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Introduction

1. Geometry of foliations. Let (M"™P g) be
a connected closed (i.e., compact without a bound-
ary) Riemannian manifold, endowed with a p-dimen-
sional foliation JF, i.e., a partition into submanifolds
(called leaves) of the same dimension p. We have the
g-orthogonal decomposition T'"M = Dr @& D, where
the distribution Dx is tangent to F. Denote by (- )7

and (- ) projections onto Dz and D, respectively.
The second fundamental tensor and the mean cur-
vature vector field of F are defined by

hp(X,Y)=(VxY)", Hr=Trgh (X,Y € D).

Here V is the Levi-Chvita connection of g. Totally
geodesic (hr = 0) and harmonic (H z = 0) foliations
were investigated by many geometers. A foliation is
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geometrically taut, it there is a metric making F har-
monic. D.Sullivan provided a topological tautness
condition for for geometric tautness.

The integrability and 2nd fundamental tensors of D are

hMX,Y)=(1/2)(VxY + VyX)"
T(X,Y)=(1/2)[X, Y] (X,Y €D)

The mean curvature vector of D is H = Trq h.
The principal problem of geometry of foliations [1]:
Given a foliation F on M and a geometric prop-
erty (P), does there exist a Riemannian metric g
on M such that F enjoys (P) with respect to g¥

2. The mixed scalar curvature. The geomet-
rical sense of the mixed curvature follows from the fact
that certain components of the curvature tensor reg-
ulate the deviation of leaves along the leaf geodesics.
Let {e;, €a}i<n, a<p be alocal orthonormal frame on
T'M adapted to D and Dr. The mized scalar cur-
vature, see [1, 3], is defined by

Slex E i1 E 1 5047627504762)

If either D or Dr is one-dimensional and tangent to
a unit vector field IV, then Scyyiy is simply the Ricci

curvature Ric(N, N). On a foliated surface (M?, g)
this coincides with the gaussian curvature: Scix =
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Ric(N, N) = K. Recall the formula, see |3]:

SCimnix= diV(H+Hf>+\H!2+\Hf\2+|T|2—!hlz—\hJT(IZ)

1
which yields decomposition criteria for foliations un-
der constraints on the sign of Sc .

The basic question that we address in the work is:
Which foliations admit a metric with a given prop-
erty of Scpix (€.9., positive or negative)?

3. Flows of metrics on foliations. A flow of
metrics on a manifold is a solution g+ of a differen-
tial equation drg = S(g), where S(g) is a symmetric
(0, 2)-tensor related to some kind of curvature.

The notion of the F-truncated (r,2)-tensor field S
(where r = 0, 1) is helpful: S(X7, Xo) = S(XlL, XQL)
The F-truncated metric g is an example.

For D-conformal flows of metrics we have

S(g) = s(g) g, where s(g) is smooth.

Author and Walczak [1] studied flows of metrics that
depend on the extrinsic geometry of foliations, and
posed the question:

Given a geometric property (P), can one find an
F-truncated flow drg = S(g) on a foliation (M, F)
such that the solution metrics g+ (t > 0) converge
to a metric for which F enjoys (P)?
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In aim to prescribe the sign of Sc iy, We study the
mized scalar curvature flow of metrics gy

919 = —2 (Seuix(g) — D) §.

Here ® : M — R is leaf-wise constant. The flow (2)
preserves harmonic and totally geodesic foliations.

—~
DO
~

Example 1. (a) For (M?, gy) of Gaussian curvature
K, with a geodesic vector field N, (2) has the view

Org = —2(K(g) — ) g

It “looks like” the normalized Ricci How on surfaces.
For @ = const, we get 0tk = K 5 and Burgers PDE

Otk =k pow — (k) 2.

(b) For Hopf fibrations 7 : (S 2m+1 Jean) — CP™
of a sphere with fiber S1. the distribution D is non-
integrable while h = 0. By (1), Scpix = 2m. Thus,
Jean 1s a fixed point of (2) with & = 2m.

We study the question:

Given (M, g) with a harmonic foliation F, when
do solution metrics g; of (2) converge to the limit
metric g with Sc pix(g) positive or negative?

Throughout the work everything (manifolds, folia-
tions, etc.) is assumed to be smooth and oriented.
We also assume that the leaves of F are compact.
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1 Preliminaries

Let g+ be a smooth family of metrics on M and S =
0¢g. Since the difference of two connections is a tensor,
OV is a (1,2)-tensor on (M, gp), it is given by
26i((0V)(X,Y), Z) =
= (VxS)(Y, 2)+(VyS)(X, Z)—(VS)(X,Y)
for t-independent vector fields X,Y, 2 € I'(T'M).
[f D-conformal tensor S = s(g)g, for short, we write
g =s59. (3)
Lemma 1. For variations (3) we have
&gh;:—sh;, atH]::—SH]:.
Thus, (3) preserve harmonic (totally geodesic) F.

