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Introduction
In classical dynamical systems one of the most fundamental invariants of a continuous
map f : X → X is its topological entropy htop(f ) which measure the complexity of the
system. When the entropy is positive, it reflects some chaotic behavior of the map f .
In foliation theory, any so called nice covering U of a compact foliated manifold (M , F )
determines a finitely generated holonomy pseudogroup (HU ,HU1) generated by a finite
generating set HU1. Also, there exists a corresponding notion of a topological entropy
for a group action or pseudogroup action on a compact metric space. For any foliated
manifold (M , F ), the action of a holonomy pseudogroup on a complete transversal
contains complete information about the dynamics of (M , F ). It does not depend on
the choice of the transversal up to an equivalence of pseudogroups. Therefore, a foliated
manifold can be considered as a generalized dynamical system.
In classical theory of dynamical systems a continuous map f : X → X determines an
f -invariant measure µ and one can define a measure entropy hµ(f ) with respect to µ.
The important relation between topological entropy and measure entropy of a map
f : X → X is established by the Variational Principle, which asserts that

htop(f ) = sup{hµ(f ) : µ ∈ M(X , f )}
i.e. topological entropy equals to the supremum hµ(f ), where µ ranges over the set
M(X , f ) of all f -invariant Borel probability measures on X .
In classical dynamical systems there are relations between the topological entropy of
a continuous map f : X → X and Hausdorff dimension. More than thirty years ago
Bowen [4] provided a definifion of topological entropy of a map which resembles the
definition of Hausdorff dimension. A dimensional type approach to topological entropy
of a single continuous map one can find for example in [1], [10] or [7]. A cyclic group or
semigroup < f > generated by a single map f : X → X has linear growth. Therefore it is
difficult to adopt ideas and techniques presented for groups of linear growth to finitely
generated groups or pseudogroups which growth is rarely linear. The goal of the talk is to
present interrelations between dimension theory and the theory of generalized dynamical
systems.

Topological entropy of a pseudogroup
and local measure entropy

In [6] Ghys, Langevin and Walczak defined the topological entropy of a finitely generated
pseudogroup and introduced a notion of a geometric entropy of a foliation. The problem
of defining good measure theoretical entropy for foliated manifolds which would provide
an analogue of the variational principle for geometric entropy of foliations is still open. In
general, there are many examples of foliations that do not admit any non-trivial invariant
measure. Even in a case when an invariant measure exists, it is not clear how to define its
measure-theoretic entropy.
We generalize the notion of local measure entropy introduced by Brin and Katok [5] for
a single map f : X → X to a finitely generated pseudogroup (G ,G1) acting on a metric
space X . We define a local upper measure entropy hG

µ (x) and a local lower measure
entropy hµ,G(x) of (G ,G1) at a point x ∈ X with respect to a Borel probability measure
µ on X .
The main result of [2] is an analogue of the partial Variational Principle for pseudogroups
which reads as follows:

Theorem 1.

Let (G ,G1) be a finitely generated group of homeomorphisms of a compact closed and
oriented manifold M . Let E is a Borel subset of M , s > 0 and µvol the natural volume
measure on M .
If the local measure entropy hG

µvol
(x) ≤ s, for all x ∈ E , then the topological entropy

htop((G ,G1),E ) ≤ s.

Theorem 2.

Let (G ,G1) be a finitely generated pseudogroup on a compact metric space X . Let E is
a Borel subset of X and s > 0. Denote by µ a Borel probability measure on X .
If the local measure entropy hµ,G(x) ≥ s, for all x ∈ E , and µ(E ) > 0 then the
topological entropy htop((G ,G1),E ) ≤ s.

Next, we introduce a special class class of measures on X , called G− homogeneous
measures.

Theorem 3.

If a finitely generated pseudogroup (G ,G1) acting on a compact metric space (X , d)
admits a G-homogeneous measure then the local measure entropy hG

µ (x) is constant
and it does not depend on the point x ∈ X . Moreover:
For a finitely generated pseudogroup (G ,G1) acting on a compact metric space X and
admitting a G-homogeneous measure µ on X we have

htop(G ,G1) = hG
µ ,

where hG
µ is the common value of local measure entropies hG

µ (x).

New entropy-like invariants
Here we present and apply the theory of Carathéodory structures (or C -structures),
studied by Pesin ([8], [9]) and Pesin and Pitskel ([10]), which are the powerful
generalization of the classical construction of Hausdorff measure. Pesin introduced
a C -structure axiomatically by describing its elements and relation between them.
A Carathéodory structure τ defined on a metric space X determines the Carathéodory
dimension dimC ,τ(Z ) of a subset Z ⊂ X . Another procedure leads to definition of two
other basic characteristics of dimensional type: the lower and upper capacity of a set
Z ⊂ X . The main results of [3] are as follows.

Theorem 4.

For a finitely generated pseudogroup (G ,G1) there exists a C - structure with upper
capacity that coincides with the topological entropy of (G ,G1).

We denote by E a class of continuous and decreasing functions f : [0,∞)→ [0,∞) with
limx→∞ f (x) = 0. Now, we fix a pseudogroup (H ,H1) acting on a metric space X . Any
function f ∈ E and the pseudogroup (H ,H1) determine a class of C -structures
Γ (f )δ = {(Fδ, ξ, η, ψ) : δ > 0} and the limit C-structure Γ (f ) on X . The upper capacity
of a set Z ⊂ X , with respect the limit C -structure Γ (f ), is denoted here by CP(f )Z .
We apply the Theorem 4 to get some estimations of the geometric entropy hgeom(F , g) of
a compact foliated manifold (M , F ), which describes the global dynamics of (M , F ). It is
known that a compact foliated manifold (M , F ) with fixed so called nice covering
U determines a finitely generated holonomy pseudogroup (H(U),H1(U)) acting on the
transversal TU. Here, the finite generating set H1(U) consists of elementary holonomy
maps corresponding to overlapping charts of U .

Theorem 5.

Given a finitely generated pseudogroup (H ,H1) acting on a compact metric space X .
Assume that for f , g ∈ E and for any x ∈ [0,∞) the inequalities f (x) ≤ e−x ≤ g(x)
hold. Then, for any subset Z ⊂ X we get

CP(f )Z ≤ htop((H ,H1),Z ) ≤ CP(g)Z .

As a corollary we get two classes of dimensional type estimations of the geometric
entropy of foliations.

Theorem 6.

Assume that for f1, f2 ∈ E and for any x ∈ [0,∞) the inequalities f1(x) ≤ e−x ≤ f2(x)
hold. For any nice covering U of a compact foliated manifold(M , F ) endowed with
a Riemannian structure g , denote by diam(U) the maximum of the diameters of the
plaques of U measured with respect to the Riemannian structures induced on the
leaves. Then

hlower
geom(F , f1) ≤ hgeom(F , g) ≤ hupper

geom (F , f2),

where

hlower
geom(F , f1) = sup


1

diam(U)
CP(f1)(H(U),H1(U))TU

: U-nice cover of M

,

hupper
geom (F , f2) = sup


1

diam(U)
CP(f2)(H(U),H1(U))TU

: U-nice cover of M

.
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