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Let M be a smooth manifold of dimension n. By Diff∞c (M) we will denote the group of compactly
supported diffeomorphisms of M. We shall consider a Lie group structure on Diff∞c (M) in the sense
of the convenient setting of Kriegl and Michor [10]. In particular, we assume that Diff∞c (M) is endowed
with the c∞-topology [10, Section 4], i.e. the final topology with respect to all smooth curves. For compact
M the c∞-topology on Diff∞(M) coincides with the Whitney C∞-topology, cf. [10, Theorem 4.11(1)].
In general the c∞-topology on Diff∞c (M) is strictly finer than the one induced from the Whitney
C∞-topology, cf. [10, Section 4.26]. The latter coincides with the inductive limit topology limK Diff∞K (M)
where K runs through all compact subsets of M.

Given smooth complete vector fields X1, . . . ,XN on M, we consider the map

K : Diff∞c (M)N → Diff∞c (M), (1)

K(g1, . . . , gN) := [g1, exp(X1)] ◦ · · · ◦ [gN, exp(XN)].

Here exp(X) denotes the flow of a complete vector field X at time 1, and [k, h] := k ◦ h ◦ k−1 ◦ h−1

denotes the commutator of two diffeomorphisms k and h. It is readily checked that K is smooth. Indeed, one
only has to observe that K maps smooth curves to smooth curves, cf. [10, Section 27.2]. Clearly
K(id, . . . , id) = id.

A smooth local right inverse at the identity for K consists of an open neighborhood U of the identity in
Diff∞c (M) together with a smooth map

σ = (σ1, . . . , σN) : U → Diff∞c (M)N

so that σ(id) = (id, . . . , id) and K ◦ σ = idU . More explicitly, we require that each
σi : U → Diff∞c (M) is smooth with σi(id) = id and, for all g ∈ U ,

g = [σ1(g), exp(X1)] ◦ · · · ◦ [σN(g), exp(XN)].

We presents two results which generalize a well-known theorem of Herman for M being the torus [8, 9].

Theorem 1

Suppose M is a smooth manifold of dimension n ≥ 2. Then there exist four smooth complete vector
fields X1, . . . ,X4 on M so that the map K, see (1), admits a smooth local right inverse at the identity,
N = 4. Moreover, the vector fields Xi may be chosen arbitrarily close to zero with respect to the strong
Whitney C0-topology. If M admits a proper (circle valued) Morse function whose critical points all have
index 0 or n, then the same statement remains true with three vector fields.

Particularly, on the manifolds M = Rn, Sn,Tn, n ≥ 2, or the total space of a compact smooth fiber bundle
M→ S1, three commutators are sufficient. At the expense of more commutators, it is possible to gain
further control on the vector fields. More precisely, we have:

Theorem 2

Suppose M is a smooth manifold of dimension n ≥ 2 and set N := 6(n + 1). Then there exist smooth
complete vector fields X1, . . . ,XN on M so that the map K, see (1), admits a smooth local right inverse
at the identity. Moreover, the vector fields Xi may be chosen arbitrarily close to zero with respect to the
strong Whitney C∞-topology.

Either of the two theorems implies that Diff∞c (M)o, the connected component of the identity, is a perfect
group, provided M is not R. Our proof rests on Herman’s result similarly as that of [17] (see [2]), but is
otherwise elementary and different from Thurston’s approach. In fact we only need Herman’s result in
dimension 1.

The perfectness of Diff∞c (M)0 was already proved by Epstein [5] using ideas of Mather [11, 12] who dealt
with the Cr-case, 1 ≤ r <∞, r 6= n + 1. The Epstein–Mather proof is based on a sophisticated
construction, and uses the Schauder–Tychonov fixed point theorem. The existence of a presentation

g = [h1, k1] ◦ · · · ◦ [hN, kN]

is guarantied, but without any further control on the factors hi and ki. Theorem 1 or 2 actually implies that
the universal covering of Diff∞c (M)o is a perfect group. This result is known, too, see [17]. Thurston’s proof
is based on a result of Herman for the torus [8, 9]. Note that the perfectness of Diff∞c (M)o implies that this
group is simple, see Epstein [4]. The methods used in [4] are elementary and actually work for a rather large
class of homeomorphism groups.
One could believe that the phenomenon of smooth perfectness described in Theorems 1 and 2 would be also
true for some classical diffeomorphism groups which are simple, e.g. for the Hamiltonian diffeomorphism
group of a closed symplectic manifold [1], or for the contactomorphism group of an arbitrary co-oriented
contact manifold [15]. However, the available methods seem to be useless for possible proofs of their smooth
perfectness. Another open problem related to the above theorems is whether a smooth global right inverse at
the identity for K would exist. A possible answer in the affirmative seems to be equally difficult.
Consequently, it would be difficult to improve Theorems 1 and 2 as they are in any possible direction.

Another essential and important way to generalize the simplicity theorems for Diff∞c (M)o, where
1 ≤ r ≤ ∞, r 6= n + 1, is to consider the uniform perfectness or, more generally, the boundedness of the
groups in question. In particular, we ask if the presentation g = [h1, k1] ◦ · · · ◦ [hN, kN] is available for all
g ∈ Diff∞c (M)o with N bounded. This property has been proved in the recent papers by Burago, Ivanov
and Polterovich [3], and Tsuboi [18], [19], [20], for a large class of manifolds. For instance, N = 10 was
obtained in [3] for any closed three dimensional manifold, and then it was improved in [18] to N = 6 for any
closed odd dimensional manifold. It seems that the methods of [3], [18], [19] and [20] combined with our
Theorem 2 would give some analogue of Theorem 1, but certainly not with the presentation (1) and the
condition on Xi. Also N could not be smaller in this way. Another advantage of Theorem 1 is that it is valid
for all smooth paracompact manifolds. See also [16] for diffeomorphism groups with no restriction of support.

