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Introduction

1. Geometry of foliations. Let (Mn+p, g) be
a connected closed (i.e., compact without a bound-
ary) Riemannian manifold, endowed with a p-dimen-
sional foliation F , i.e., a partition into submanifolds
(called leaves) of the same dimension p. We have the
g-orthogonal decomposition TM = DF ⊕ D, where
the distribution DF is tangent to F . Denote by ( · )F
and ( · )⊥ projections onto DF and D, respectively.
The second fundamental tensor and the mean cur-

vature vector field of F are defined by

hF(X, Y ) = (∇XY )⊥, HF = Trg h (X,Y ∈ DF).

Here ∇ is the Levi-Civita connection of g. Totally
geodesic (hF = 0) and harmonic (HF = 0) foliations
were investigated by many geometers. A foliation is
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geometrically taut, if there is a metric making F har-
monic. D. Sullivan provided a topological tautness
condition for for geometric tautness.
The integrability and 2nd fundamental tensors ofD are

h(X, Y ) = (1/2) (∇XY +∇YX)F ,
T (X, Y ) = (1/2) [X, Y ]F (X,Y ∈ D).

The mean curvature vector of D is H = Trg h.
The principal problem of geometry of foliations [1]:
Given a foliation F on M and a geometric prop-

erty (P ), does there exist a Riemannian metric g
on M such that F enjoys (P ) with respect to g?

2. The mixed scalar curvature. The geomet-
rical sense of the mixed curvature follows from the fact
that certain components of the curvature tensor reg-
ulate the deviation of leaves along the leaf geodesics.
Let {ei, εα}i≤n, α≤p be a local orthonormal frame on
TM adapted to D and DF . The mixed scalar cur-
vature, see [1, 3], is defined by

Scmix =
∑n

i=1

∑p

α=1
R(εα, ei, εα, ei).

If either D or DF is one-dimensional and tangent to
a unit vector field N , then Scmix is simply the Ricci
curvature Ric(N,N). On a foliated surface (M2, g)
this coincides with the gaussian curvature: Scmix =
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Ric(N,N) = K. Recall the formula, see [3]:

Scmix=div(H+HF)+|H|2+|HF |2+|T |2−|h|2−|hF |2
(1)

which yields decomposition criteria for foliations un-
der constraints on the sign of Scmix.
The basic question that we address in the work is:

Which foliations admit a metric with a given prop-
erty of Scmix (e.g., positive or negative)?

3. Flows of metrics on foliations. A flow of
metrics on a manifold is a solution gt of a differen-
tial equation ∂tg = S(g) , where S(g) is a symmetric
(0, 2)-tensor related to some kind of curvature.
The notion of the F -truncated (r, 2)-tensor field Ŝ

(where r = 0, 1) is helpful: Ŝ(X1, X2) = S(X⊥
1 , X

⊥
2 ).

The F -truncated metric ĝ is an example.
For D-conformal flows of metrics we have

Ŝ(g) = s(g) ĝ, where s(g) is smooth.

Author andWalczak [1] studied flows of metrics that
depend on the extrinsic geometry of foliations, and
posed the question:
Given a geometric property (P ), can one find an

F-truncated flow ∂tg = Ŝ(g) on a foliation (M,F)
such that the solution metrics gt (t ≥ 0) converge
to a metric for which F enjoys (P )?
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In aim to prescribe the sign of Scmix, we study the
mixed scalar curvature flow of metrics gt:

∂tg = −2 (Scmix(g)− Φ) ĝ. (2)

Here Φ : M → R is leaf-wise constant. The flow (2)
preserves harmonic and totally geodesic foliations.

Example 1. (a) For (M2, g0) of Gaussian curvature
K, with a geodesic vector field N , (2) has the view

∂tg = −2 (K(g)− Φ) ĝ.

It “looks like” the normalized Ricci flow on surfaces.
For Φ = const, we get ∂tk = K,x and Burgers PDE

∂tk = k,xx − (k2),x .

(b) For Hopf fibrations π : (S 2m+1, gcan) → CPm
of a sphere with fiber S1, the distribution D is non-
integrable while h = 0. By (1), Scmix = 2m. Thus,
gcan is a fixed point of (2) with Φ = 2m.

