Prevalence of non-uniform hyperbolicity at the first bifurcation of Hénon-like families

Hiroki Takahasi<br>Department of Mathematics<br>Faculty of Science \& Technology<br>Keio University<br>Japan

## 1. Destruction of Smale's horseshoe



- What happens at the first bifurcation parameter?
- What happens in the sequel of the bifurcation?


## 2. The Hénon family

$$
\begin{gathered}
f_{a}:(x, y) \in \mathbb{R}^{2} \mapsto\left(1-a x^{2}+\sqrt{b} y, \pm \sqrt{b} x\right) \\
a \in \mathbb{R}, \quad 0<b \ll 1 \\
\operatorname{det} D f_{a}=\left(\begin{array}{cc}
-2 a x & \sqrt{b} \\
\pm \sqrt{b} & 0
\end{array}\right)=\mp b \\
T_{1}:(x, y) \mapsto\left(x, 1-a x^{2}+\sqrt{b} y\right) \\
T_{2}:(x, y) \mapsto(\mp \sqrt{b} x, y) \\
T_{3}:(x, y) \mapsto(y,-x) \\
f_{a}=T_{3} \circ T_{2} \circ T_{1}
\end{gathered}
$$

## 3. The dynamics

$$
\begin{aligned}
& T_{1}:(x, y) \mapsto\left(x, 1-a x^{2}+\sqrt{b} y\right) \\
& T_{2}:(x, y) \mapsto(\mp \sqrt{b} x, y) \\
& T_{3}:(x, y) \mapsto(y,-x)
\end{aligned}
$$



## 4. Destruction of Smale's horseshoe


$\Omega_{a}:=\left\{x \in \mathbb{R}^{2}\right.$ : $\forall$ open neighborhood $U$ of $x \exists n \in \mathbb{Z} \backslash\{0\}$ s.t. $\left.U \cap f_{a}^{n} U \neq \emptyset\right\}$. non wandering set of $f_{a}$ (invariant, compact)

## 5. First bifurcation

Theorem. (from Devaney \& Nitecki 79, Bedford \& Smillie 04) For sufficiently small $b>0$ there exists $a^{*}=a^{*}(b) \in \mathbb{R}$ near 2 such that:

- if $a>a^{*}$, then there exist $C>0, \xi \in(0,1)$, and for any $x \in \Omega_{a}$ there exists a non-trivial decomposition $T_{x} \mathbb{R}^{2}=E_{x}^{s} \oplus E_{x}^{u}$ with $D_{x} f\left(E_{x}^{\sigma}\right)=E_{f_{a} x}^{\sigma}$ ( $\sigma=s, u$ ) such that for every $n \geq 0$,

$$
\left\|D_{x} f_{a}^{n} \mid E_{x}^{s}\right\| \leq C \xi^{n} \text { and }\left\|D_{x} f_{a}^{-n} \mid E_{x}^{u}\right\| \leq C \xi^{n}
$$

- there exists a point of quadratic tangency between stable and unstable manifolds of the fixed points of $f_{a^{*}}$.


## 6. Manifold organization for $f_{a^{*}}$



There exist two fixed saddles $P \approx(1 / 2,0), Q \approx(-1,0)$. In the orientation preserving case (left), $W^{u}(Q)$ meets $W^{s}(Q)$ tangentially. In the orientation reversing case (right), $W^{u}(P)$ meets $W^{s}(Q)$ tangentially. The non wandering sets are contained in the shaded regions.
stable manifold of $P$ :

$$
W^{s}(P):=\left\{x \in \mathbb{R}^{2}: \lim _{n \rightarrow \infty}\left|f_{a}^{n}(x)-P\right|=0\right\}
$$

unstable manifold of $P$ :

$$
W^{u}(P):=\left\{x \in \mathbb{R}^{2}: \lim _{n \rightarrow-\infty}\left|f_{a}^{n}(x)-P\right|=0\right\}
$$

## 7. Emergence of attractors for $a<a^{*}$

- $\exists$ a sequence $\left\{S_{n}\right\}_{n}$ of $a$-intervals at the left of $a^{*}$ accumulating $a^{*}$ as $n \rightarrow \infty$ s.t. parameters in $\bigcup_{n} S_{n}$ correspond to maps having sinks (Gavlirov \& Silnikov 72, 73, Alligood \& Yorke 83)
- $\exists$ a sequence $\left\{A_{n}\right\}_{n}$ of positive measure sets at the left of $a^{*}$ accumulating $a^{*}$ as $n \rightarrow \infty$, s.t. parameters in $\bigcup_{n} A_{n}$ correspond to maps admitting (a small scale of) non-uniformly hyperbolic strange attractors (Mora \& Viana 93)

