Generalized Newton transformation and its applications to extrinsic geometry

Wojciech Kozłowski

Motivation

Now, we may state the main definition. The generalized New- Every element $(x, e) = (e_1, \ldots, e_q) \in P_x, x \in M$, induces the ton transformation of $\mathbf{A} = (A_1, \dots, A_q) \in \operatorname{End}^q(V)$ is a system of endomorphisms $\mathbf{A}(x, e) = (A_1(x, e), \dots, A_q(x, e))$ Analyzing the study of Riemannian geometry we see that its system of endomorphisms $T_u = T_u(\mathbf{A}), u \in \mathbb{N}(q)$, satisfying of D_x , where $A_\alpha(x, e)$ is the shape operator corresponding to basic concepts are related with some operators, such as shape, the following condition (generalizing (N3)): (x, e), i.e.

Ricci, Schouten operator, etc. and functions constructed For every smooth curve $\tau \mapsto \mathbf{A}(\tau)$ in End^q(V) such that

of them, such as mean curvature, scalar curvature, Gauss-A(0) = A

Kronecker curvature, etc. The most natural and useful func $egin{aligned} &rac{d}{d au}\sigma_u(au)_{ au=0} &= \sum_lpha \langle\!\langle rac{d}{d au}A_lpha(au)_{ au=0}
angle^ op |T_{lpha_arpha(u)}
angle\!
ight
angle\ &= \sum_lpha \operatorname{tr}\,\left(rac{d}{d au}A_lpha(au)_{ au=0}\cdot T_{lpha_arpha(u)}
ight
angle\,. \end{aligned}$ tions are the ones derived from algebraic invariants of these operators, e.g., by taking trace, determinant and in general the r-th symmetric functions σ_r . However, the case r > 1is strongly nonlinear and therefore more complicated. The powerful tool to deal with this problem is the Newton transformation T_r of an endomorphism A (strictly related with the **Theorem 2.1** (Generalized Hamilton-Cayley Theorem) Let T =Newton's identities) which, in a sense, enables a linearization of σ_r ,

 $A_{\alpha}(x,e)(X) = -(\nabla_X e_{\alpha})^{\top}, \quad X \in D_x.$

Let $T(x, e) = (T_u(x, e))_{u \in \mathbb{N}(q)}$ be the generalized Newton transformation associated with $\mathbf{A}(x, e)$. (GNT) Define the section $Y_u \in \Gamma(E)$, $u \in \mathbb{N}(q)$ as follows

$$Y_u(x,e) = \sum_{\alpha,\beta} T_{\beta\flat\alpha\flat(u)}(x,e) (\nabla_{e_\alpha} e_\beta)^\top + \sum_\alpha \sigma_{\alpha\flat(u)}(x,e) e_\alpha.$$

 $(T_u : u \in \mathbb{N}(q))$ be the generalized Newton transformation Lemma 3.1 The divergence of Y_u is given by the formula of **A**. Then for every $u \in \mathbb{N}(q)$ of length greater or equal $\operatorname{div}_{E} Y_{u} = -|u|\sigma_{u} + \sum_{\alpha,\beta} \left[\operatorname{tr} \left(R_{\alpha,\beta} T_{\beta_{\flat} \alpha_{\flat}(u)} \right) + g(\operatorname{div}_{E'} T^{*}_{\beta_{\flat} \alpha_{\flat}(u)}, (\nabla_{e_{\alpha}} e_{\beta})^{\top} \right) \right]$ to p we have $T_u = 0$. $(r+1)\sigma_{r+1} = \operatorname{tr}(AT_r).$

Newton transformation and General-2 ized Newton transformation

Let A be an endomorphism of a p-dimensional vector space V. The Newton transformation of A is a system $T = (T_r)_{r=0,1,...}$ of endomorphisms of V given by the recurrence relations:

$$T_0 = 1_V,$$

 $T_r = \sigma_r 1_V - A T_{r-1}, \quad r = 1, 2, \dots$

entries are elements of \mathbb{N} . Clearly, the set $\mathbb{N}(1, s)$ is the set Here σ_r 's are elementary symmetric functions of A. If r > p of multi-indices $i = (i_1, \ldots, i_s)$ with $i_1, \ldots, i_s \in \mathbb{N}$, hence

