular that every open set has positive measure. We recall that a
measure is quasi-invariant under a group action if the image of any positive
measure set has positive measure.

Theorem 1.2 (Shavgulidze [5]). For any σ > 0 the measure µσ is quasi-
invariant under the regular left action of the group of C1-diffeomorphisms
ϕ with bounded second derivative. When ϕ is a C3 diffeomorphism, the
Radon-Nykodym cocycle takes the following form:

(1.3)
d(Lϕ)∗(µσ)

dµσ
(f) = exp

{
1

σ

∫ 1

0

Sϕ(f(t)) f ′(t)2 dt

}
,

c© 2013 Michele Triestino
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where Sϕ = D2 logDϕ − 1
2
(D logDϕ)2 denotes the Schwarzian derivative

of ϕ.

Question 1.4. What is the geometrical meaning for the Schwarzian de-
rivative appearing in the expression (1.3)?

By the definition of the measure µσ, it follows that the diffeomorphism
f is a.s. C1+α-regular for any α < 1/2. However, Df is a 1/2-Hölder
function with probability 0; in particular Df is a.s. not a function of
bounded variation. Such remarks are very interesting in a dynamical con-
text: there are indeed many results for which the regularities C1+1/2 or
C1+bv are sharp. Perhaps the first, very well-known example is A. Den-
joy’s theorem: any C1+bv-circle diffeomorphism without periodic orbits is
minimal. Another interesting example is the Godbillon-Vey cocycle gv:
S. Hurder and A. Katok showed how to extend the classical definition of
gv to C1+1/2+ε-diffeomorphisms [2], but T. Tsuboi explained later that this
definition cannot be pursued to lower regularity [6]. Using the Malliavin-
Shavgulidze measures and the theory of stochastic integration, it is possible
to define gv as an essential cocycle on Diff1

+(S1). However, we do not know
whether such cocycle, defined a.e., is not a coboundary (in this measurable
setting).

From a dynamical point of view, Malliavin-Shavgulidze measures may
allow to quantify already known results. For example:

Question 1.5.

1. What is the µσ-probability that a diffeomorphism has no periodic
orbit?

2. Suppose that for σ sufficiently small, the probability to have no peri-
odic orbit is positive, what is the probability that a diffeomorphism
without periodic orbits is not minimal?

Even though such questions arise quite naturally, it is interesting to
remark that no other mathematician has thought before about such prob-
lems: the Malliavin-Shavgulidze measures were just considered as a very
good tool to study the representation theory of the group of smooth circle
diffeomorphisms or its Lie algebra. We are very deeply indebted to É. Ghys
to have proposed these very beautiful questions.

2. Main results

Our main motivation is to find answers for questions 1.5. Although we
have some intuition (and numerical simulations) of what the result should
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be, we are still rather far away. The following statements are intended as a
little step to a global comprehension: we analyse the set of diffeomorphisms
with periodic orbits. It is worth remarking that in the topological settings,
J. Mather and J.-C. Yoccoz gave a very exhaustive description [7].

We define Fp/q to be the set of C1-diffeomorphisms f with rotation
number p/q (this implies in particular that f possesses an orbit of period
q). It is easy to see that Fp/q has non-empty interior and hence positive
µσ-measure: the subset of hyperbolic diffeomorphisms is open and dense.
To this purpose, we recall that a diffeomorphism f ∈ Fp/q is hyperbolic
if there are finitely many periodic orbits and if O = {x0, . . . , xq−1} is any
q-periodic orbit, its multiplier

M(O) = Df(x0) · · ·Df(xq−1)

is not equal to 1.

Theorem 2.1. Let M > 0. Then the µσ-probability that f has a periodic
orbit with multiplier equal to M is zero.

Corollary 2.2. The set of hyperbolic diffeomorphisms is of full µσ-measure
in Fp/q. In particular a diffeomorphism f has a.s. finitely many periodic
orbits and their number is even.

Corollary 2.3. The set of diffeomorphisms with trivial C1-centralizer is
of full µσ-measure in Fp/q.

Actually, Mather and Yoccoz proved that the set of diffeomorphisms
with trivial C1-centralizer in Fp/q contains an open dense set.

Proof of corollary 2.3. The proof highly relies on the fact that the ran-
dom variable f is defined by means of a Brownian bridge.

Take f ∈ Fp/q and suppose f is C1+α, for some α > 0 and suppose ad-
ditionally that f has finitely many periodic orbits, each of them hyperbolic.
Then by a result of Mather, the C1-centralizer of f is trivial if and only
if its Mather invariant has trivial stabilizer. The crucial fact is that the
Mather invariant is highly sensible to local modifications of f . This implies
that the triviality of the stabilizer of the Mather invariant is an event that
depends only on a germ (or tail) filtration of the Brownian bridge B defin-
ing f . Then, using Blumenthal’s 0–1 law, we can deduce that such event
has zero µσ-measure.

