Lie foliations transversely modeled on nilpotent Lie algebras

Naoki Kato

Geometry and Foliations 2013

1 Preliminaries

Let \mathcal{F} be a transversely orientable codimension q smooth foliation of a closed orientable smooth manifold M. Let \mathfrak{g} be a q-dimensional real Lie algebra.

C Definition

 \mathcal{F} is a Lie \mathfrak{g} -foliation if \exists a \mathfrak{g} -valued non-singular Maurer-Cartan form $\omega \colon TM \to \mathfrak{g}$ such that $\operatorname{Ker}(\omega) = T\mathcal{F}$.

Let \mathcal{F} be a Lie \mathfrak{g} -foliation of a closed manifold M. Then we have the following structure theorem proved by P. Molino.

Theorem (Molino '82)

(i) $\overline{\mathcal{F}} = {\overline{L}}_{L \in \mathcal{F}}$ is a foliation of M.

(ii) $M/\overline{\mathcal{F}}$ is a closed manifold and $\pi: M \to M/\overline{\mathcal{F}}$ is a locally trivial fibration.

(iii) \exists Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ which is uniquely determined by \mathcal{F} such that, for each fiber $F, \mathcal{F}|_F$ is a Lie \mathfrak{h} -foliation.

- ullet $oldsymbol{\mathfrak{h}}$ is called the structure Lie algebra of ${\mathcal{F}}$
- If \mathcal{F} is flow, then \mathfrak{h} is abelian, i.e. $\mathfrak{h} \cong \mathbb{R}^m$ for $\exists m$ (by Caron and Carrière's Theorem '80).

Let \mathfrak{g} be a Lie algebra and \mathfrak{h} be a subalgebra of \mathfrak{g} . Let $m \leq \dim \mathfrak{g}$ be a non-negative integer.

\sim **Definition**

- $(\mathfrak{g}, \mathfrak{h})$ is realizable if \exists a closed manifold M and \exists a Lie \mathfrak{g} -foliation of M such that the structure Lie algebra is \mathfrak{h} .
- (\mathfrak{g}, m) is realizable if \exists a closed manifold M and \exists a Lie \mathfrak{g} -flow on M such that the structure Lie algebra is \mathbb{R}^m .

Question -

(i) Which pair $(\mathfrak{g}, \mathfrak{h})$ is realizable?

(ii) Which pair (\mathfrak{g}, m) is realizable?

2 Main Theorem

Theorem A

Let \mathfrak{g} be a q-dimensional nilpotent Lie algebra. Suppose that \mathfrak{g} has a rational structure. Then (\mathfrak{g}, m) is realizable if and only if $m \leq \dim \mathfrak{c}(\mathfrak{g})$.

Theorem B

Let \mathfrak{g} be a q-dimensional nilpotent Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ be a subalgebra of \mathfrak{g} .

Then $(\mathfrak{g}, \mathfrak{h})$ is realizable if and only if \mathfrak{h} is an ideal of \mathfrak{g} and the quotient Lie algebra $\mathfrak{h} \setminus \mathfrak{g}$ has a rational structure.

3 Sketch of Proof

Key Theorem

Let \mathfrak{g} be a nilpotent Lie algebra over $\mathbb{K} = \mathbb{Q}$ or \mathbb{R} .

Let $\mathfrak{g}_1 \subset \cdots \subset \mathfrak{g}_k \subset \mathfrak{g}$ be ideals of \mathfrak{g} with dim $\mathfrak{g}_j = l_j$.

Theorem (Mal'cev '62) —

 \exists a basis $\{X_1,\ldots,X_q\}$ of \mathfrak{g} such that

(i) $1 \leq \forall l \leq q, \mathfrak{h}_l = \langle X_1, \dots, X_l \rangle_{\mathbb{K}} \subset \mathfrak{g}$ is an ideal

 $|(ii) \ 1 \le \forall j \le k, \mathfrak{h}_{l_i} = \mathfrak{g}_j.$

- A basis satisfying (i) and (ii) is called a strong Mal'cev basis through $\mathfrak{g}_1, \ldots, \mathfrak{g}_k$.
- A strong Mal'cev basis of \mathfrak{g} through $\{0\}$ is called a strong Mal'cev basis of \mathfrak{g} .

Proof of Theorem A.

"only if" part

Let $\overline{\mathcal{F}}$ be a Lie \mathfrak{g} -flow on a closed manifold M with the structure Lie algebra \mathbb{R}^m . Fix a basis $\{e_1,\ldots,e_q\}$ of \mathfrak{g} and fix transverse vector fields $\bar{X}_1,\ldots,\bar{X}_q$ of \mathcal{F} such that $\omega(\bar{X}_i)=e_i$. Then $\langle \bar{X}_1,\ldots,\bar{X}_q\rangle_{\mathbb{R}}\cong\mathfrak{g}$ as a Lie algebra.