Let An, T ]ﬁ\f be dual operators on D to tensors h, T

Lemma 2. For (3) we have (with N € Dr)

1 ~
QAN=—5N(s)id, T =—sT§, hH=—2V7s.

Based on the “linear algebra” inequality n |h|? >
|H|? we define the measure of “non-umbilicity” of D;

B:=n"(n|h]* —|H?) > 0.

—2
For p =1, we have 3 =n ZK]
k; are the principal curvatures of D.

— kj)z, where
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By Lemma 2, (3) preserves the property 3 = 0 and
the domain U = {x € M : \T@O — \h]:]?m # 0}.
The function 6y = |T |§t — |h ]:|§t is nonzero on U.

Proposition 1 (Conservation laws). Let the me-
trics g (t > 0) solve (3), and Hy = —nV” log ug
for a function ug >0 on M. Then 3 and the vec-
tor field Ht—%vf(log 10¢]) on U are t-independent.

Proof. Using Lemma 2 and g(H, -) = 0, we find
OulhfP =01 Yy | Tr(AZ)=—g(Vs H),
8%
atg(H7 H) — —ng(Vs, H)

Hence, n ;3 = 0, that is B doesn’t depend on ¢.
For any f € CY(M) and N € Dr, we find

9(V7(01f). N) = OIN(f) = g(0(V7 £), N).
Hence V¥ (9:f) = 0:(V/f). By Lemmas 1-2, we find

TP = -0y T ((TF)%) = 25T

Otlhr|* = =25 |hzp|”.
We have O¢log |6t = —2son U. (It T =0or hr =0
at x € M then T'(z)g, =0 or hx(x)g = 0fort > 0).

Using V70 = 9;V/ . we obtain on U
O Hy = (n/4) ;V”' log|6;]. [
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2 Main results

Next lemma allows us to reduce (2) to the leaf-wise
PDE (with space derivatives along F only).

From (1), using div H = divy H — |H\§j we obtain.

Lemma 3. For a harmonic foliation F, (1) reads
, 1
Seuix = divy H — = [H[ + [T|* = |hz[* = n 8.

Denote V¥ f := (Vf)/. For a vector field X and
a function u on M, define t-independent functions:
dive X =) g(VaX,eq) and Aru = div r V7.
The leaf-wise Schrodinger operator H is given by

H(u) = —-Aru— Bu. (4)

The spectrum of H is an infinite sequence of isolated
real eigenvalues \g < Ay < --- < )\j < ... (leaf-wise
constant), and lim ;_,, Aj = 0o. Fix an orthonormal
basis of eigenfunctions {e;} C Lo, i.e., H(e;) = Aje;.
Remark 1. If the leaf F'(x) through x € M is com-
pact then \; > A and eq (the ground state) may be

chosen positive. The fundamental gap A\ — A\g of H
has many mathematical and physical implications.

Proposition 2 (Short-time existence/uniqueness).
Let F be a harmonic foliation on a closed mani-
fold (M, gg). Then the linearization of (2) is the
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leaf-wise parabolic PDE, hence (2) has a unique
solution gt defined on a positive time interval |0, ty)
and smooth on the leaves.

A smooth function f(¢,x) on (0, 00) x F Converges
to f(z) as t — oo in C™, if it converges in C*-
norm for any £ > 0. It converges exponentially
fast if dw > 0 (the exponential rate) such that
lim ;00 eV f(t, ) — flon = 0 for any k > 0.

Define a function W := ué (\T@O — \h]_-@o).
Proposition 3. Let F be a harmonic foliation on
(M, go) and metrics g+ (0 <t < tg) solve (2). Then
the leaf-wise Burgers type equation holds

O H+V |H|*=nV'dive H+n V7 (|T)*— |h £ |*—nB)
(5)

If Hy = —nV]:log ug for a function ug > 0 then
Hy=—nV'logu foru: M x 0,ty), moreover,

(Z) if W > 0 then u = \111/4(’T’§t_‘h]__’§t)_1/47
and the non-linear PDE is satisfied

— Jiu =A PV — w3l O =un (6
o LU ]?u—l—(/3+n)u nu : u(, ) up ()

(11) if U = 0 then H obeys a forced leaf-wise Burg-
ers equation (a consequence of (5)), and u (i.e.,
the potential for H ) may be chosen as a solution of

(1/n)0wu=Aru+ Bu, u(-,0)=up.
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Based on Proposition 3(ii), we obtain the following.