Outline of the proof of theorem 2.1. In order to simplify the details,
let us sketch the proof of the theorem for interval diffeomorphisms : given
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a Brownian motion (Bt)t∈[0,1], we can define the random variable f :

f(t) =

∫ t
0
eBsds∫ 1

0
eBsds

.

We want to show that for a given M > 0, the probability that f has a fixed
point t such that f ′(t) = M is zero.

It turns out that it is easier to prove that the planar process(
Bt, Bf(t)

)
t∈[0,1]

hits the diagonal with zero probability. Indeed, when f(t) > t, the variables
Bt and Bf(t) are almost independent, since for defining f(t), we only have

to know how B behaves up to time t (and its geometric average
∫ 1

0
eBsds):

then, using the Markov property of the Brownian motion, we see that the
value of B at time f(t) can be arbitrary. It is actually well known that the
planar Brownian motion almost never hits a given point: the tricky proof
of this fact (borrowed from [4]) can be adapted to our case. When f(t) < t,
we can use set g(t) := 1−f(1−t), which defines an interval diffeomorphism
with the same law as f , so that we reduce to the first case.
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rotations, Publ. Math. de l’IHÉS 49 (1979), 5–233.
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1. Wasserstein metric

The Wasserstein distance dW of Borel probability measures µ and ν on
Polish space X (complete separable metric space) endowed with a metric
d is defined by

dW(µ, ν) = inf

∫
M×M

d(x, y)dρ

where infimum is taken over all Borel probability measures ρ on X × X
satisfying for any measurable sets A,B ⊂ X

ρ(A×X) = µ(A),

ρ(X ×B) = ν(B).

A measure ρ is called a coupling of µ and ν. The set P(M) of all Borel
probability measures with finite first moment endowed with dW is a metric
space. Moreover, dW metrizes the weak-∗ topology. The metric dW comes
from the Monge-Kantorovich optimal transportation problem [10] [11]. One
can find that

Theorem 1.1. [11] For any two Borel probability there exists a coupling ρ
for which the Wasserstein distance is realized.

One should notice that the Wasserstein distance dW(δx, δy) of Dirac
masses concentrated in points x, y ∈ M is equal to the distance d(x, y).
This fact follows directly from the fact, that δ(x,y) is the only coupling of δx
and δy.

Let ∆k = {(t1, . . . , tk) ∈ Rk : tj ≥ 0,
∑

j tj = 1}.

Proposition 1.2. The set

D(M) = {µ ∈ P(M) : µ =
k∑
i=1

tkδxk , (t1, . . . , tk) ∈ ∆k, x1, . . . , xk ∈M}

is dense in P(M).
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2. Harmonic measures and heat diffusion

Let (M,F , g) be a smooth closed oriented foliated manifold equipped with
a Riemannian metric g and Laplace-Beltrami operator ∆ defined by

∆f = div∇f.

Let ∆F be foliated Laplace-Beltrami operator [2] [13] given by

∆Ff(x) = ∆Lxf(x), x ∈M,

where Lx is a leaf through x, and ∆L is Laplace-Beltrami operator on
(L, g|L). The operator ∆F acts on bounded measurable functions, which
are C2-smooth along the leaves.

Let us recall that a probability measure µ on (M,F , g) is called har-
monic if for any f : M → R ∫

M

∆Ffdµ = 0.

Theorem 2.1. [8] [1] On any compact foliated Riemannian manifold, har-
monic probability measures exist.

One can associate with the operator ∆F the one-parameter semigroup
Dt, t ≥ 0, of heat diffusion operators characterized by

d0 = id, Dt+s = Dt ◦Ds,
d

dt
Dt|t=0 = ∆F .

Dt restricted to a leaf L ∈ F coincides with the heat diffusion operators on
L, which are given by

(2.2) Dtf(x) =

∫
Lx

f(y)p(x, y; t)d volLx ,

where p(·, ·; t) is a foliated heat kernel [2] on (M,F). The foliated heat
kernel is nonnegative and for any t > 0 satisfies∫

Lx

p(x, y; t)d volLx = 1.

Let µ be a probability measure on M . According to [2, 13], one can
define the diffused measure Dtµ by the formula∫

fdDtµ =

∫
Dtfdµ,

where f is any bounded measurable function on M . A measure µ is called
diffusion invariant when Dtµ = µ for all t > 0.
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3. Diffused metric

Let (M,F , g) be a smooth compact foliated manifold equipped with a Rie-
mannian metric g and carrying foliation F . Let δt denotes the Dirac mea-
sure at point x. For t > 0 the metric

(3.1) Dtd(x, y) = dW(Dtδx, Dtδy)

will be called the metric diffused along the foliation F at time t. Since
dW(δx, δy) = d(x, y) for any x, y ∈ M and D0 = id, we see that D0d
coincides the metric d. The metric space (M,Dtd) will be denoted by Mt.

Theorem 3.2. For any s, t ≥ 0, metrics Dtd and Dsd are equivalent.

4. Metric diffusion for compact foliations of dimen-
sion one

First, we recall some facts about compact foliations, i.e. foliations with all
leaves compact. The topology of the leaf space of a compact foliation F on
a compact manifold M does not have to be Hausdorff. Examples of such
foliations were presented by Epstein and Vogt [7], Sullivan [9] and Vogt
[12].

