# Superheavy subsets and noncontractible Hamiltonian circle actions

### 1. The problem of non-displaceability

The problem of non-displaceability is one of important problems in symplectic topology

#### Denition 1

 $(M, \omega)$ : symplectic manifold

A subset X of M is non-displaceable by symplectomorphisms

(Hamiltonian diffeomorphisms) if there exists no symplectomorphism (Hamitonian diffeomorphism) f such that  $\overline{X} \cap f(X) = \phi$ .

To solve the above problem, M. Entov and L. Polterovich defined the heaviness and the superheaviness of closed subsets in closed symplectic manifolds.

Morimimichi Kawasaki (The University of Tokyo)

#### Proof of Corollary 4

The Clifford torus *C* is known to be a superheavy subset of  $(CP^n, \omega_{FS})$ . A product of superheavy subsets is known to be also superheavy (EP09). By Theorem 3,  $C \times (M \cup L)$  is a product of superheavy subsets and hence non - displaceable by symplectomorphisms.

### 3. Proof of Theorem 3

The following proposition is the important idea in the proof of Theorem 3. The proof of this proposition is based on the idea of K. Irie (I).

#### Proposition 5

 $(M, \omega)$ : rational symplectic manifold

We omit the definiton of them, but we note that they are defined in the term of the Hamiltonian Floer theory.

#### Theorem 2 (Entov-Polterovich, [EP09])

• A heavy subset is non-displaceable by Hamiltonian diffeomorphisms.

A superheavy subset is non-displaceable by symplectomorphisms.

**Remark**: In this poster, we denote ``superheavy subsets with respect to the foundamental class" by superheavy subsets. This is not usual notation.

### History:

Entov-Polterovich(EP03): Definiton and construction of Calabi quasimorphisms on the group of Hamiltonian diffeomorphisms.

Biran-Entov-Polterovich(BEP): First application of Calabi quasimorphisms to non-displaceability

Entov-Polterovich(EP09): Definition of heaviness and superheaviness  $\alpha \neq 0 \in [S^{1}, M], \text{ U : open subset of } M,$   $H : \text{Hamiltonian function on } M \text{ (i.e. } H \in C^{\infty}(M)\text{)}$ Assumption: (1)  $\phi_{H}^{-1}|_{U} = id$ (2) For any  $x \in U, \gamma^{x} := (t \mapsto \phi_{H}^{-t}(x)) = \alpha \in [S^{1}, M]$ (3)  $\alpha \notin [S^{1}, U]$ 

Then U is ``strongly null''.

To prove Theorem 3 by using Proposition 5, we use the following proposition.

Proposition 6 (essentially Entov-Polterovich, EP09)  $F_1, \dots, F_k$ : functions on M which satisfies that  $\{F_i, F_j\} = 0$  for any i, j.  $\Phi := (F_1, \dots, F_k) : M \to R^k$ . Fix  $p \in R^k$ . Assume that for any  $q \neq p$ ,  $\Phi^{-1}(q)$  is strongly null. Then  $\Phi^{-1}(p)$  is superheavy subset of  $(M, \omega)$ .

Proof of Theorem 3 Take  $\Phi: M \to R$  such that  $\Phi(x) = 0 \Leftrightarrow x \in M \cup L$ .  $\forall \varepsilon \neq 0, \exists \delta > 0$  such that  $\Phi^{-1}(\varepsilon) \subset U_{\delta} := (\delta, 1 - \delta) \times (\delta, 1 - \delta) \subset T^2$ . Consider a Hamiltonian function *H* such that H(p,q) = p for  $p \in [\delta, 1 - \delta]$ . Define  $\alpha$  by  $[t \mapsto (0,t)] \in [S^1, T^2]$ . Then  $\alpha$ ,  $U_{\delta}$  and H satisfies the conditions of Proposition 5. Thus by Proposition 6,

## 2. Our Result

#### **Theorem 3**

 $(T^2, \omega_T)$ : the 2 - torus with coordinate (p,q) and the symplectic form dp  $\wedge$  dq M, L: the meridean, longitude curve of  $T^2$ , respectively

The union  $M \cup L$  is a superheavy subset of  $(T^2, \omega_T)$ .



The above subset is trivially non-displaceable by homeomorphisms.

But we can obtain a non-trivial result of non-displaceability -

 $M \cup L = \Phi^{-1}(0)$  is a superheavy subset of  $(T^2, \omega_T)$ .



### 4. Reference

Internat. Math. Res. Notices, 30 (2003),

[BEP] P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commum. Contemp. Math., 6

#### Corollary 4

(2004), 793-802.

 $(CP^n, \omega_{FS})$ : the complex projective space with the Fubini - Study form [EP03] M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology,

 $C \coloneqq \{ [z_0, \dots, z_n] \mid |z_0| = \dots = |z_n| \} \subset CP^n \text{ (the Clifford torus)}$ 

Then a subset  $C \times (M \cup L)$  of  $CP^n \times T^2$  is non-displaceable by symplectomorphisms.

1635-1676.

EP09] M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Comp. Math. 140 (2009), 773-826.

[I] K. Irie, Hofer-Zehnder capacity and a Hamiltonian circle action with noncontractible orbits, arXiv:1112.5247v1.