8. Prevalent dynamics at the first bifurcation parameter $a^{*}$

Theorem A. (Takahasi, [1]) For sufficiently small $b>0$ there exist $\varepsilon_{0}=$ $\varepsilon_{0}(b)>0$ and a set $\Delta \subset\left[a^{*}-\varepsilon_{0}, a^{*}\right]$ of a-values containing $a^{*}$ such that:
(a) $\lim _{\varepsilon \rightarrow+0}(1 / \varepsilon) \operatorname{Leb}\left(\Delta \cap\left[a^{*}-\varepsilon, a^{*}\right]\right)=1$;
(b) if $a \in \Delta$, then the Lebesgue measure of the set $\left\{x \in \mathbb{R}^{2}:\left\{f_{a}^{n} x\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$ is zero. In particular, for Lebesgue a.e. $x \in \mathbb{R}^{2},\left|f_{a}^{n} x\right| \rightarrow \infty$ as $n \rightarrow \infty$, and thus there is no attractor;
(c) $f_{a}$ is transitive on $\Omega_{a}$.

## 9. Schematic picture in $(a, b)$-space

The parameter set $\Delta$ is contained in the dark region. Benedicks \& Carleson's parameter set of positive Lebesgue measure corresponding to non-uniformly hyperbolic strange attractors are contained in the light region.


## 10. Question

Hyperbolicity of $f_{a} \mid \Omega_{a}$ for $a \in \Delta$ ?
Definition 1. $f_{a}$ is called uniformly hyperbolic if there exist numbers $C>0$, $\xi \in(0,1)$ and for all $x \in \Omega_{a}$ a decomposition $T_{x} \mathbb{R}^{2}=E_{x}^{s} \oplus E_{x}^{u}$ with the invariance property $D_{x} f_{a}\left(E_{x}^{\sigma}\right)=E_{f_{a} x}^{\sigma}(\sigma=s, u)$ and satisfying

$$
\left\|D_{x} f_{a}^{n} \mid E_{x}^{s}\right\| \leq C \xi^{n} \quad \forall n \geq 0
$$

and

$$
\left\|D_{x} f_{a}^{-n} \mid E_{x}^{u}\right\| \leq C \xi^{n} \quad \forall n \geq 0 .
$$

Remark 1. If $a>a^{*}$, then $f_{a}$ is uniformly hyperbolic.
Next result: if $a \in \Delta$, then $f_{a}$ displays a strong form of non-uniform hyperbolicity in terms of Lyapunov exponents of ergodic measures.

## 11. Regular points

Definition 2. A point $x \in \Omega_{a}$ is called regular if there exist number $(s) \lambda_{1}>$ $\cdots>\lambda_{r(x)}$ and a decomposition $T_{x} \mathbb{R}^{2}=E_{1}(x) \oplus \cdots \oplus E_{r(x)}(x)$ such that for any $v \in E_{i}(x) \backslash\{0\}$,

$$
\begin{gathered}
\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|D_{x} f_{a}^{n} v\right\|=\lambda_{i}(x) \quad \text { and } \\
\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left|\operatorname{det} D_{x} f_{a}^{n}\right|=\sum_{i=1}^{r(x)} \lambda_{i}(x) \operatorname{dim} E_{i}(x)
\end{gathered}
$$

- the set of regular points has total probability (from Oseledec's theorem)
- The functions $x \mapsto r(x), \lambda_{i}(x)$ and $\operatorname{dim} E_{i}(x)$ are invariant along orbits, and so are constant $\mu$-a.e. if $\mu$ is ergodic.


## 12. Dichotomy on Lyapunov exponents of ergodic measures

For each ergodic $\mu$ one of the following holds:
(I) there exist two numbers $\chi^{s}(\mu)<\chi^{u}(\mu)$, and for $\mu$-a.e. $x \in \Omega_{a}$ there exists a decomposition $T_{x} \mathbb{R}^{2}=E_{x}^{s} \oplus E_{x}^{u}$ such that for any $v^{\sigma} \in E_{x}^{\sigma} \backslash\{0\}$ and $\sigma=s, u$,

$$
\begin{aligned}
& \lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|D_{x} f_{a}^{n} v\right\|=\chi^{\sigma}(\mu) \text { and } \\
& \int \log \left|\operatorname{det} D f_{a}\right| d \mu=\chi^{s}(\mu)+\chi^{u}(\mu)
\end{aligned}
$$

