Prevalence of non-uniform hyperbolicity at the first bifurcation of Hénon-like families

> Hiroki Takahasi Department of Mathematics Faculty of Science & Technology Keio University Japan

1. Destruction of Smale's horseshoe

- What happens at the first bifurcation parameter?
- What happens in the sequel of the bifurcation?

2. The Hénon family

$$f_a\colon (x,y)\in \mathbb{R}^2\mapsto (1-ax^2+\sqrt{b}y,\pm\sqrt{b}x),$$

 $a \in \mathbb{R}, \quad 0 < b \ll 1$

$$\det Df_a = \begin{pmatrix} -2ax & \sqrt{b} \\ \pm\sqrt{b} & 0 \end{pmatrix} = \mp b$$

$$T_1: (x, y) \mapsto (x, 1 - ax^2 + \sqrt{b}y)$$
$$T_2: (x, y) \mapsto (\mp \sqrt{b}x, y)$$
$$T_3: (x, y) \mapsto (y, -x)$$

$$f_a = T_3 \circ T_2 \circ T_1$$

3. The dynamics

$$T_1: (x, y) \mapsto (x, 1 - ax^2 + \sqrt{b}y)$$
$$T_2: (x, y) \mapsto (\mp \sqrt{b}x, y)$$
$$T_3: (x, y) \mapsto (y, -x)$$

4. Destruction of Smale's horseshoe

 $\Omega_a := \{ x \in \mathbb{R}^2 \colon \forall \text{open neighborhood } U \text{ of } x \exists n \in \mathbb{Z} \setminus \{0\} \text{ s.t. } U \cap f_a^n U \neq \emptyset \}.$ non wandering set of f_a (invariant, compact)

5. First bifurcation

Theorem. (from Devaney & Nitecki 79, Bedford & Smillie 04) For sufficiently small b > 0 there exists $a^* = a^*(b) \in \mathbb{R}$ near 2 such that:

• if $a > a^*$, then there exist C > 0, $\xi \in (0,1)$, and for any $x \in \Omega_a$ there exists a non-trivial decomposition $T_x \mathbb{R}^2 = E_x^s \oplus E_x^u$ with $D_x f(E_x^{\sigma}) = E_{fax}^{\sigma}$ $(\sigma = s, u)$ such that for every $n \ge 0$,

 $||D_x f_a^n| E_x^s|| \le C\xi^n \text{ and } ||D_x f_a^{-n}| E_x^u|| \le C\xi^n.$

• there exists a point of quadratic tangency between stable and unstable manifolds of the fixed points of f_{a^*} .

6. Manifold organization for f_{a^*}

There exist two fixed saddles $P \approx (1/2, 0)$, $Q \approx (-1, 0)$. In the orientation preserving case (left), $W^u(Q)$ meets $W^s(Q)$ tangentially. In the orientation reversing case (right), $W^u(P)$ meets $W^s(Q)$ tangentially. The non wandering sets are contained in the shaded regions.

stable manifold of P:

$$W^{s}(P) := \{ x \in \mathbb{R}^{2} \colon \lim_{n \to \infty} |f_{a}^{n}(x) - P| = 0 \}$$

unstable manifold of P:

$$W^{u}(P) := \{ x \in \mathbb{R}^{2} \colon \lim_{n \to -\infty} |f_{a}^{n}(x) - P| = 0 \}$$

7. Emergence of attractors for $a < a^*$

- \exists a sequence $\{S_n\}_n$ of *a*-intervals at the left of a^* accumulating a^* as $n \to \infty$ s.t. parameters in $\bigcup_n S_n$ correspond to maps having sinks (Gavlirov & Silnikov 72, 73, Alligood & Yorke 83)
- \exists a sequence $\{A_n\}_n$ of positive measure sets at the left of a^* accumulating a^* as $n \to \infty$, s.t. parameters in $\bigcup_n A_n$ correspond to maps admitting (a small scale of) non-uniformly hyperbolic strange attractors (Mora & Viana 93)