$$T_r = \sum_{j=0}^{j} (-1)^j \sigma_{r-j} A^j$$

Observe that T_p is the characteristic polynomial of A. Conse- $|i| = i_1 + \ldots + i_s$. For $\mathbf{i} = (i^1, \ldots, i^q) \in \mathbb{N}(q, s)$ we define its quently, by Hamilton-Cayley Theorem $T_p = 0$. It follows that weight as an multi-index $|\mathbf{i}| = (|i^1|, \ldots, |i^q|) \in \mathbb{N}(q)$. By the $T_r = 0$ for all $r \ge p$. The Newton transformation satisfies the length $\|\mathbf{i}\|$ of \mathbf{i} we mean the length of $|\mathbf{i}|$, i.e., $\|\mathbf{i}\| = \sum_{\alpha} |i^{\alpha}| = 1$ following relations: $\sum_{\alpha,l} i_l^{\alpha}$.

(N1) Symmetric function σ_r is given by the formula

 $r\sigma_r = \operatorname{tr}\left(AT_{r-1}\right).$

Moreover the generalized Newton transformation $T = (T_u :$ $u \in \mathbb{N}(q)$) of A satisfies the following recurrence relations:

Theorem 2.2

$$T_{0} = 1_{V}, \qquad \text{where } 0 = (0, \dots, 0)$$

$$T_{u} = \sigma_{u} 1_{V} - \sum_{\alpha} A_{\alpha} T_{\alpha_{\flat}(u)} \qquad \text{where } |u| \ge 1.$$

$$= \sigma_{u} 1_{V} - \sum_{\alpha} T_{\alpha_{\flat}(u)} A_{\alpha}, \qquad \text{where } |u| \ge 1.$$

 $-g(H_{D^{\perp}}, T_{\beta_{\flat}\alpha_{\flat}(u)}(\nabla_{e_{\alpha}}e_{\beta})^{\top}) + \sum_{\alpha} g((\nabla_{e_{\alpha}}e_{\gamma})^{\top}, T_{\beta_{\flat}\alpha_{\flat}(u)}(\nabla_{e_{\gamma}}e_{\beta})^{\top})\Big],$

where $H_{D^{\perp}}$ denotes the mean curvature vector of the distribution D^{\perp} .

$$\widehat{\sigma_{u}}(x) = \int_{P_{x}} \sigma_{u}(x, e) \, de = \int_{G} \sigma_{u}(x, e_{0}a) \, da,$$

where (x, e_0) is a fixed element of P_x . We call $\widehat{\sigma}_u$'s extrinsic curvatures of a distribution D. Moreover, we define total extrinsic curvatures For $q, s \ge 1$ let $\mathbb{N}(q, s)$ be the set of all $q \times s$ matrices, whose

 $\sigma_u^M = \int_M \widehat{\sigma_u}(x) \, dx.$

we put $\sigma_r = 0$. Equivalently, each T_r may be defined by the $\mathbb{N}(s) = \mathbb{N}(1, s)$. Moreover, every matrix $\mathbf{i} = (i_l^{\alpha}) \in \mathbb{N}(q, s)$ Theorem 3.2 Assume M is closed. Then, for any $u \in \mathbb{N}(q, s)$ may be identified with an ordered system $\mathbf{i} = (i^1, \ldots, i^q)$ of $\mathbb{N}(q)$, the total extrinsic curvature σ_u^M satisfies multi-indices $i^{\alpha} = (i_1^{\alpha}, \ldots, i_s^{\alpha}).$ $|u|\sigma_u^M = \sum_{\alpha,\beta} \int_P \left(\operatorname{tr} \left(R_{\alpha,\beta} T_{\beta_{\flat} \alpha_{\flat}(u)} \right) + g(\operatorname{div}_{E'} T^*_{\beta_{\flat} \alpha_{\flat}(u)}, (\nabla_{e_{\alpha}} e_{\beta})^\top \right)$

and

 Put

If $i = (i_1, \ldots, i_s) \in \mathbb{N}(s)$ then its *length* is simply the number Denote by $\mathbb{I}(q, s)$ a subset of $\mathbb{N}(q, s)$ consisting of all matrices **i** satisfying the following conditions:

1. every entry of \mathbf{i} is either 0 or 1,

where $H_{D^{\perp}}$ denotes the mean curvature vector of distribution D^{\perp} .