Since G is unimodular, \mathcal{F} is unimodular. Thus there exist central transverse vector fields $\bar{Y}_1, \ldots, \bar{Y}_m$ such that $\{\bar{Y}_1, \ldots, \bar{Y}_m\}$ is linearly independent everywhere.

Let f_{ij} be the basic functions such that $\bar{Y}_j = \sum_{i=1}^{r} f_{ij}\bar{X}_i$. Since \mathfrak{g} is nilpotent, we can prove that each

 f_{ij} is constant. Therefore $\bar{Y}_i \in \langle \bar{X}_1, \dots, \bar{X}_q \rangle_{\mathbb{R}} \cong \mathfrak{g}$.

Hence $\bar{Y}_i \in \mathfrak{c}(\langle \bar{X}_1 \dots, \bar{X}_q \rangle_{\mathbb{R}}) \cong \mathfrak{c}(\mathfrak{g})$ and $m \leq \dim \mathfrak{c}(\mathfrak{g})$.

"if" part

Let l be the dimension of $\mathfrak{c}(\mathfrak{g})$. Let G be the simply connected Lie group with the Lie algebra \mathfrak{g} . Since \mathfrak{g} has a rational structure, we can take a strong Mal'cev basis $\{X_1, \ldots, X_q\}$ of \mathfrak{g} through $\mathfrak{c}(\mathfrak{g})$ such that

$$\Delta = \exp \mathbb{Z} X_1 \cdots \exp \mathbb{Z} X_q$$

is a uniform lattice of G.

Fix $b_1, \ldots, b_l \in \mathbb{R}$ such that

(i) $b_1, \ldots b_m, 1$ are linearly independent over \mathbb{Q}

(ii) $b_{m+1}, \ldots, b_l \in \mathbb{Q}$.

$$X = \sum_{i=1}^{l} b_i X_i \in \mathfrak{c}(\mathfrak{g}).$$

Define $D: G \times \mathbb{R} \to G$ and $h: \Delta \times \mathbb{Z} \to G$ by

$$D(g,t) = g \cdot \exp tX$$
$$h = D|_{\Delta \times \mathbb{Z}}.$$

Then (D, h) defines a Lie \mathfrak{g} -flow on $M = (\Delta \times \mathbb{Z}) \setminus (G \times \mathbb{R})$.

By the choice of $b_1, \ldots b_l$, the dimension of the structure Lie algebra of \mathcal{F} is equal to m.

Proof of Theorem B.

"only if" part

Let $\overline{\mathcal{F}}$ be a Lie \mathfrak{g} -foliation of a closed manifold M. Let Γ be the holonomy group of \mathcal{F} and H be the subgroup of G with its Lie algebra \mathfrak{h} . Then $H = \overline{\Gamma}_e$.

Since $\Gamma \subset G$ is uniform, $\overline{\Gamma} \subset G$ is a closed uniform subgroup. Hence $H = \overline{\Gamma}_e \subset G$ is a normal subgroup. Thus $\mathfrak{h} \subset \mathfrak{g}$ is an ideal.

Since

$$M/\overline{\mathcal{F}} \cong \overline{\Gamma} \backslash G \cong (\overline{\Gamma}_e \backslash \overline{\Gamma}) \backslash (\overline{\Gamma}_e \backslash G),$$

 $\overline{\Gamma}_e \setminus \overline{\Gamma} \subset \overline{\Gamma}_e \setminus G$ is a uniform and discrete subgroup. Hence $\mathfrak{h} \setminus \mathfrak{g}$ has a rational structure.

"if" part

Let $p: \mathfrak{g} \to \mathfrak{h} \setminus \mathfrak{g}$ be the natural projection. Since $\mathfrak{h} \setminus \mathfrak{g}$ has a rational structure, there exists a strong Mal'cev basis $\{p(Z_1), \ldots, p(Z_{q-m})\}$ of $\mathfrak{h} \setminus \mathfrak{g}$ with integer structure constants such that

$$\exp \mathbb{Z}p(Z_1)\cdots \exp \mathbb{Z}p(Z_{q-m})$$

is a uniform lattice of $H \setminus G$.

Let $\{X_1, \ldots, X_q\}$ be a strong Mal'cev basis of \mathfrak{g} through \mathfrak{h} . Then $\{X_1, \ldots, X_m, Z_1, \ldots, Z_{q-m}\}$ is also a strong Mal'cev basis of \mathfrak{g} through \mathfrak{h} .