The following result describes the topology of a compact foliation in few
equivalent conditions. First, denote by π : M → L the quotient projection
defined by π(x) = Lx, where L denotes the space of leaves of a foliation
F , i.e., a quotient space of the equivalence relation x ∼ y if and only if
Lx = Ly, where Lz denotes the leaf through z.

Theorem 4.1. [6] The following conditions are equivalent:

1. π is a closed map.

2. π maps compact sets onto closed sets.

3. Each leaf has arbitrarily small saturated neighborhoods.

4. L with quotient topology is Hausdorff.

5. If K ⊆M is compact, then the saturation of K is also compact.

Let GF be the set of all points x ∈M near which the volume function
is bounded, i.e., x ∈ GF if and only if there exists an open neighborhood
U of x such that the volumes of all leaves passing through U are uniformly
bounded. The set GF is called the good set of the foliation F . Due to [5],
GF is open, saturated, and dense in M and all holonomy groups of leaves
contained in GF are finite. The complement BF = M \ GF of the good
set is called the bad set. It follows directly from the definition of the good
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set and Theorem 4.1 that foliations with empty bad set have a volume of
leaves commonly bounded.

One of the most important results about compact foliations is the fol-
lowing:

Theorem 4.2. [4] Let us suppose that M is a smooth compact Riemannian
manifold which is foliated by compact foliation of co-dimension one or two.
There is an upper bound of the volumes of the leaves of M .

Let F be a compact foliation on a compact Riemannian manifold (M, g)
with the volume of leaves commonly bounded above. The classical result
says that on a compact manifold M the heat is evenly distributed over M
while time is tending to infinity. More precisely,

Theorem 4.3. [3] For any f ∈ L2(M), the function Dtf converges uni-
formly, as t goes to the infinity, to a harmonic function on M . Since M is
compact, the limit function is a constant.

Let L,L′ ∈ F be two leaves. One can define the metric ρ vol in the
space of leaves by

ρ vol(L,L
′) = dW( vol(L), vol(L′)),

where vol(F ) denotes the normalized volume of the leaf F .
We will now restrict to the compact foliations of dimension 1. We will

study the convergence in the Wasserstein-Hausdorff topology of the natural
isometric embeddings ι : Mt → P(M) defined by

ιt(x) = Dtδx.

Precisely speeking, ιt(M,Dtd) is a compact subset of P(M), while we define
the Wasserstein-Hausdorff distance of diffused metrics by

dWH(Mt,Ms) = (dW)H(ιt(M), ιs(M)),

where (dW)H denotes the Hausdorff distance of closed subsets of P(M).

Theorem 4.4. The Gromov-Hausdorff limit of a diffused foliation with
empty bad set is isometric to the space of leaves equipped with the metric
ρ vol.

The following example visualizes that in the above Theorem the as-
sumption on the bad set is necessary.

Example 4.5. Following [12], let G be a topological group, while γ :
[0, 2π] → G a closed curve. One can define a one dimensional foliation
F(γ) on S1 ×G filling it by closed curves as follows:
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Through a point (t, x) ∈ S1 ×G passes a curve

[0, 2π] 3 s 7→ (s, γ(s)γ(t)−1x).

Leaves of F(γ) are the fibers of a trivial bundle over G with a fiber
S1. Moreover, if G is a Lie group then F(γ) is a Cr-foliation if only γ is a
Cr-curve.

Consider as a Lie group a sphere S3 = {(z, w) ∈ C2 : zz̄ + ww̄ = 1}
with multiplication defined by

(a, b) · (c, d) = (ac− bd̄, ad+ bc̄).

The first step is to define, for any τ ∈ (0, 1], a curve γτ : [0, 2π] → S3

as follows:

1. if τ = 1
2n+1

− t, 0 ≤ t ≤ 1
(2n+1)(2n+2)

= an, n = 0, 1, 2, . . . then

γτ (s) = (

√
1− (

t

an
)2 eins,

t

an
eins), s ∈ [0, 2π];

2. if τ = 1
2n
− t, 0 ≤ t ≤ 1

2n(2n+1)
= bn, n = 1, 2, . . . then

γτ (s) = (
t

bn
eins,

√
1− (

t

bn
)2 ei(n+1)s), s ∈ [0, 2π].

One can easily check that the family γτ is continuous.
Next step is to foliate (0, 1]×S1×S3 foliating, for given τ ∈ (0, 1], the

set {τ} × S1 × S3 by F(γτ ) . Directly from the definition of F(γτ ), one
can see that the length of leaves tends to infinity, and the length of the S1

component of the vector tangent to a leaf goes to 0 while τ → 0. Moreover,
γτ converge tangentially to the left co-sets of closed 1-parameter subgroup

H = {(eis, 0), s ∈ [0, 2π]}.
Complementing the foliation of M = [0, 1] × S1 × S3 by a foliation of
{0} × S1 × S3 by leaves of the form

{0} × {t} ×H · g, g ∈ S3, t ∈ S1

we obtain 1-dimensional foliation F̃ of [0, 1]× S1 × S3 with nonempty bad
set.