We study the question:
Given (M, g) with a harmonic foliation F , when

do solution metrics gt of (2) converge to the limit
metric ḡ with Scmix(ḡ) positive or negative?

Throughout the work everything (manifolds, folia-
tions, etc.) is assumed to be smooth and oriented.
We also assume that the leaves of F are compact.
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1 Preliminaries

Let gt be a smooth family of metrics on M and S =
∂tg. Since the difference of two connections is a tensor,
∂t∇t is a (1, 2)-tensor on (M, gt), it is given by

2 gt((∂t∇t)(X,Y ), Z) =

= (∇t
XS)(Y, Z)+(∇

t
Y S)(X,Z)−(∇t

ZS)(X,Y )

for t-independent vector fields X,Y, Z ∈ Γ(TM).
If D-conformal tensor S = s(g)ĝ, for short, we write

∂tg = s ĝ . (3)

Lemma 1. For variations (3) we have

∂thF =−s hF , ∂tHF = −sHF .

Thus, (3) preserve harmonic (totally geodesic) F .

Let AN , T
♯
N be dual operators on D to tensors h, T .

Lemma 2. For (3) we have (with N ∈ DF)

∂tAN=−1

2
N(s) îd , ∂tT

♯
N=−sT ♯N , ∂tH=−n

2
∇Fs.

Based on the “linear algebra” inequality n |h |2 ≥
|H|2 we define the measure of “non-umbilicity” of D:

β := n−2
(
n |h|2 − |H|2

)
≥ 0.

For p = 1, we have β = n−2
∑

i<j(ki − kj)
2, where

ki are the principal curvatures of D.
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By Lemma 2, (3) preserves the property β = 0 and
the domain U = {x ∈ M : |T |2g0 − |hF |2g0 ̸= 0}.
The function δt = |T |2gt − |hF |2gt is nonzero on U .

Proposition 1 (Conservation laws).Let the me-
trics gt (t ≥ 0) solve (3), and H0 = −n∇F log u0
for a function u0 > 0 on M . Then β and the vec-
tor field Ht−n

4∇
F(log |δt|) on U are t-independent.

Proof. Using Lemma 2 and ĝ(H, · ) = 0, we find

∂t |h|2 = ∂t
∑

α
Tr (A2

εα) = −g(∇s,H),

∂tg(H,H) = −n g(∇s,H).

Hence, n ∂tβ = 0, that is β doesn’t depend on t.
For any f ∈ C1(M) and N ∈ DF , we find

g(∇F(∂tf ), N) = ∂tN(f ) = g(∂t(∇Ff ), N).

Hence∇F(∂tf )= ∂t(∇Ff ). By Lemmas 1–2, we find

∂t |T |2 = −∂t
∑

α
Tr
(
(T

♯
εα)

2
)
= −2 s |T |2.

∂t|hF |2 = −2 s |hF |2.
We have ∂t log |δt| = −2 s on U . (If T = 0 or hF = 0
at x ∈M then T (x)gt = 0 or hF(x)gt = 0 for t ≥ 0).

Using ∇F∂t = ∂t∇F , we obtain on U

∂tHt = (n/4) ∂t∇F log |δt|.
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2 Main results

Next lemma allows us to reduce (2) to the leaf-wise
PDE (with space derivatives along F only).
From (1), using divH = divF H−|H|2g, we obtain.

Lemma 3. For a harmonic foliation F , (1) reads

Scmix = divF H − 1

n
|H|2 + |T |2 − |hF |2 − nβ .

Denote ∇Ff := (∇f )F . For a vector field X and
a function u on M , define t-independent functions:
divF X =

∑
α g(∇αX, εα) and ∆F u = divF ∇Fu.

The leaf-wise Schrödinger operator H is given by

H(u) = −∆F u− β u. (4)

The spectrum of H is an infinite sequence of isolated
real eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λj ≤ . . . (leaf-wise
constant), and lim j→∞ λj = ∞. Fix an orthonormal
basis of eigenfunctions {ej} ⊂ L2, i.e., H(ej) = λjej.

Remark 1. If the leaf F (x) through x ∈M is com-
pact then λ1 > λ0 and e0 (the ground state) may be
chosen positive. The fundamental gap λ1 − λ0 of H
has many mathematical and physical implications.

