Generalized Newton transformation and its applications to extrinsic geometry

1 Motivation

 ton transformation of $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \operatorname{End}^{q}(V)$ is a system of endomorphisms $\mathbf{A}(x, e)=\left(A_{1}(x, e), \ldots, A_{q}(x, e)\right)$ Analyzing the study of Riemannian geometry we see that its system of endomorphisms $T_{u}=T_{u}(\mathbf{A}), u \in \mathbb{N}(q)$, satisfying of D_{x}, where $A_{\alpha}(x, e)$ is the shape operator corresponding to basic concepts are related with some operators, such as shape, the following condition (generalizing (N3)):Ricci, Schouten operator, etc. and functions constructed For every smooth curve $\tau \mapsto \mathbf{A}(\tau)$ in End $^{q}(V)$ such that of them, such as mean curvature, scalar curvature, Gauss- $\mathbf{A}(0)=\mathbf{A}$ Kronecker curvature, etc. The most natural and useful functions are the ones derived from algebraic invariants of these operators, e.g., by taking trace, determinant and in general the r-th symmetric functions σ_{r}. However, the case $r>1$ is strongly nonlinear and therefore more complicated. The powerful tool to deal with this problem is the Newton transformation T_{r} of an endomorphism A (strictly related with the Newton's identities) which, in a sense, enables a linearization of σ_{r},

$$
(r+1) \sigma_{r+1}=\operatorname{tr}\left(A T_{r}\right)
$$

2 Newton transformation and Generalized Newton transformation

Let A be an endomorphism of a p-dimensional vector space V. The Newton transformation of A is a system $T=\left(T_{r}\right)_{r=0,1, \ldots}$ of endomorphisms of V given by the recurrence relations:

$$
\begin{aligned}
& T_{0}=1_{V}, \\
& T_{r}=\sigma_{r} 1_{V}-A T_{r-1}, \quad r=1,2, \ldots
\end{aligned}
$$

Here σ_{r} 's are elementary symmetric functions of A. If $r>p$ we put $\sigma_{r}=0$. Equivalently, each T_{r} may be defined by the formula

$$
T_{r}=\sum_{j=0}(-1)^{j} \sigma_{r-j} A^{j}
$$

Observe that T_{p} is the characteristic polynomial of A. Consequently, by Hamilton Cayyey Theorem $T_{p}=0$. It follows that $T_{r}=0$ for all $r \geq p$. The Nevton transformation satisifes the following relations:
(N1) Symmetric function σ_{r} is given by the formula

$$
r \sigma_{r}=\operatorname{tr}\left(A T_{r-1}\right)
$$

(N2) Trace of T_{r} is equal

$$
\operatorname{tr} T_{r}=(p-r) \sigma_{r}
$$

(N3) If $A(\tau)$ is a smooth curve in End (V) such that $A(0)=A$, then for $r=0,1, \ldots, p$

$$
\frac{d}{d \tau} \sigma_{r+1}(\tau)_{\tau=0}=\operatorname{tr}\left(\frac{d}{d \tau} A(\tau)_{\tau=0} \cdot T_{r}\right)
$$

Condition (N3) is the starting point to define generalized Newton transformations.
Let V be a p-dimensional vector space (over \mathbb{R}) equipped with an inner product \langle,$\rangle . For an endomorphism A \in \operatorname{End}(V)$, let A^{\top} denote the adjoint endomorphism
Let \mathbb{N} denote the set of nonnegative integers. By $\mathbb{N}(q)$ denote the set of all sequences $u=\left(u_{1}, \ldots, u_{q}\right)$, with $u_{j} \in \mathbb{N}$. The length $|u|$ of $u \in \mathbb{N}(q)$ is given by $|u|=u_{1}+\ldots+u_{q}$. Denote by $\operatorname{End}^{q}(V)$ the vector space $\operatorname{End}(V) \times \ldots \times \operatorname{End}(V)(q-$ times). For $\mathbf{A}=\left(A_{1}, \ldots, A_{q}\right) \in \operatorname{End}^{q}(V), t=\left(t_{1}, \ldots, t_{q}\right) \in$ \mathbb{R}^{q} and $u \in \mathbb{N}(q)$ put

$$
\begin{aligned}
t^{u} & =t_{1}^{u_{1}} \ldots t_{q}^{u_{q}} \\
t \mathbf{A} & =t_{1} A_{1}+\ldots+t_{q} A_{q}
\end{aligned}
$$