 $-g(H_{D^{\perp}}, T_{\beta_{\flat}\alpha_{\flat}(u)}(\nabla_{e_{\alpha}}e_{\beta})^{\top}) + \sum_{\gamma}g((T^{*}_{\beta_{\flat}\alpha_{\flat}(u)}(\nabla_{e_{\alpha}}e_{\gamma})^{\top}, (\nabla_{e_{\gamma}}e_{\beta})^{\top})\Big),$

By Theorem 3.2, we have in particular

 $\sigma^M_{\alpha^{\sharp}(0,...,0)} = 0$

(N2) Trace of T_r is equal

 $\operatorname{tr} T_r = (p - r)\sigma_r.$

(N3) If $A(\tau)$ is a smooth curve in End (V) such that A(0) = A, then for r = 0, 1, ..., p

 $\frac{d}{d\tau}\sigma_{r+1}(\tau)_{\tau=0} = \operatorname{tr}\left(\frac{d}{d\tau}A(\tau)_{\tau=0}\cdot T_r\right).$

Condition (N3) is the starting point to define generalized Newton transformations.

Let V be a p-dimensional vector space (over \mathbb{R}) equipped with In particular, $\mathbf{A}^0 = \mathbf{1}_V$. an inner product \langle , \rangle . For an endomorphism $A \in \text{End}(V)$, **Theorem 2.3** For every system of endomorphisms A =let A^{+} denote the adjoint endomorphism. Let \mathbb{N} denote the set of nonnegative integers. By $\mathbb{N}(q)$ denote the set of all sequences $u = (u_1, \ldots, u_q)$, with $u_j \in \mathbb{N}$. The each T_u is given by the formula length |u| of $u \in \mathbb{N}(q)$ is given by $|u| = u_1 + \ldots + u_q$. Denote by End $^{q}(V)$ the vector space End $(V) \times \ldots \times$ End (V) (q- $T_u = \sum_{\mathbf{i}} \sum_{\mathbf{i}} (-1)^{\|\mathbf{i}\|} \sigma_{u-|\mathbf{i}|} \mathbf{A}^{\mathbf{i}},$ times). For $\mathbf{A} = (A_1, \ldots, A_q) \in \operatorname{End}^q(V), t = (t_1, \ldots, t_q) \in$ \mathbb{R}^q and $u \in \mathbb{N}(q)$ put s=0 $\mathbf{i}\in\mathbb{I}(q,s)$

$$t^{u} = t_{1}^{u_{1}} \dots t_{q}^{u_{q}}, \qquad \qquad where \ \sigma_{u-|\mathbf{i}|} = \sigma_{u-|\mathbf{i}|}(\mathbf{A}).$$
$$t\mathbf{A} = t_{1}A_{1} + \dots + t_{q}A_{q}$$

Applications to extrinsic geometry By a *Newton polynomial* of **A** we mean a polynomial $P_{\mathbf{A}}$: of M and the dimension of \mathcal{F} only. $\mathbb{R}^q \to \mathbb{R}$ of the form $P_{\mathbf{A}}(t) = \det(1_V + t\mathbf{A})$. Expanding $P_{\mathbf{A}}$ Let (M, g) be an oriented Riemannian manifold, D a p-for mean extrinsic curvature S_r Moreover we may also obtain formulae of Brito and Naveira we get dimensional (transversally oriented) distribution on M. Let $\int_{M} S_{r} = \begin{cases} \binom{\frac{p}{2}}{r} \binom{q+r-1}{r} \binom{\frac{q+r-1}{2}}{\frac{r}{2}}^{-1} \kappa^{\frac{r}{2}} \operatorname{vol}(M) & \text{for } p \text{ even and } q \text{ odd} \\ 2^{r} \left(\binom{r}{2} ! \right)^{-1} \binom{\frac{q}{2} + \frac{r}{2} - 1}{\frac{r}{2}} \binom{\frac{p}{2}}{\frac{r}{2}} \kappa^{\frac{r}{2}} \operatorname{vol}(M) & \text{for } p \text{ and } q \text{ even} \\ 0 & \text{otherwise} \end{cases}$ $P_{\mathbf{A}}(t) = \sum_{|u| \le p} \sigma_u t^u,$ q denotes the codimension of D. For each $X \in T_x M$ there is unique decomposition where the coefficients $\sigma_u = \sigma_u(\mathbf{A})$ depend only on \mathbf{A} . Observe $X = X^{\top} + X^{\perp},$ that $\sigma_{(0,...,0)} = 1$. It is convenient to put $\sigma_u = 0$ for |u| > p. This poster is based on joint work with Krzysztof Andrze-Consider the following (music) convention. For α we define where $X^{\top} \in D_x$ and X^{\perp} is orthogonal to D_x . Denote by D^{\perp} jewski and Kamil Niedzialomski:: functions $\alpha^{\sharp} : \mathbb{N}(q) \to \mathbb{N}(q)$ and $\alpha_{\flat} : \mathbb{N}(q) \to \mathbb{N}(q)$ as follows the bundle of vectors orthogonal to D. Let ∇ be the Levi-Generalized Newton transformation and its applications Civita connection of g. ∇ induces connections ∇^{\perp} and ∇^{\perp} to extrinsic geometry:: arXiv:1211.4754 $\alpha^{\sharp}(i_1,\ldots,i_q) = (i_1,\ldots,i_{\alpha-1},i_{\alpha}+1,i_{\alpha+1},\ldots,i_q),$ in vector bundles D and D^{\perp} over M, respectively. $\alpha_{\flat}(i_1,\ldots,i_q)=(i_1,\ldots,i_{\alpha-1},i_{\alpha}-1,i_{\alpha+1},\ldots,i_q),$ Let $\pi : P \to M$ be the principal bundle of orthonormal Faculty of Mathematics and Computer Science, i.e. α^{\sharp} increases the value of the α -th element by 1 and α_{\flat} frames (oriented orthonormal frames, respectively) of D^{\perp} . $L \dot{o} d\dot{z}$ University, decreases the value of α -th element by 1. It is clear that α^{\sharp} Clearly, the structure group G of this bundle is G = O(q)Banacha 22, 90-238, Łódź, Poland (G = SO(q), respectively).is the inverse map to α_{\flat} . wojciech@math.uni.lodz.pl