Let Tn := Rn/Zn denote the torus. For λ ∈ Tn we let Rλ ∈ Diff∞(Tn) denote the corresponding
rotation. The main ingredient in the proof of Theorems 1 and 2 is the following result of Herman [9, 8].

Theorem 3 (Herman)

There exist γ ∈ Tn so that the smooth map

Tn × Diff∞(Tn)→ Diff∞(Tn), (λ, g) 7→ Rλ ◦ [g,Rγ],

admits a smooth local right inverse at the identity. Moreover, γ may be chosen arbitrarily close to the
identity in Tn.

Herman’s result is an application of the Nash–Moser inverse function theorem. When inverting the derivative
one is quickly led to solve the linear equation Y = X− (Rγ)∗X for given Y ∈ C∞(Tn,Rn). This is
accomplished using Fourier transformation. Here one has to choose γ sufficiently irrational so that tame
estimates on the Sobolev norms of X in terms of the Sobolev norms of Y can be obtained. The
corresponding small denominator problem can be solved due to a number theoretic result of Khintchine.

We shall make use of the following corollary of Herman’s result.

Proposition 4

There exist smooth vector fields X1,X2,X3 on Tn so that the smooth map Diff∞(Tn)3 → Diff∞(Tn),

(g1, g2, g3) 7→ [g1, exp(X1)] ◦ [g2, exp(X2)] ◦ [g3, exp(X3)],

admits a smooth local right inverse at the identity. Moreover, the vector fields Xi may be chosen
arbitrarily close to zero with respect to the Whitney C∞-topology.

The following lemma leads to a decomposition of a diffeomorphism into factors which are leaf preserving.
If F is a smooth foliation of M we let Diff∞c (M;F) denote the group of compactly supported
diffeomorphisms preserving the leaves of F . This is a regular Lie group modelled on the convenient vector
space of compactly supported smooth vector fields tangential to F .

Lemma 5

Suppose M1 and M2 are two finite dimensional smooth manifolds and set M := M1 ×M2. Let F1 and
F2 denote the foliations with leaves M1 × {pt} and {pt} ×M2 on M, respectively. Then the smooth
map

F : Diff∞c (M;F1)× Diff∞c (M;F2)→ Diff∞c (M), F(g1, g2) := g1 ◦ g2,

is a local diffeomorphism at the identity.

Now we need a version of the exponential law.

Lemma 6

Suppose B and T are finite dimensional smooth manifolds, assume T compact, and let F denote the
foliation with leaves {pt} × T on B× T. Then the canonical bijection

C∞c (B,Diff∞(T))
∼=−→ Diff∞c (B× T;F)

is an isomorphism of regular Lie groups.

Another ingredient of the proof is a smooth fragmentation of diffeomorphisms.

Suppose U ⊆ M is an open subset. Every compactly supported diffeomorphism of U can be regarded as
a compactly supported diffeomorphism of M by extending it identically outside U. The resulting injective
homomorphism Diff∞c (U)→ Diff∞c (M) is clearly smooth. Note, however, that a curve in Diff∞c (U),
which is smooth when considered as a curve in Diff∞c (M), need not be smooth as a curve into Diff∞c (U).
Nevertheless, if there exists a closed subset A of M with A ⊆ U and if the curve has support contained in
A, then one can conclude that the curve is also smooth in Diff∞c (U).

Proposition 7 (Fragmentation)

Let M be a smooth manifold of dimension n, and suppose U1, . . . ,Uk is an open covering of M, ie.
M = U1 ∪ · · · ∪ Uk. Then the smooth map

P : Diff∞c (U1)× · · · × Diff∞c (Uk)→ Diff∞c (M), P(g1, . . . , gk) := g1 ◦ · · · ◦ gk,

admits a smooth local right inverse at the identity.

Proceeding as in [3] permits to reduce the number of commutators considerably, see also [18] and [19].

Proposition 8

Let M be a smooth manifold of dimension n ≥ 2 and put N = 6(n + 1). Moreover, let U an open
subset of M and suppose φ ∈ Diff∞(M), not necessarily with compact support, such that the closures
of the subsets

U, φ(U), φ2(U), . . . , φN(U)

are mutually disjoint. Then there exists a smooth complete vector field X on M, a c∞-open
neighborhood U of the identity in Diff∞c (U), and smooth maps %1, %2 : U → Diff∞c (M) so that
%1(id) = %2(id) = id and, for all g ∈ U ,

g = [%1(g), φ] ◦ [%2(g), exp(X)].

Moreover, the vector field X may be chosen arbitrarily close to zero in the strong Whitney C∞-topology
on M.

Now, by applying the Morse theory ([13], [14]) we get

Lemma 9

Let M be a smooth manifold of dimension n. Then there exists an open covering M = U1 ∪ U2 ∪ U3

and smooth complete vector fields X1,X2,X3 on M so that exp(X1)(U1) ⊆ U2, exp(X2)(U2) ⊆ U3,
and such that the closures of the sets

U3, exp(X3)(U3), exp(X3)2(U3), . . .

are mutually disjoint. Moreover, the vector fields X1,X2,X3 may be chosen arbitrarily close to zero with
respect to the strong Whitney C0-topology. If M admits a proper (circle valued) Morse function whose
critical points all have index 0 or n, then we may, moreover, choose U1 = ∅ and X1 = 0.

Theorem 1 is then a consequence of Lemma 9.
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