By a Newton polynomial of \mathbf{A} we mean a polynomial $P_{\mathbf{A}}$ $\mathbb{R}^{q} \rightarrow \mathbb{R}$ of the form $P_{\mathbf{A}}(t)=\operatorname{det}\left(1_{V}+t \mathbf{A}\right)$. Expanding $P_{\mathbf{A}}$ we get

$$
P_{\mathbf{A}}(t)=\sum_{|u| \leq p} \sigma_{u} t^{u}
$$

where the coefficients $\sigma_{u}=\sigma_{u}(\mathbf{A})$ depend only on \mathbf{A}. Observe that $\sigma_{(0, \ldots, 0)}=1$. It is convenient to put $\sigma_{u}=0$ for $|u|>p$. Consider the following (music) convention. For α we define functions $\alpha^{\sharp}: \mathbb{N}(q) \rightarrow \mathbb{N}(q)$ and $\alpha_{b}: \mathbb{N}(q) \rightarrow \mathbb{N}(q)$ as follows

$$
\begin{aligned}
\alpha^{\sharp}\left(i_{1}, \ldots, i_{q}\right) & =\left(i_{1}, \ldots, i_{\alpha-1}, i_{\alpha}+1, i_{\alpha+1}, \ldots, i_{q}\right), \\
\alpha_{b}\left(i_{1}, \ldots, i_{q}\right) & =\left(i_{1}, \ldots, i_{\alpha-1}, i_{\alpha}-1, i_{\alpha+1}, \ldots, i_{q}\right),
\end{aligned}
$$

$$
\left.\frac{d}{d \tau} \sigma_{u}(\tau)_{\tau=0}=\sum_{\alpha}\left\langle\left.\left\langle\frac{d}{d \tau} A_{\alpha}(\tau)_{\tau=0}\right)^{\top} \right\rvert\, T_{\alpha_{\rho}(u)}\right\rangle\right\rangle
$$

$$
=\sum_{\alpha}^{\alpha} \operatorname{tr}\left(\frac{d}{d \tau} A_{\alpha}(\tau)_{\tau=0} \cdot T_{\alpha_{j}(u)}\right)
$$

Theorem 2.1 (Generalized Hamilton-Cayley Theorem) Let $T=$
($\left.T_{u}: u \in \mathbb{N}(q)\right)$ be the generalized Newton transformation of \mathbf{A}. Then for every $u \in \mathbb{N}(q)$ of length greater or equal to p we have $T_{u}=0$.
Moreover the generalized Newton transformation $T=\left(T_{u}\right.$ $u \in \mathbb{N}(q))$ of A satisfies the following recurrence relations: Theorem 2.2

$$
\begin{aligned}
T_{0} & =1_{V}, \\
T_{u} & =\sigma_{u} 1_{V}-\sum_{\alpha} A_{\alpha} T_{\alpha_{\rho}(u)} \\
& =\sigma_{u} 1_{V}-\sum_{\alpha} T_{\alpha_{b}(u)} A_{\alpha},
\end{aligned}
$$

where $0=(0, \ldots, 0)$

For $q, s \geq 1$ let $\mathbb{N}(q, s)$ be the set of all $q \times s$ matrices, whose entries are elements of \mathbb{N}. Clearly, the set $\mathbb{N}(1, s)$ is the set of multi-indices $i=\left(i_{1}, \ldots, i_{s}\right)$ with $i_{1}, \ldots, i_{s} \in \mathbb{N}$, hence $\mathbb{N}(s)=\mathbb{N}(1, s)$. Moreover, every matrix $\mathbf{i}=\left(i_{l}^{\alpha}\right) \in \mathbb{N}(q, s)$ may be identified with an ordered system $\mathbf{i}=\left(i^{1}, \ldots, i^{q}\right)$ of multi-indices $i^{\alpha}=\left(i_{1}^{\alpha}, \ldots, i_{s}^{\alpha}\right)$.
If $i=\left(i_{1}, \ldots, i_{s}\right) \in \mathbb{N}(s)$ then its length is simply the number $|i|=i_{1}+\ldots+i_{s}$. For $\mathbf{i}=\left(i^{1}, \ldots, i^{q}\right) \in \mathbb{N}(q, s)$ we define its weight as an multi-index $|\mathbf{i}|=\left(\left|i^{1}\right|, \ldots,\left|i^{q}\right|\right) \in \mathbb{N}(q)$. By the length $\|\mathbf{i}\|$ of \mathbf{i} we mean the length of $|\mathbf{i}|$, i.e., $\|\mathbf{i}\|=\sum_{\alpha}\left|i^{\alpha}\right|=$ $\sum_{\alpha, l} l_{l}^{\alpha}$.
Denote by $\mathbb{I}(q, s)$ a subset of $\mathbb{N}(q, s)$ consisting of all matrices i satisfying the following conditions:

1. every entry of \mathbf{i} is either 0 or 1 ,
2. the length of \mathbf{i} is equal to s,
3. in every column of \mathbf{i} there is exactly one entry equal to 1 , or equivalently $\left|\mathbf{i}^{\top}\right|=(1, \ldots, 1)$.
We identify $\mathbb{I}(q, 0)$ with a set consisting of the zero vector $0=[0, \ldots, 0]^{\top}$.
Let $\mathbf{A} \in \operatorname{End}^{q}(V), \mathbf{A}=\left(A_{1}, \ldots, A_{q}\right)$, and $\mathbf{i} \in \mathbb{N}(q, s)$.
By $\mathbf{A}^{\mathbf{i}}$ we mean an endomorphism (composition of endomorphisms) of the form

$$
\mathbf{A}^{\mathbf{i}}=A_{1}^{i_{1}^{1}} A_{2}^{i_{1}^{2}} \ldots A_{q}^{i_{1}^{q}} A_{1}^{i_{2}^{1}} \ldots A_{q}^{i_{2}^{q}} \ldots A_{1}^{i_{s}^{1}} \ldots A_{q}^{i_{q}^{q}} .
$$

In particular, $\mathbf{A}^{0}=1_{V}$.
Theorem 2.3 For every system of endomorphisms $\mathbf{A}=$ $\left(A_{1}, \ldots, A_{q}\right)$, there exists unique generalized Newton transformation $T=\left(T_{u}: u \in \mathbb{N}(q)\right)$ of \mathbf{A}. Moreover each T_{u} is given by the formula

$$
T_{u}=\sum_{s=0}^{|u|} \sum_{\mathbf{i} \in \mathbb{I}(q, s)}(-1)^{\|\mathrm{i}\|} \sigma_{u-|\mathbf{i}|} \mathbf{A}^{\mathrm{i}},
$$

where $\sigma_{u-\mathrm{i} \mid}=\sigma_{u-|\mathrm{i}|}(\mathbf{A})$.

3 Applications to extrinsic geometry

Let (M, g) be an oriented Riemannian manifold, D a p dimensional (transversally oriented) distribution on M. Let q denotes the codimension of D. For each $X \in T_{x} M$ there is unique decomposition

$$
X=X^{\top}+X^{\perp}
$$

where $X^{\top} \in D_{x}$ and X^{\perp} is orthogonal to D_{x}. Denote by D^{-} the bundle of vectors orthogonal to D. Let ∇ be the Levi Civita connection of $g . \nabla$ induces connections ∇^{\top} and ∇^{\perp} in vector bundles D and D^{\perp} over M, respectively Let $\pi: P \rightarrow M$ be the principal bundle of orthonormal frames (oriented orthonormal frames, respectively) of D^{\perp} Clearly, the structure grou
$(G=S O(q)$, respectively).

$$
A_{\alpha}(x, e)(X)=-\left(\nabla_{X} e_{\alpha}\right)^{\top}, \quad X \in D_{x} .
$$

Let $T(x, e)=\left(T_{u}(x, e)\right)_{u \in \mathbb{N}(q)}$ be the generalized Newton transformation associated with $\mathbf{A}(x, e)$.
(GNT) Define the section $Y_{u} \in \Gamma(E), u \in \mathbb{N}(q)$ as follows

$$
Y_{u}(x, e)=\sum_{\alpha, \beta} T_{\beta_{\alpha} \alpha_{\phi}(u)}(x, e)\left(\nabla_{e_{\alpha}} e_{\beta}\right)^{\top}+\sum_{\alpha} \sigma_{\alpha_{\phi}(u)}(x, e) e_{\alpha} .
$$