2. the length of \mathbf{i} is equal to s,

3. in every column of **i** there is exactly one entry equal to 1, or equivalently $|\mathbf{i}^{\top}| = (1, \dots, 1)$.

We identify $\mathbb{I}(q,0)$ with a set consisting of the zero vector

 $0 = [0, \ldots, 0]^+$. Let $\mathbf{A} \in \operatorname{End}^{q}(V)$, $\mathbf{A} = (A_1, \ldots, A_q)$, and $\mathbf{i} \in \mathbb{N}(q, s)$. By A^{i} we mean an endomorphism (composition of endomorphisms) of the form

$$\mathbf{A}^{\mathbf{i}} = A_1^{i_1^1} A_2^{i_1^2} \dots A_q^{i_1^q} A_1^{i_2^1} \dots A_q^{i_2^q} \dots A_1^{i_s^1} \dots A_q^{i_s^q}.$$

 $2\sigma^{M}_{\alpha^{\sharp}\beta^{\sharp}(0,\ldots,0)} = \int_{P} \Big((\operatorname{Ric}_{D})_{\alpha,\beta} - g(H_{D^{\perp}}, (\nabla_{e_{\alpha}}e_{\beta})^{\top}) + \sum g((\nabla_{e_{\alpha}}e_{\gamma})^{\top}, (\nabla_{e_{\gamma}}e_{\beta})^{\top}) \Big),$

where $(\operatorname{Ric}_D)_{\alpha,\beta} = \operatorname{Ric}_D(e_\alpha, e_\beta)$ and Ric_D is the Ricci curvature operator in the direction of D, i.e.,

$$\operatorname{Ric}_D(X,Y) = \sum_i g(R(f_i,X)Y,f_i),$$

where (f_i) is an orthonormal basis of D. If D is integrable i.e. D defines a foliation \mathcal{F} then above theorems generalized some well known facts:

Corollary 3.3 Assume M is closed. Then, for any $u \in$ (A_1, \ldots, A_q) , there exists unique generalized Newton $\mathbb{N}(q)$, total extrinsic curvature σ_u^M of a distribution D with transformation $T = (T_u : u \in \mathbb{N}(q))$ of A. Moreover, totally geodesic normal bundle is of the form

$$|u|\sigma_u^M = \sum_{\alpha,\beta} \int_P \operatorname{tr} \left(R_{\alpha,\beta} T_{\beta_\flat \alpha_\flat(u)} \right).$$

Corollary 3.4 Assume (M, g) is closed and of constant sectional curvature κ . Let \mathfrak{F} be a foliation on M with totally geodesic and integrable normal bundle \mathcal{F}^{\perp} . Then the total extrinsic curvatures of \mathcal{F} depend on κ , the volume