$(\mathbf{I I})$ there exists $\chi(\mu) \in \mathbb{R}$ such that for $\mu$-a.e. $x \in \Omega_{a}$ and for any $v \in T_{x} \mathbb{R}^{2} \backslash\{0\}$,

$$
\begin{gathered}
\lim _{n \rightarrow \pm \infty} \frac{1}{n} \log \left\|D_{x} f_{a}^{n} v\right\|=\chi(\mu) \quad \text { and } \\
\int \log \left|\operatorname{det} D f_{a}\right| d \mu=2 \chi(\mu)
\end{gathered}
$$

Remark 2. If $a \in \Delta$ then for each ergodic $\mu$,

- (I) holds;
- $\chi^{s}(\mu)<0 \leq \chi^{u}(\mu)$.


## 13. Prevalence of non-uniform hyperbolicity

Definition 3. An ergodic measure $\mu$ is called hyperbolic if $\mu$ has two Lyapunov exponents $\chi^{s}(\mu), \chi^{u}(\mu)$ with $\chi^{s}(\mu)<0<\chi^{u}(\mu)$.

Theorem B. (Takahasi, [2])
The following holds for all $a \in \Delta$ :
(a) any $f_{a}$-invariant ergodic measure is hyperbolic;
(b) for each $f_{a}$-invariant ergodic $\mu$,

$$
\begin{equation*}
\chi^{s}(\mu)<\frac{1}{3} \log b<0<\frac{1}{4} \log 2<\chi^{u}(\mu) . \tag{1}
\end{equation*}
$$

Remark 3. (1) does not necessarily imply the uniform hyperbolicity of $f_{a}$ ! (For instance, $a^{*} \in \Delta$.)

## 14. Proof of Theorem B: dynamics outside of a critical region

$\delta>0$ small constant, define a critical region

$$
I(\delta):=(-\delta, \delta) \times\left(-b^{\frac{1}{4}}, b^{\frac{1}{4}}\right)
$$

Lemma 1. For any $\delta>0$ there exists an open neighborhood $\mathcal{U} \subset \mathbb{R}^{2}$ of $(2,0)$ such that if $(a, b) \in \mathcal{U}$ then the following holds:
if $n \geq 1$ and $x, f_{a} x, \ldots, f_{a}^{n-1} x \in \Omega_{a} \backslash I(\delta)$, then for any $v \in T_{x} \mathbb{R}^{2} \backslash\{0\}$ with slope $(v) \leq \sqrt{b},\left\|D_{x} f_{a}^{n} v\right\| \geq \delta e^{\frac{99}{100} \log 2 \cdot n}\|v\|$ and slope $\left(D_{x} f_{a}^{n} v\right) \leq \sqrt{b}$.

Corollary. If an ergodic $\mu$ has two Lyapunov exponents $\chi^{s}(\mu)<\chi^{u}(\mu)$ and $\operatorname{supp}(\mu) \cap I(\delta)=\emptyset$, then $\chi^{u}(\mu) \geq \frac{99}{100} \log 2$.

## 15. Proof of Theorem B: dealing with returns to $I(\delta)$

Lemma 2. Let $a \in \Delta$. Then for any $x \in \Omega_{a}$ one of the following holds:
(a) there exists $\nu_{0} \geq 0$ such that for infinitely many $n \geq 0$,

$$
\left\|D_{f_{0}^{v_{0}+1}} f_{a}^{n}\binom{1}{0}\right\| \geq e^{\frac{\log ^{2} 2}{4} \cdot n}
$$

(b) there exists a sequence $\left\{\nu_{l}\right\}_{l=0}^{\infty}$ of nonnegative integers such that; (b-i) for every $l \geq 0$,

$$
\left\|D_{f_{a}^{\nu_{0}+\cdots+\nu_{l}+1} x} f_{a}^{\nu_{l+1}-1}\left(\frac{1}{0}\right)\right\| \geq e^{\frac{\log 2}{4}\left(\nu_{l+1}-1\right)} ;
$$

(b-ii) $\nu_{1}>0$, and $\nu_{l+1} \geq 2 \nu_{l}$ for every $l \geq 1$.


## 16. References

## ; 29MJ88。

[1] Takahasi, H.: Prevalent dynamics at the first bifurcation of Hénon-like families. Commun. Math. Phys. 312, 37-85 (2012)
[2] Takahasi, H.: Prevalence of non-uniform hyperbolicity at the first bifurcation of Hénon-like families. Available at http://arxiv.org/abs/1308.4199