Proposition 2 (Short-time existence/uniqueness).
Let F be a harmonic foliation on a closed mani-
fold (M, g0). Then the linearization of (2) is the
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leaf-wise parabolic PDE, hence (2) has a unique
solution gt defined on a positive time interval [0, t0)
and smooth on the leaves.

A smooth function f (t, x) on (0,∞)×F converges
to f̄ (x) as t → ∞ in C∞, if it converges in Ck-
norm for any k ≥ 0. It converges exponentially
fast if ∃ω > 0 (the exponential rate) such that
lim t→∞ eω t|f (t, ·)− f̄ |Ck = 0 for any k ≥ 0.
Define a function Ψ := u40 (|T |

2
g0 − |hF |2g0).

Proposition 3. Let F be a harmonic foliation on
(M, g0) and metrics gt (0 ≤ t < t0) solve (2). Then
the leaf-wise Burgers type equation holds

∂tH+∇F |H|2=n∇FdivFH+n∇F(|T |2−|hF |2−nβ)
(5)

If H0 = −n∇F log u0 for a function u0 > 0 then
Ht=− n∇F log u for u :M × [0, t0), moreover,

(i) if Ψ > 0 then u = Ψ1/4
(
|T |2gt−|hF |2gt

)−1/4
,

and the non-linear PDE is satisfied
1

n
∂tu =∆F u+ (β+

Φ

n
)u−Ψ

n
u−3, u(·, 0)=u0 (6)

(ii) if Ψ ≡ 0 then H obeys a forced leaf-wise Burg-
ers equation (a consequence of (5)), and u (i.e.,
the potential for H) may be chosen as a solution of

(1/n) ∂tu = ∆F u + β u, u( · , 0) = u0.
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Based on Proposition 3(ii), we obtain the following.

Theorem 1. Let F be a totally geodesic compact
foliation with integrable orthogonal distribution on
(M, g0), and H0 = −n∇F log u0 for u0 > 0. Then
(2) has a unique global solution gt (t ≥ 0) smooth
on the leaves. If Φ = nλ0 then, as t → ∞, the
metrics gt converge in C∞ with the exponential
rate n(λ1 − λ0) to the limit metric ḡ and

Scmix(ḡ) = nλ0, H̄ = −n∇F log e0.

Moreover, if the leaves have finite holonomy group,
then all gt and ḡ are smooth on M .

The central result of the work is the following.

Theorem 2. Let F be a harmonic compact folia-
tion on (M, g0) with |T |2g0 − |hF |2g0 ̸= 0. Assume

H0 = −n∇F(log u0) for a function u0 > 0, and

Φ > −nβ, |nλ0 + Φ| ≥
max
F

∣∣|T |2g0 − |hF |2g0
∣∣(max

F
(
u0
e0
)
/
min
F

(
u0
e0
)
)4
. (7)

Then (2) has a unique global solution gt = g⊥t +
ĝ (t ≥ 0) smooth on any leaf F , and if leaves have
finite holonomy, then gt are smooth on M ,

Scmix
t→∞→ nλ0+Φ, H

t→∞→ −n∇F log e0, hF
t→∞→ 0
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and convergence in C∞ with the exponential rate
nα for any α ∈ (0, min{λ1 − λ0, 4 |λ0 + Φ/n|}).
The fibers of a fibre bundle has trivial holonomy.

Let u obeys (6) on a leaf F . Define ũ0 = u00 +∫∞
0
q0(τ ) dτ , where u

0
0 =

∫
F
u0 e0 dx and q0(τ ) =

−e(λ0+Φ/n)τ
∫
F
(Ψ/n)u−3e0 dx.

Corollary 1. Let F be a harmonic compact folia-
tion on (M, g) with |T |2− |hF |2 ̸= 0. Suppose that
H = −n∇F log u0 for a function u0 > 0.
(i) If λ0 < 0 then there exists D-conformal to g
metric ḡ with Scmix(ḡ) < 0.
(ii) If λ0 > −1

n(
u0
ũ0e0

)4
∣∣|T |2 − |hF |2

∣∣ then there ex-

ists D-conformal to g metric ḡ with Scmix(ḡ) > 0.