8. Prevalent dynamics at the first bifurcation parameter a^*

Theorem A. (Takahasi, [1]) For sufficiently small b > 0 there exist $\varepsilon_0 = \varepsilon_0(b) > 0$ and a set $\Delta \subset [a^* - \varepsilon_0, a^*]$ of a-values containing a^* such that:

- (a) $\lim_{\varepsilon \to +0} (1/\varepsilon) \operatorname{Leb}(\Delta \cap [a^* \varepsilon, a^*]) = 1;$
- (b) if $a \in \Delta$, then the Lebesgue measure of the set $\{x \in \mathbb{R}^2 : \{f_a^n x\}_{n \in \mathbb{N}} \text{ is bounded}\}$ is zero. In particular, for Lebesgue a.e. $x \in \mathbb{R}^2$, $|f_a^n x| \to \infty$ as $n \to \infty$, and thus there is no attractor;
- (c) f_a is transitive on Ω_a .

9. Schematic picture in (a, b)-space

The parameter set Δ is contained in the dark region. Benedicks & Carleson's parameter set of positive Lebesgue measure corresponding to non-uniformly hyperbolic strange attractors are contained in the light region.

10. Question

Hyperbolicity of $f_a | \Omega_a$ for $a \in \Delta$?

Definition 1. f_a is called uniformly hyperbolic if there exist numbers C > 0, $\xi \in (0,1)$ and for all $x \in \Omega_a$ a decomposition $T_x \mathbb{R}^2 = E_x^s \oplus E_x^u$ with the invariance property $D_x f_a(E_x^{\sigma}) = E_{f_ax}^{\sigma}$ ($\sigma = s, u$) and satisfying $\|D_x f_a^n | E_x^s \| \leq C \xi^n \quad \forall n \geq 0$,

and

$$\|D_x f_a^{-n} | E_x^u \| \le C \xi^n \quad \forall n \ge 0.$$

Remark 1. If $a > a^*$, then f_a is uniformly hyperbolic.

Next result: if $a \in \Delta$, then f_a displays a strong form of non-uniform hyperbolicity in terms of Lyapunov exponents of ergodic measures.

11. Regular points

Definition 2. A point $x \in \Omega_a$ is called regular if there exist number(s) $\lambda_1 > \cdots > \lambda_{r(x)}$ and a decomposition $T_x \mathbb{R}^2 = E_1(x) \oplus \cdots \oplus E_{r(x)}(x)$ such that for any $v \in E_i(x) \setminus \{0\}$,

$$\lim_{n \to \pm \infty} \frac{1}{n} \log \|D_x f_a^n v\| = \lambda_i(x) \quad and$$
$$\lim_{n \to \pm \infty} \frac{1}{n} \log |\det D_x f_a^n| = \sum_{i=1}^{r(x)} \lambda_i(x) \dim E_i(x).$$

- the set of regular points has total probability (from Oseledec's theorem)
- The functions $x \mapsto r(x)$, $\lambda_i(x)$ and $\dim E_i(x)$ are invariant along orbits, and so are constant μ -a.e. if μ is ergodic.

12. Dichotomy on Lyapunov exponents of ergodic measures

For each ergodic μ one of the following holds:

(I) there exist two numbers $\chi^s(\mu) < \chi^u(\mu)$, and for μ -a.e. $x \in \Omega_a$ there exists a decomposition $T_x \mathbb{R}^2 = E_x^s \oplus E_x^u$ such that for any $v^\sigma \in E_x^\sigma \setminus \{0\}$ and $\sigma = s, u$,

$$\lim_{n \to \pm \infty} \frac{1}{n} \log \|D_x f_a^n v\| = \chi^{\sigma}(\mu) \quad \text{and}$$
$$\int \log |\det Df_a| d\mu = \chi^s(\mu) + \chi^u(\mu);$$