Now, we introduce a modification of F̃ to obtain our target foliation.
Let h : [0, 2π] → [0, 2π] be a increasing function with the graph as on

the Figure 1
Next, let h̄ : [0, 1] × [0, 2π] → [0, 2π] be a smooth homotopy from

identity to h, that is h̄(t, s) = (1 − t)s + th(s). Define a modificating

function h̃ : [0, 1]× [0, 2π]→ [0, 2π] by the formula

h̃(t, s) =

{
h̄(2t, s) for t ∈ [0, 1

2
],

h̄(−2t+ 2, s) for t ∈ [1
2
, 1].
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Figure 1: A modificating function.

Having h̃, we define mappings Hn : [0, 1]× S1 × S3 → [0, 1]× S1 × S3

by

H̃n(τ, s, x) =

 (τ, h̃(n(n+ 1)τ − n), s), x)
for (τ, s, x) ∈ [ 1

2n+2
, 1

2n+1
]× S1 × S3,

(τ, s, x) otherwise.

Note that Hn changes F̃ only on the set

(τ, s, x) ∈ [
1

2n+ 2
,

1

2n+ 1
]× S1 × S3

and leaves it unchanged everywhere else.
Let us modify the foliation F̃ as follows:
For n1 = 1 set F1 = (H1)∗F̃ . Next, choose θ1 > 0 such that for all

θ > θ1 and all p = (τ, s, x) ∈ [ 1
2n1+2

, 1]× S1 × S3

dW(Dθ1δp, vol(Lp)) <
1

2n1
.

Suppose that we have choosen nk > nk−1 and θk > θk−1 such that for
foliation

Fk = (Hk ◦ · · · ◦H1)∗F̃
and all p = (τ, s, x) ∈ [ 1

2(nk+1)
, 1]× S1 × S3

dW(Dθkδp, vol(Lp)) <
1

2nk
.

Let us choose nk+1 > nk for which all leaves of Fk+1 = (Hk+1)∗Fk passing
through p = (τ, s, x) ∈ [0, 1

nk+1
]× S1 × S3 satisfy

dW(Dθkδp, vol(L(0,s,x))) <
1

2k
.
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Finally foliation F as (· · ·Hn◦· · ·◦H1)∗F̃ and consider the Riemannian
metric d induced from R7 equipped wih F on M .

Theorem 4.6. The family of (M,F , Dtd) does not satisfies the Cauchy
condition in Wasserstein-Hausdorff topology. Namely, there exists ε0 > 0
such that for any T > 0 one can find θ, λ > T satisfying

dWH(Mθ,Mλ) > ε0.
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LATEX and graphics

Zofia WALCZAK

Abstract of poster

There are the number of distinct ways of producing graphics each with
advantages and disadvantages in terms of flexibility, device independence
and ability to include arbitrary TEX text.

On my poster I will describe various possibilities of embedding graphics
in LATEX document. I will start from picture environment provided by
L. Lamport with LATEX2.09 format with the example of very simple picture.

\unitlength1cm
\fboxsep2mm
\color{rgray}
\fbox{\color{lgray}
\begin{picture}(2,4)
\put(0,0){\line(1,0){2}}
\put(2,0){\line(0,1){4}}
\put(2,4){\line(-1,0){2}}
\put(0,4){\line(0,-1){4}}
\end{picture}
}

I will also present how to obtain, using not only tikzpicture environ-
ment, pictures like that.

c© 2013 Zofia Walczak
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I plan to show some simple and more complicated pictures produced
with TikZ

x

y

r
•

1

1
· α

B(y, 0)

O(0, 0)A(x, 0)

P(x, y)

On my poster one will be able to find examples of diagrams, charts,
chemical formulas, music notes and more complicated 3-dimensional graph-
ics in different formats.
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p
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My poster will present a short history of creating or embedding graphics
to the LATEX document.
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Groups of uniform homeomorphisms of
covering spaces

Tatsuhiko YAGASAKI

1. Introduction

The uniform topology is one of basic topologies on function spaces. In this
note we report some results on local and global deformation properties of
spaces of uniform embeddings and groups of uniform homeomorphisms in
metric manifolds endowed with the uniform topology.

Our main goal is to understand local or global topological properties of
groups of uniform homeomorphisms of metric manifolds endowed with the
uniform topology (for example, local contractibility, homotopy type, local
or global topological type as infinite-dimensional manifolds, etc). Since the
notions of uniform continuity and uniform topology depend on the choice of
metrics, we are also interested in dependence of those topological properties
on the behavior of metrics in neighborhoods of ends of manifolds.