3 Applications to warped products

Consider M = [0, l] × M̄n with the warped product
metric g = dx2+φ2(x)ḡ. The fibers {x} × M̄ are
totally umbilical with a unit normalN = ∂x. We have

K(N,X) = −φ,xx/φ for X ∈ D (when φ ̸= 0).

Now, let a family of warped product metrics gt =
dx2+φ2(t, x)ḡ solves (2) on M . This yields

∂tφ = nφ,xx + Φφ, φ(0, ·) = φ0,
φ(t, 0) = µ0(t), φ(t, l) = µ1(t) , (8)
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where µj(t) ≥ 0, j = 0, 1. The Cauchy’s problem (8)
has a unique classical solution φ for all t ≥ 0.
We study convergence of a solution to a stationary

state φ̃ which solves the Cauchy’s problem

n φ̃ ,xx + Φ φ̃ = 0, φ̃(0) = µ̃0, φ̃(l) = µ̃1. (9)

For Φ < n(πl )
2, its solution exists and does not depend

on φ0. For Φ = n(πl )
2, (9) is solvable when µ̃1=− µ̃0,

in this case, φ̃ = C sin(πl x)+µ̃0 cos(
π
l x) for C > 0.

Assume that µj(t) are continuously differentiable
on [0,∞), and there exist lim t→∞ µj(t) = µ̃j and
lim t→∞ µ′j(t) = 0. Denote δj(t) := µj(t)− µ̃j.

Theorem 3. Let the warped product metrics gt on
[0, l]×M̄n solve (2). If Φ > n(π/l)2 then gt diverge
as t → ∞, otherwise gt converge uniformly for
[0, l] to the limit metric g∞ = dx2 + φ 2

∞(x)ḡ such
that Kg∞(N,X) = Φ for X ∈ D. Moreover,

(i) if Φ < n(π/l)2 then φ∞ solves (9).

(ii) if Φ = n(π/l)2 and conditions on [0, l] hold

µ̃j = 0,

∫ ∞

0

|δj(τ )| dτ <∞,

∫ ∞

0

|δ ′j(τ )| dτ <∞

then φ∞ = (v01 +
∫∞
0
f1(τ ) dτ ) e1.
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4 Proofs

Proof of Proposition 3. By Proposition 2, (2)
admits a unit local smooth solution gt (0 ≤ t < t0).
The functions Scmix, H , |T | and |hF | etc. are then
uniquely determined for 0 ≤ t < t0. From Lemma 2
with s = −2 (Scmix−Φ) and Lemma 3 we obtain (5).

(i) By Proposition 1(ii), Ht− (n/4)∇F log |δt| = X
for a vector field X on M . Since H0 is conservative,
X = −n

4 ∇
F logψ for a function ψ > 0 onM . Hence,

Ht = −n∇F log (ψ1/4δ
−1/4
t )

and one may take ψ = Ψ := u40 δ0 by conditions.

Define u := Ψ1/4δ
−1/4
t on U × [0, t0) and calculate

∂t log |δt| = −4 ∂t log(δ
−1/4
t ) = −4 ∂t log u.

From the above and Lemma 3 we then obtain

∂t log u = −1

4
∂t log |δt| =

s

2
= −Scmix(gt) + Φ

= n∆F log u + n |∇F log u|2 + nβ + Φ− Ψu−4.

Substituting

∂t log u = u−1∂tu, ∇F log u = u−1∇Fu,
∆F log u = u−1∆F u− u−2g(∇Fu,∇Fu),

we find that u solves (6). (ii) See the proof in [2].
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Proof of Theorem 2. (i) By Proposition 2, there
exists a unique local solution gt on M × [0, t0). By
Proposition 3(ii),H obeys (5), andH = −n∇F(log u)
for a positive function u satisfying (6) with u(·, 0) =
u0. Note that conditions (7) yield

|nλ0 + Φ| ≥ max
F

{
δ0(u0/e0)

4
}
/min

F
(u0/e0)

4

that is (11) with β = β + Φ/n > 0.
By Theorem 4, one may leaf-wise smoothly extend a

solution of (6) onM × [0,∞), hence Ht(x) is defined
for all t ≥ 0 and is smooth on the leaves.
By Theorem 5(i), u( · , t) → ∞ as t → ∞ with

the exponential rate nα for any α ∈ (0, min{λ1 −
λ0, 4 |λ0 + Φ/n|}). Hence, the function δ2t = Ψu−4

is leaf-wise smooth, and |T |gt → 0 and |hF |gt → 0

as t → ∞. By Theorem 5(ii), Ht = −n∇F log u
approaches in C∞, as t→ ∞, to the vector field H̄ =
−n∇F log e0 and divHt approaches to the smooth
function −n∆F log e0. Recall that

−∆F e0 − (β + Φ/n)e0 = (λ0 + Φ/n)e0.