Fix $a \in \mathbb{R} - \mathbb{Q}$.

Define

$$\Gamma = \langle \exp X_1, \exp aX_1, \dots, \exp X_m, \exp aX_m, \exp Z_1, \dots, \exp Z_{a-m} \rangle.$$

Then $\overline{\Gamma}_e = H$.

Since Γ is a finitely generated uniform subgroup of the simply connected nilpotent Lie group G, we can construct a Lie \mathfrak{g} -foliation \mathcal{F} of a closed manifold M such that the holonomy group is Γ . Since $\overline{\Gamma}_e = H$, the structure Lie algebra of \mathcal{F} is \mathfrak{h} .

4 Corollaries

Corollary 1

 \forall nilpotent Lie algebra \mathfrak{g} , \exists a minimal Lie \mathfrak{g} -foliation of a closed manifold.

 \therefore) Since \mathfrak{g} is an ideal of \mathfrak{g} and $\mathfrak{g}\backslash\mathfrak{g} = \{0\}$ has the rational structure, $(\mathfrak{g}, \mathfrak{g})$ is realizable.

Corollary 2

 \exists a nilpotent Lie algebra \mathfrak{g} which has no rational structures and $\exists m$ such that (\mathfrak{g}, m) is realizable.

Sketch of proof.

Fix a nilpotent Lie algebra \mathfrak{g}' with no rational structures and fix a Lie \mathfrak{g}' -foliation of a closed manifold M. Then there exists a simply connected nilpotent Lie group G'' with a uniform lattice and there exists a submersion homomorphism $f: G'' \to G'$.

Since f is a submersion homomorphism, the induced homomorphism $f_*: \mathfrak{g}'' \to \mathfrak{g}'$ is a surjective homomorphism.

Fix a strong Mal'cev basis $\{X_1, \ldots, X_{q''}\}$ of \mathfrak{g}'' through $\operatorname{Ker}(f_*)$.

Take $\mathfrak{h}_0 = \{0\}$ and $\mathfrak{h}_k = \langle X_1, \dots, X_k \rangle_{\mathbb{R}} \subset \mathfrak{g}''$. Then we have the sequence of nilpotent Lie algebras

$$\mathfrak{g}''=\mathfrak{g}''/\mathfrak{h}_0 \xrightarrow{p_0} \mathfrak{g}''/\mathfrak{h}_1 \xrightarrow{p_1} \ldots \xrightarrow{p_{l-1}} \mathfrak{g}''/\mathfrak{h}_l \xrightarrow{f_*} \mathfrak{g}'.$$

Since \mathfrak{g}'' has a rational structure and \mathfrak{g}' has no rational structures, there exists k such that $\mathfrak{g}''/\mathfrak{h}_k$ has a rational structure and $\mathfrak{g}''/\mathfrak{h}_{k+1}$ has no rational structures.

Since $\widetilde{p_k}$: $G''/H_k \to G''/H_{k+1}$ is a submersion homomorphism and dim $\operatorname{Ker}(\widetilde{p_k}) = 1$, $\widetilde{p_k}$ defines a Lie $\mathfrak{g}''/\mathfrak{h}_{k+1}$ -flow on a closed manifold $\Delta \setminus (G''/H_k)$.

5 Nilpotent Lie algebras with no rational structures

Example (Chao '62)

Let c_{ij}^k , $1 \le i, j \le m, 1, \le k \le n$ be real numbers such that $c_{ij}^k = -c_{ji}^k$. Assume that c_{ij}^k are algebraically independent over \mathbb{Q} .

Let $\mathfrak{g} = \langle X_1, \dots, X_m, Y_1, \dots, Y_n \rangle_{\mathbb{R}}$ with the products $[X_i, X_j] = \sum_{l=1}^n c_{ij}^k Y_k$ for $i, j = 1, \dots, m$

and all other products being zero. Then \mathfrak{g} is a nilpotent Lie algebra.

This Lie algebra \mathfrak{g} has no rational structures if $(n/2)(m^2-m)>m^2+n^2$.

Proposition

Let g be the Lie algebra defined above.

If $(n/2)(m^2-m) > (m+1)^2 + (n+1)^2$, then \mathfrak{g} cannot be realized as Lie flows.

Remark

The inequality $(n/2)(m^2 - m) > (m+1)^2 + (n+1)^2$ holds if n = 4 and $m \ge 8$. Thus, for any $q \ge 12$, there exists a q-dimensional nilpotent Lie algebra \mathfrak{g} with no rational structures such that \mathfrak{g} cannot be realized as Lie flows.