In [6] we studied the formal behaviour of local deformation property
in the space of uniform embeddings and showed that this property is pre-
served by the restriction and union of domains of uniform embeddings.
This observation reduces our problem to the study of simpler pieces. In [2]
A.V. Černavskĭı considered the case where the manifold M is the interior
of a compact manifold N and the metric d is a restriction of some metric on
N . Recently, in [5] we treated the class of metric covering spaces over com-
pact manifolds. In this case we can deduce a local deformation theorem for
uniform embeddings from the Edwards-Kirby local deformation theorem
for embeddings of compact spaces and the classical Arzela-Ascoli theorem
for equi-continuous families of maps ([5, Theorem 1.1]). The additivity of
local deformation property implies that any metric manifold with a locally
geometric group action also has the same local deformation property ([6,
Theorem 4.1]).

The local deformation property for uniform embeddings implies the lo-
cal contractibility of the group of uniform homeomorphisms. Our next aim
is to study its global deformation property. The most standard example
is the Euclidean space Rn with the standard Euclidean metric. Its rele-
vant feature is the existence of similarity transformations. This enables us
to deduce a global deformation for uniform embeddings in the Euclidean
end from the local one. Since this property is preserved by bi-Lipschitz

c© 2013 Tatsuhiko Yagasaki
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homeomorphisms, we obtain a global deformation theorem for the group
of uniform homeomorphisms of any metric manifold with finitely many bi-
Lipschitz Euclidean ends ([5, Theorem 1.2]). This implies, for instance, the
contractibility of the identity components of the groups of uniform home-
omorphisms of Rn and any non-compact 2-manifold with finitely many
bi-Lipschitz Euclidean ends ([5, Example 1.1]).

In the succeeding sections we explain some details of the statements
described in this introduction. Section 2 contains local deformation results
for uniform embeddings. Section 3 includes global deformation results for
uniform homeomorphisms.

2. Local deformation property for uniform embed-
dings

2.1. Suppose (X, d) is a metric space. For subsets A,B of X we write
A ⊂u B and call B a uniform neighborhood of A in X if B contains the
ε-neighborhood Oε(A) of A in X for some ε > 0.

A map f : (X, d)→ (Y, ρ) between metric spaces is said to be uniformly
continuous if for each ε > 0 there is a δ > 0 such that if x, x′ ∈ X and
d(x, x′) < δ then ρ(f(x), f(x′)) < ε. The map f is called a uniform home-
omorphism if f is bijective and both f and f−1 are uniformly continuous.
A uniform embedding is a uniform homeomorphism onto its image.

A metric manifold means a separable topological manifold possibly with
boundary assigned a fixed metric. Suppose (M,d) is a metric n-manifold.
For subsets X and C of M , let Eu∗ (X,M ;C) denote the space of proper
uniform embeddings f : (X, d|X) → (M,d) such that f = id on X ∩ C.
This space is endowed with the uniform topology induced from the sup-
metric

d(f, g) = sup
{
d(f(x), g(x)) | x ∈ X

}
∈ [0,∞] (f, g ∈ Eu∗ (X,M ;C)).

Definition 2.1. For a subset A of M we say that A has the local defor-
mation property for uniform embeddings in (M,d) and write A : (LD)M if
the following holds:
(∗) for any subset X of A, any uniform neighborhoods W ′ ⊂ W of X in

(M,d) and any subsets Z ⊂u Y of M there exists a neighborhood W
of the inclusion map iW : W ⊂M in Eu∗ (W,M ;Y ) and a homotopy

φ :W × [0, 1] −→ Eu∗ (W,M ;Z) which satisfy the following conditions:

(1) For each h ∈ W
(i) φ0(h) = h, (ii) φ1(h) = id on X,

(iii) φt(h) = h on W −W ′ and φt(h)(W ) = h(W ) (t ∈ [0, 1]),
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(iv) if h = id on W ∩ ∂M , then φt(h) = id on W ∩ ∂M (t ∈ [0, 1]).

(2) φt(iW ) = iW (t ∈ [0, 1]).

In the case where A = M we omit the subscript M in the symbol
(LD)M .

The celebrated Edwards-Kirby local deformation theorem [3] can be
restated in the next form.

Theorem 2.2. (Edwards-Kirby [3]) Any relatively compact subset K of M
satisfies the condition (LD)M .

The condition (LD)M has the following formal properties:

Proposition 2.3. ([6, Proposition 3.1, Corollary 3.1, Remark 3.2])

(1) The property (LD) is preserved by any uniform homeomorphism (i.e.,
if (M,d) is uniformly homeomorphic to (N, ρ), then (M,d) : (LD)
⇐⇒ (N, ρ) : (LD).)

(2) (Restriction) (i) Suppose A ⊂ B ⊂ M . Then, B : (LD)M =⇒
A : (LD)M .

(ii) Suppose A ⊂u N ⊂M and N is an n-manifold. Then, A : (LD)N
⇐⇒ A : (LD)M .

(3) (Additivity) (i) Suppose A ⊂u U ⊂ M and B ⊂ M . Then, U ,
B : (LD)M =⇒ A ∪B : (LD)M .

(ii) Suppose M = A ∪ B, A, B are n-manifolds and A − B ⊂u A.
Then, A, B : (LD) =⇒ M : (LD).