Theorem 1. Let F be a totally geodesic compact
foliation with integrable orthogonal distribution on
(M, gp), and Hy = —nV7 logug for ug > 0. Then
(2) has a unique global solution g¢ (t > 0) smooth
on the leaves. If ® = n Ay then, ast — oo, the
metrics g+ converge in C°° with the exponential
rate n(A1 — A\g) to the limit metric g and

Scmix(g) = nAg, H=-nVv" log €.

Moreover, if the leaves have finite holonomy group,
then all g+ and g are smooth on M.
The central result of the work is the following.

Theorem 2. Let F be a harmonic compact folia-
tion on (M, gg) with ]T@O — ]h]:\g]o # 0. Assume

Hy = —nV]:(log ug) for a function ug > 0, and

¢ > —ng, InAg + | >
2 2 up\\ 4
mFaX“T\gO — ]h]:\go‘ (mjgux /mm 60)) . (7)

Then (2) has a unique global solution gy = gtL +
g (t > 0) smooth on any leaf F', and if leaves have
finite holonomy, then g+ are smooth on M,

Scmlxt%oon)\oJrCD Ht_mo—nv}—log ey, hr 2%
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and convergence in C°° with the exponential rate

na for any o € (0, min{A\; — Ao, 4|Ag + ®/nl}).
The fibers of a fibre bundle has trivial holonomy.

Let u obeys (6) on a leaf F'. Define ug = u8 +

fooo qo(7) d7, where uo fF ug eg dx and qp(7) =
—elAot®/n)7 fF U /n) u3eq dx.
Corollary 1. Let F be a harmonic compact folia-
tion on (M, g) with |T|> — |hz|? # 0. Suppose that
H = —nvj:log uqg for a function ug > 0.

(i) If Ao < O then there exists D-conformal to g

metric g with Scpix(g) < 0.
(ii) If Ao > —l(&) ‘|T|2 — \h]:\Q‘ then there ex-

Up€o
ists D-conformal to g metric g with Scyi(g) > 0.

3 Applications to warped products

Consider M = [0,] x M"™ with the warped product

metric ¢ = dx?+¢?(x)g. The fibers {z} x M are

totally umbilical with a unit normal N = 9,.. We have

K(N,X)=—pazz/p for X € D (when ¢ #0).

Now, let a family of warped product metrics g =
dx? +?(t, 2)g solves (2) on M. This yields

Op=noze+Pp, ©(0,) =,
p(t,0) = po(t), (¢, 1) = pi(t), (8)
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where p1;(t) > 0, j = 0,1. The Cauchy’s problem (8)
has a unique classical solution ¢ for all ¢ > 0.

We study convergence of a solution to a stationary
state ¢ which solves the Cauchy’s problem

ngax+p=0, ¢0)=p, @) =p. (9)
For ¢ < n(%)Q, its solution exists and does not depend
on g. For & = n(7 ™2, (9) is solvable when fi;= — fio,
in this case, ¢ = C'sin(T x)+i cos(T x) for C' > 0.

Assume that p(t) are contmuously differentiable
n [0, 00), and there exist lim¢ o0 () = fij and

lim ¢+ 00 ,u;-(t) = 0. Denote 0;(t) := pi(t) — f1;.

Theorem 3. Let the warped pmduct metrics g on
0, ] x M™ solve (2). If ® > n(n/1)? then g; diverge
as t — 00, otherwise g+ conve Qge umformly for
0,1] to the limit metric goo = dx° + ¢ 2.(x)g such
that Ky (N, X) = ® for X € D. Moreover,

(i) if & < n(m/1)? then p o solves (9).
(i) if & = n(n/1)* and conditions on [0,1] hold

;i =0, /|5 ) dT < o0, /\5 ) dT < o0

then poo = (V5 +f0 fi(r)dr)ey.
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4 Proofs

Proof of Proposition 3. By Proposition 2, (2)
admits a unit local smooth solution g¢ (0 < ¢ < tp).
The functions Scypix, H, |T'| and |h x| etc. are then
uniquely determined for 0 <t < t3. From Lemma 2
with s = —2 (Sc pix — P) and Lemma 3 we obtain (5).

(i) By Proposition 1(ii), H; — (n/4)V7/log |6;| = X
for a vector field X on M. Since H is conservative,
X =—7 V}_log 1 for a tunction v > 0 on M. Hence,

Hy = —nV7 log (p!/45, 1)
and one may take ¢ = V¥ = ué 09 by conditions.

Define u := \111/45;1/4 on U x [0,ty) and calculate

Oy log |84] = —4 9y log(5; /*) = —4log u.