Lemma 3.1 The divergence of Y_{u} is given by the formula $\operatorname{div}_{E} Y_{u}=-|u| \sigma_{u}+\sum_{\alpha, \beta}\left[\operatorname{tr}\left(R_{\alpha, \beta} T_{\beta, \sigma_{s}(u)}\right)+g\left(\operatorname{div}_{E} T_{\beta, \alpha_{y},(u)},\left(\nabla_{e_{a}} e_{\beta}\right)^{\top}\right)\right.$
where $H_{D \perp}$ denotes the mean curvature vector of the distribution D^{\perp}.
Put

$$
\widehat{\sigma}_{u}(x)=\int_{P_{x}} \sigma_{u}(x, e) d e=\int_{G} \sigma_{u}\left(x, e_{0} a\right) d a
$$

where $\left(x, e_{0}\right)$ is a fixed element of P_{x}. We call $\widehat{\sigma_{u}}$'s extrinsic curvatures of a distribution D. Moreover, we define total extrinsic curvatures

$$
\sigma_{u}^{M}=\int_{M} \widehat{\sigma}_{u}(x) d x .
$$

Theorem 3.2 Assume M is closed. Then, for any $u \in$

$$
\begin{aligned}
& |u| \sigma_{u}^{M}=\sum_{\alpha, \beta} \int_{P}\left(\operatorname{tr}\left(R_{\alpha, \beta} T_{\beta, o_{p}(u)}\right)+g\left(\operatorname{div}_{E} T_{\left.T_{\beta, 0,(u)}^{*},\left(\nabla_{e_{a}} e_{\beta}\right)^{\top}\right)}\right.\right. \\
& -g\left(H_{D \perp}, T_{\beta, o_{p}(u)}\left(\nabla_{\sigma_{a}} e_{\beta}\right)^{\top}\right)+\sum g\left(\left(T_{\beta, o_{q}(u)}^{*}\left(\nabla_{e_{a}} e_{\gamma}\right)^{\top},\left(\nabla_{\sigma_{\gamma}} e_{\beta}\right)^{\top}\right)\right),
\end{aligned}
$$

where $H_{D \perp}$ denotes the mean curvature vector of distribution D^{\perp}.
By Theorem 3.2, we have in particular

$$
\sigma_{\alpha^{\sharp}(0, \ldots, 0)}^{M}=0
$$

and
$2 \sigma_{a, \beta \hbar\{(0, \ldots)}^{\mu}=\int_{P}\left(\left(\operatorname{Ric}_{D}\right)_{\alpha, \beta}-g\left(H_{D D},\left(\nabla_{e_{a}} e_{\beta}\right)^{\top}\right)+\sum_{\gamma} g\left(\left(\nabla_{e_{a}} e_{\gamma}\right)^{\top},\left(\nabla_{e_{\gamma}} e_{\beta}\right)^{\top}\right)\right)$,
where $\left(\operatorname{Ric}_{D}\right)_{\alpha, \beta}=\operatorname{Ric}_{D}\left(e_{\alpha}, e_{\beta}\right)$ and Ric_{D} is the Ricci curvature operator in the direction of D, i.e.,

$$
\operatorname{Ric}_{D}(X, Y)=\sum_{i} g\left(R\left(f_{i}, X\right) Y, f_{i}\right)
$$

where $\left(f_{i}\right)$ is an orthonormal basis of D
If D is integrable i.e. D defines a foliation \mathcal{F} then above theorems generalized some well known facts:
Corollary 3.3 Assume M is closed. Then, for any $u \in$ $\mathbb{N}(q)$, total extrinsic curvature σ_{u}^{M} of a distribution D with totally geodesic normal bundle is of the form

$$
|u| \sigma_{u}^{M}=\sum_{\alpha, \beta} \int_{P} \operatorname{tr}\left(R_{\alpha, \beta} T_{\beta_{p} \alpha_{b}(u)}\right) .
$$

Corollary 3.4 Assume (M, g) is closed and of constant sectional curvature κ. Let \mathcal{F} be a foliation on M with totally geodesic and integrable normal bundle \mathcal{F}^{\perp}. Then the total extrinsic curvatures of \mathcal{F} depend on κ, the volume of M and the dimension of \mathcal{F} only.
Moreover we may also obtain formulae of Brito and Naveira for mean extrinsic curvature S_{r}

This poster is based on joint work with Krzysztof Andrzejewski and Kamil Niedzialomski::
Generalized Newton transformation and its applications to extrinsic geometry:: arXiv:1211.4754

Faculty of Mathematics and Computer Science Eódź University,
Banacha 22, 90-238 , Łódź, Poland
wojciech@math.uni.lodz.pl