(4) Suppose K is a relatively compact subset of M and A ⊂ M . Then,
A : (LD)M ⇐⇒ A ∪K : (LD)M .

(5) (Neighborhoods of ends) Suppose M = K ∪ ∪mi=1Li, K is relatively
compact, each Li is an n-manifold and closed in M , and d(Li, Lj) > 0
for any i 6= j. Then, M : (LD) ⇐⇒ Li : (LD) (i = 1, · · · ,m).

2.2. Metric covering projections and Geometric group actions
Our next aim is to seek concrete examples which have the local defor-

mation property for uniform embeddings. The following notion is a natural
metric version of Riemannian covering projections.

Definition 2.4. A map π : (X, d) → (Y, ρ) between metric spaces is
called a metric covering projection if it satisfies the following conditions:
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(\)1 There exists an open cover U of Y such that for each U ∈ U the
inverse π−1(U) is the disjoint union of open subsets of X each of
which is mapped isometrically onto U by π.

(\)2 For each y ∈ Y the fiber π−1(y) is uniformly discrete in X.

(\)3 ρ(π(x), π(x′)) ≤ d(x, x′) for any x, x′ ∈ X.

Here, a subset A of X is said to be uniformly discrete if there exists an
ε > 0 such that d(x, y) ≥ ε for any distinct points x, y ∈ A. Note that if
Y is an n-manifold, then so is X and ∂X = π−1(∂Y ). From the Edwards-
Kirby local deformation theorem [3] and the Arzela-Ascoli theorem we can
deduce the local deformation theorem for uniform embeddings [5, Theorem
1.1].

Theorem 2.5. If π : (M,d) → (N, ρ) is a metric covering projection and
N is a compact metric manifold, then (M,d) satisfies the condition (LD).

In term of covering transformations, this theorem corresponds to the
case of free group actions. For the non-free case, we have the following
generalization. Recall that an action Φ of a discrete group G on a metric
space X is called geometric if it is proper, cocompact and isometric. (cf.
[1, Chapter I.8]). More generally we say that the action Φ is (i) locally
isometric if for every x ∈ X there exists ε > 0 such that each g ∈ G maps
Oε(x) isometrically onto Oε(gx), and (ii) locally geometric if it is proper,
cocompact and locally isometric.

Corollary 2.6. ([6, Theorem 4.1]) A metric manifold (M,d) satisfies the
condition (LD) if it admits a locally geometric group action.

Example 2.7. The Euclidean space Rn with the standard Euclidean met-
ric admits the canonical geometric action of Zn and the associated Rieman-
nian covering projection π : Rn → Rn/Zn onto the flat torus. Therefore,
Rn has the property (LD). From Proposition 2.3 (4) and (3) it follows
that the Euclidean ends Rnr = Rn − Or(0) (r > 0) and the half space
Rn≥0 = {x ∈ Rn | xn ≥ 0} also have the property (LD).

3. Groups of uniform homeomorphisms

Suppose (X, d) is a metric space and A is a subset of X. Let Hu
A(X, d)

denote the group of uniform homeomorphisms of (X, d) onto itself which
fix A pointwise, endowed with the uniform topology. Let Hu

A(X, d)0 denote
the connected component of the identity map idX of X in Hu

A(X, d). We
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also consider the subgroup

Hu
A(X, d)b = {h ∈ Hu

A(X, d) | d(h, idX) <∞}.

It is easily seen that Hu
A(X, d)0 ⊂ Hu

A(X, d)b since the latter is both closed
and open in Hu

A(X, d).
The group Hu(M,d) is locally contractible if a metric manifold (M,d)

satisfies the condition (LD) in Section 2. Hence, our main concern in this
section is in the study of its global deformation property.

The most standard model space Rn has the similarity transformations

kγ : Rn ≈ Rn : kγ(x) = γx (γ > 0).

Conjugation with these similarity transformations enables us to deduce a
global deformation property for uniform embeddings in the Euclidean ends
Rnr = Rn −Or(0) (r > 0) from the local one. Since this global deformation
property is preserved by bi-Lipschitz equivalence, we can transfer to a more
general setting of metric spaces with finitely many bi-Lipschitz Euclidean
ends.

Recall that a map h : (X, d) → (Y, ρ) between metric spaces is said
to be Lipschitz if there exists a constant C > 0 such that ρ(h(x), h(x′)) ≤
Cd(x, x′) for any x, x′ ∈ X. The map h is called a bi-Lipschitz home-
omorphism if h is bijective and both h and h−1 are Lipschitz maps. A
bi-Lipschitz n-dimensional Euclidean end of a metric space (X, d) means a
closed subset L of X which admits a bi-Lipschitz homeomorphism of pairs,
θ : (Rn1 , ∂Rn1 ) ≈ ((L,FrXL), d|L) and d(X − L,Lr) → ∞ as r → ∞, where
FrXL is the topological frontier of L in X and Lr = θ(Rnr ) for r ≥ 1. We
set L′ = θ(Rn2 ) and L′′ = θ(Rn3 ).