Thus, divHt− g(Ht, Ht)/n→ nλ0+nβ as t→ ∞.
By Lemma 3, we find a smooth on leaves function
Scmix(x, t) which approaches exponentially to nλ0+Φ
as t → ∞. The leaf-wise smooth solution to (2) is

gt = g0 exp(−2
∫ t
0
(Scmix(x, τ )−Φ) dτ ) (t ≥ 0).
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(ii) The smoothness of gt on M follows from the
finite holonomy assumption.

Proof of Corollary 1. Metrics gt of Theorem 2 di-
verge as t→ ∞ with the exponential rate µ = nλ0+
Φ. Consider D-conformal metrics ḡt = e−µ tg⊥t + ĝ.
By Lemma 2, H̄t = Ht. Then v = eµ tu converges
as t → ∞ to ũ0e0, where ũ0 = (ũ, e0)0 = u00 +∫∞
0
q0(τ ) dτ , see Theorem 5.

Denote δ̄t := |T |2ḡt − |hF |2ḡt. Then v4(·, t)δ̄t = Ψ

for all t. Hence, δ̄t = e−2µ tδt, it converges as t →
∞ to u40/(ũ0e0)

4δ0, and ḡt converge to the metric

ḡ∞ = (ũ0e0/u0)
2g⊥0 + ĝ. By Lemma 3, Scmix(ḡt) =

Scmix(gt)−δt+δ̄t converges to nλ0+u40/(ũ0e0)
4δ0.

5 The non-linear Schrödinger heat equation

The section is important for proofs of main results.
Let (F p, g) be a closed manifold (e.g., a leaf of F).

Spaces over F will be denoted without writing (F ).
For a function β on F , the Schrödinger operator (4)

is defined in H2, it is self-adjoint and bounded from
below. Any u ∈ L2 is expanded into series

u(x)=
∑

j
cj ej(x), cj=(u, ej)0=

∫
F

u(x) ej(x) dx .
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Proposition 4.The eigenspace of H, correspond-
ing to the least eigenvalue, λ0, is one-dimensional,
and it contains a positive smooth eigenfunction, e0.

After scaling in time by n and replacing Ψ → nΨ
and β+Φ/n→β, (6) reads as the Cauchy’s problem:

∂tu = −H(u)− Ψ(x)u−3, u(x, 0) = u0(x), (10)

where β(x) > 0, and Ψ(x) ≥ 0 for any x ∈ F . It has
a unique smooth solution u for t ∈ [0, t0).
Let β(x) ≥ β− > 0, and we get λ0 ≤ −β− < 0.
Denote C∞ = F × (0,∞) and define the quantities

Ψ+ = max
x∈F

Ψ(x)/e40(x), u−0 = min
x∈F

u0(x)/e0(x).

Theorem 4 (Long-time existence). The Cauchy’s
problem (10) with the condition, see (7),

(u−0 )
4 ≥ Ψ+/|λ0| (11)

has a unique smooth solution u > 0 in C∞.

Theorem 5 (Asymptotic behavior). Let u > 0 be a
smooth solution on C∞ of (10), and (11) is satis-
fied. Then there exists solution ũ > 0 on C∞ of

∂tũ = ∆ũ + (β(x) + λ0)ũ (12)

such that ∀α∈
(
0,min{λ1− λ0, 4|λ0|}

)
and k ∈ N:

1. u=e−λ0t(ũ+θ(·, t)), |θ(·, t)|Ck=O(e−αt) as t→∞
2. ∇log u =∇log e0+θ1(·, t), ∥θ1(·, t)∥Ck = O(e−αt)

as t→ ∞.
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