From the above and Lemma 3 we then obtain

Ot logu = —iat log [0 = g = —Scmix(gt) + P

=nArlogu+n |V]:10gu]2 +nB+d—Vu
Substituting

O logu = u 'O, v/ logu = u_lvj:u,

Arlogu=u""Aru—u gV u, V7 ),
we find that w solves (6). (ii) See the proof in [2]. []
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Proof of Theorem 2. (i) By Proposition 2, there
exists a unique local solution g+ on M x [0,%y). By
Proposition 3(ii), H obeys (5), and H = —nV- (log u)
for a positive function u satisfying (6) with u(-,0) =
uo. Note that conditions (7) yield

nAp + @[ > max {60(uo/e0)* }/ min(up/ep)*

F
that is (11) with 3 = 3+ &/n > 0.

By Theorem 4, one may leaf-wise smoothly extend a
solution of (6) on M X [0, 00), hence Hy¢(x) is defined
for all ¢ > 0 and is smooth on the leaves.

By Theorem 5(i), u(-,t) — oo as t — oo with
the exponential rate na for any a € (0, min{\; —
Ao, 4| Ao+ ®/n|}). Hence, the function 5t2 = Yy d
is leaf-wise smooth, and |T'|s, — 0 and |hg|g — 0
as t — o0o. By Theorem 5(ii), Hy = —nV7logu
approaches in C™, as t — o0, to the vector field H =
—nV7+ logeg and div H; approaches to the smooth
function —nA rlog e(. Recall that

—Arey— (B4 P/n)eyg = (Ag+ P/n)ep.
Thus, div Ht — g(Ht, Hy)/n — nAg+n B ast — oo,
By Lemma 3, we find a smooth on leaves function

Sc mix (2, t) which approaches exponentially to n\g+®
as t — 00. The leaf-wise smooth solution to (2) is

gt = goexp(—2 fot(scmix(xa 7)—®)dr) (t > 0).
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(ii) The smoothness of g on M follows from the
finite holonomy assumption. ]

Proof of Corollary 1. Metrics g; of Theorem 2 di-
verge as t — oo with the exponential rate u = nAg+
®. Consider D-conformal metrics g¢ = e_/“fgtL + g.

By Lemma 2, H; = H;. Then v = e*'u converges
as t — oo to ugeg, where ug = (u,eq)y = u8 +
fO qo(7) d7, see Theorem 5.

Denote O = ]T]Q \h]:|2. Then v*(-,t)0; = U
for all . Hence, §; = e~ “t5t7 it converges as t —
00 1o uo/ (u060)450, and gy converge to the metric

Joo = (tigeo/u) gy + §. By Lemma 3, Scyix(gt) =
Scix(gt) —0¢+0¢ converges to n)\0+u0/ (u060)450 (]

5 The non-linear Schrodinger heat equation

The section is important for proofs of main results.
Let (FP,g) be a closed manifold (e.g., a leaf of F).
Spaces over F' will be denoted without writing (F).
For a function B on F', the Schrodinger operator (4)
is defined in H?, it is self-adjoint and bounded from
below. Any u € L9 is expanded into series

u(az)zzjcjej(az), ci=(u,e;)o= /u(m)ej(x)dx.

F
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Proposition 4. The eigenspace of H, correspond-
ing to the least eigenvalue, \g, is one-dimensional,
and 1t contains a positive smooth eigenfunction, eg.

After scaling in time by n and replacing ¥ — nW
and B+®/n—3, (6) reads as the Cauchy’s problem:

Aru = —H(u) — U(z)u, wulz,0)=uy(z), (10)
where B(z) > 0, and ¥(z) > 0 for any € F. It has
a unique smooth solution u for ¢ € [0, ¢().

Let B(x) > B~ > 0, and we get \g < =B~ < 0.
Denote Coo = F' X (0, 00) and define the quantities

\IJ+—maX\IJ( )/60( T), Uy :arjnemuo( r)/ep(x).

rel
Theorem 4 (Long-time existence). The Cauchy’s
problem (10) with the condition, see (7),

(ug)* > T /|A] (11)
has a unique smooth solution ©w > 0 in Cxo.

Theorem 5 (Asymptotic behavior). Let u > 0 be a
smooth solution on Co of (10), and (11) is satis-
fied. Then there exists solution u > 0 on Coo of

o = At + (B(x) + A\p)u (12)
such that Vae (O, min{A; — A, 4])\0\}) and k € N:
1. u=e M a+0(-, 1)), |0(-,1)| +=0(e~) as t—o0
2. Viogu =Vlogeg+61(-,1), |61(-, )| cx = O(e™ )

as t — o.
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