Theorem 3.1. ([5, Theorem 1.2]) Suppose X is a metric space and L1, · · · ,
Lm are mutually disjoint bi-Lipschitz Euclidean ends of X. Let L′ =
L′1 ∪ · · · ∪ L′m and L′′ = L′′1 ∪ · · · ∪ L′′m. Then there exists a strong de-
formation retraction φ of Hu(X)b onto Hu

L′′(X) such that

φt(h) = h on h−1(X − L′)− L′ for any (h, t) ∈ Hu(X)b × [0, 1].

This theorem leads to the following conclusions.

Example 3.2. (1) Hu(Rn)b is contractible for every n ≥ 1. In fact, there
exists a strong deformation retraction of Hu(Rn)b onto Hu

Rn3
(Rn) and the

latter is contractible by Alexander’s trick.
(2) Suppose N is a compact connected 2-manifold with a nonempty

boundary and C = ∪mi=1Ci is a nonempty union of some boundary circles of
N . If the noncompact 2-manifoldM = N−C is assigned a metic d such that
for each i = 1, · · · ,m the end Li of M corresponding to the boundary circle
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Ci is a bi-Lipschitz Euclidean end of (M,d), then Hu(M,d)0 ' Hu
L′′(M)0 ≈

HC(N)0 ' ∗.

We close the section with a question on the topological type of the
group Hu(Rn)b. In [4] we studied the topological type of Hu(R)b as an
infinite-dimensional manifold and showed that it is homeomorphic to `∞.
Example 3.2 (1) leads to the following conjecture.

Conjecture 3.3. Hu(Rn)b is homeomorphic to `∞ for any n ≥ 1.
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Non-wandering, recurrence, p.a.p. and
R-closed properties for flows and foliations

Tomoo YOKOYAMA

1. Introduction

In the recent papers [6]-[11], we study pointwise almost periodic (p.a.p),
recurrent, non-wandering, and R-closed properties for flows. By a flow, we
mean a continuous action of a topological group G on X. Also we define
these notions for decompositions (in particular foliations). Using them, we
study codimension one and two foliations. By a decomposition, we mean
a family F of pairwise disjoint nonempty subsets of a set X such that
X = tF . In this talk, we survey these results. The following relations for
decompositions of compact Hausdorff spaces hold [6][10]:

R-closed⇒ pointwise almost periodic⇒ recurrent⇒ non-wandering.

Let F be a decomposition of a topological space X. An element L of
F is said to be recurrent if either it is compact or L − L is not closed.
An element L of F is non-wandering if it is contained in the closure of
the union of recurrent elements. A decomposition F is said to be recurrent
(resp. non-wandering) if so is each element of F . We call that F is pointwise
almost periodic (p.a.p.) if the set of all closures of elements of F also is

a decomposition. Then denote by F̂ the decomposition of closures and
by M/F̂ the quotient space, called the orbit class space. For any x ∈ X,
denote by Lx the element of F containing x. F is R-closed if R := {(x, y) |
y ∈ Lx} is closed. For a subset A ⊆ X, A is saturated if A = tx∈ALx. A
decomposition F is upper semicontinuous (usc) if each element of F is both
closed and compact and, for any L ∈ F and for any open neighborhood U
of L, there is a saturated neighborhood of L contained in U . The following
relations for p.a.p. decompositions of compact metrizable spaces hold[9]:

F : R-closed⇐⇒ F̂ : R-closed⇐⇒ F̂ : usc⇐⇒M/F̂ : Hausdorff

By a continuum we mean a compact connected metrizable space. A
continuum A ⊂ X is said to be annular if it has a neighbourhood U ⊂
X homeomorphic to an open annulus such that U − A has exactly two
components each of which is homeomorphic to an annulus. We call that

Partly supported by the JST CREST Program at Department of Mathematics, Hokkaido
University.
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a subset C ⊂ X is a circloid if it is an annular continuum and does not
contain any strictly smaller annular continuum as a subset. We say that
a minimal set M on a surface homeomorphism f : S → S is an extension

of a Cantor set if there are a surface homeomorphism f̃ : S → S and a
surjective continuous map p : S → S which is homotopic to the identity

such that p◦f = f̃ ◦p and p(S) is a Cantor set which is a minimal set of f̃ .
In [5], it has shown that a weakly almost-periodic orientation-preserving

homeomorphism on S2 which is not periodic has exactly two fixed points
and the closure of each regular orbit is annular continuum. From now on,
let f an R-closed homeomorphism on a connected orientable closed surface
S. Now we state the results for R-closed homeomorphisms.

Proposition 1.1. [7] If S = S2 and f is not periodic but orientation-
preserving (resp. reversing), then the minimal sets of f (resp. f 2) are

exactly two fixed points and other circloids and S2/f̂ ∼= [0, 1].

Theorem 1.2. [7] If S has genus more than one, then each minimal set
of f is either a periodic orbit or an extension of a Cantor set.