(II) there exists $\chi(\mu) \in \mathbb{R}$ such that for μ -a.e. $x \in \Omega_a$ and for any $v \in T_x \mathbb{R}^2 \setminus \{0\}$,

$$\lim_{n \to \pm \infty} \frac{1}{n} \log \|D_x f_a^n v\| = \chi(\mu) \quad \text{and}$$
$$\int \log |\det Df_a| d\mu = 2\chi(\mu).$$

Remark 2. If $a \in \Delta$ then for each ergodic μ ,

- (*I*) holds;
- $\chi^s(\mu) < 0 \le \chi^u(\mu).$

13. Prevalence of non-uniform hyperbolicity

Definition 3. An ergodic measure μ is called hyperbolic if μ has two Lyapunov exponents $\chi^{s}(\mu)$, $\chi^{u}(\mu)$ with $\chi^{s}(\mu) < 0 < \chi^{u}(\mu)$.

Theorem B. (Takahasi, [2])
The following holds for all a ∈ Δ:
(a) any f_a-invariant ergodic measure is hyperbolic;
(b) for each f_a-invariant ergodic μ,

$$\chi^{s}(\mu) < \frac{1}{3}\log b < 0 < \frac{1}{4}\log 2 < \chi^{u}(\mu).$$
(1)

Remark 3. (1) does not necessarily imply the uniform hyperbolicity of f_a ! (For instance, $a^* \in \Delta$.)

14. Proof of Theorem B: dynamics outside of a critical region

 $\delta>0$ small constant, define a critical region

$$I(\delta) := (-\delta, \delta) \times (-b^{\frac{1}{4}}, b^{\frac{1}{4}}).$$

Lemma 1. For any $\delta > 0$ there exists an open neighborhood $\mathcal{U} \subset \mathbb{R}^2$ of (2,0)such that if $(a,b) \in \mathcal{U}$ then the following holds: if $n \geq 1$ and $x, f_a x, \ldots, f_a^{n-1} x \in \Omega_a \setminus I(\delta)$, then for any $v \in T_x \mathbb{R}^2 \setminus \{0\}$ with $\mathrm{slope}(v) \leq \sqrt{b}, \|D_x f_a^n v\| \geq \delta e^{\frac{99}{100} \log 2 \cdot n} \|v\|$ and $\mathrm{slope}(D_x f_a^n v) \leq \sqrt{b}.$

Corollary. If an ergodic μ has two Lyapunov exponents $\chi^s(\mu) < \chi^u(\mu)$ and $\operatorname{supp}(\mu) \cap I(\delta) = \emptyset$, then $\chi^u(\mu) \geq \frac{99}{100} \log 2$.

15. Proof of Theorem B: dealing with returns to $I(\delta)$

Lemma 2. Let $a \in \Delta$. Then for any $x \in \Omega_a$ one of the following holds: (a) there exists $\nu_0 \ge 0$ such that for infinitely many $n \ge 0$,

$$\|D_{f_a^{\nu_0+1}x}f_a^n({}^1_0)\| \ge e^{rac{\log 2}{4}\cdot n};$$

(b) there exists a sequence $\{\nu_l\}_{l=0}^{\infty}$ of nonnegative integers such that; (b-i) for every $l \ge 0$,

$$\|D_{f_a^{\nu_0+\dots+\nu_l+1}x}f_a^{\nu_{l+1}-1}\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)\| \ge e^{\frac{\log 2}{4}(\nu_{l+1}-1)};$$

(b-ii) $\nu_1 > 0$, and $\nu_{l+1} \ge 2\nu_l$ for every $l \ge 1$.

16. References

;29MJ88%

- Takahasi, H.: Prevalent dynamics at the first bifurcation of Hénon-like families. Commun. Math. Phys. **312**, 37-85 (2012)
- [2] Takahasi, H.: Prevalence of non-uniform hyperbolicity at the first bifurcation of Hénon-like families. Available at http://arxiv.org/abs/1308.4199