In [3], it has shown that an invariant continuum K of a non-wandering
homeomorphism of a compact orientable surface satisfies one of the follow-
ing holds: (1) f has a periodic point in K; (2) K is annular; (3) K = S = T2.
Moreover, it has shown [2] that a minimal setM 6= T2 of a non-wandering
toral homeomorphism satisfies one of the following holds: (1) M is a peri-
odic orbit; (2)M is the orbit of a periodic circloid; (3)M is the extension
of a Cantor set.

Theorem 1.3. [7] If S = T2 and f is neither minimal nor periodic, then
either each minimal set of f is a finite disjoint union of essential circloids
or there is a minimal set which is an extension of a Cantor set.

Recall that a subset U of a topological space is locally connected if
every point of U admits a neighbourhood basis consisting of open connected
subsets.

Theorem 1.4. [8] The suspension vf of f satisfies one of the following
conditions:
1) each orbit closure of vf is toral.
2) there is a minimal set which is not locally connected.

We state the results for R-actions. Let v be a continuous R-action on
a connected orientable closed surface S. Denote by LD the union of locally
dense orbits.
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Theorem 1.5. [11] The R-action v is non-wandering if and only if LD t Per(v)∪
Sing(v) = S. In particular, if v is non-wandering, then Per(v) is open and
there are no exceptional orbits.

In [1] and [4], it is showed that the following properties are equivalent
for an action of a finitely generated group G on either a compact zero-
dimensional space or a graph X: (1) (G,X) is pointwise recurrent. (2)
(G,X) is pointwise almost periodic. (3) (G,X) is R-closed. Now we state
R-actions on surfaces.

Theorem 1.6. [6] The following are equivalent:
1) v is pointwise recurrent.
2) v is pointwise almost periodic.
3) v is either minimal or pointwise periodic.

Theorem 1.7. [6] Suppose v is neither identical nor minimal. Then v is
R-closed if and only if v consists of periodic orbits and at most two centers.

We state the results for foliations.

Theorem 1.8. [6] Let F a continuous codimension one foliation on a
closed connected manifold. The following are equivalent:
1) F is pointwise almost periodic.
2) F is R-closed.
3) F is minimal or compact.

Note that, for a closed connected manifold M , the set of codimension
two foliations on M which are minimal or compact is a proper subset of
the set of R-closed codimension two foliations on M [9].

References

[1] Auslander, J.; Glasner, E.; Weiss, B., On recurrence in zero dimensional flows in
Forum Math. 19 (2007), no. 1, 107–114.
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The minimal volume orientable hyperbolic
3-manifold with 4 cusps

Ken’ichi YOSHIDA

1. Introduction

For hyperbolic 3-manifolds, their volumes are known to be topological in-
variants. The structure of the set of the volumes of hyperbolic 3-manifolds
is known by the Jørgensen-Thurston theorem: The set of the volumes of ori-
entable hyperbolic 3-manifolds is a well-ordered set of the type ωω with re-
spect to the order of R. The volume of an orientable hyperbolic 3-manifold
with n-cusps corresponds to an n-fold limit ordinal.

This theorem gives rise to the problem of determining the minimal
volume orientable hyperbolic 3-manifolds with n cusps. The answers are
known in the cases where 0 ≤ n ≤ 2. Agol [1] conjectured which manifolds
have the minimal volume in the cases where n ≥ 3. We present the result
that we determined it in the case where n = 4.

Theorem 1.1. The minimal volume orientable hyperbolic 3-manifold with
4 cusps is homeomorphic to the 84

2 link complement. Its volume is 7.32... =
2V8, where V8 is the volume of the ideal regular octahedron.

2. Outline of Proof

84
2 link complement is obtained from two ideal regular octahedra by gluing

along the faces. Hence we need a lower bound on the volume of an orientable
hyperbolic 3-manifold with 4 cusps. The proof relies on Agol’s argument
used to determine the minimal volume hyperbolic 3-manifolds with 2 cusps
[1].

Let M be a finite volume hyperbolic 3-manifold, and let X be a (non-
necessarily connected) essential surface in M . After we cut M along X, the
relative JSJ decomposition can be performed. The obtained components
are characteristic or hyperbolic. The union of hyperbolic components is
called the guts of M −X. The guts admit another hyperbolic metric with
totally geodesic boundary. Then we can obtain a lower bound of the volume
of M .
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Japan.
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Theorem 2.1 (Agol-Storm-Thurston [2]). Let L be the guts of M − X.
Then vol(M) ≥ vol(L) ≥ V8

2
|χ(∂L)|, where vol(L) is defined with respect to

the hyperbolic metric of L with totally geodesic boundary.

Therefore it is sufficient that we estimate the Euler characteristic of
the boundary of guts. Let M be a finite volume hyperbolic 3-manifold with
4 cusps. At first, we construct an essential surface X such that the guts of
M −X have 4 torus or annular cusps. We need to estimate the volume of a
hyperbolic manifold L with totally geodesic boundary and 4 cusps. Purely
homological arguement shows that L has a non-separating essential surface.
Beginning from this surface, we construct an essential surface Y in L such
that χ(∂(guts of L− Y )) ≤ −4.
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