

Recurrence, p.a.p. and R-closed properties for flows and foliations Tomoo YOKOYAMA

Dept. of Math., Hokkaido Univ., Japan (to start working from 1st Sept. at Dept. of Math., Kyoto Univ. of Education) email: yokoyama@math.sci.hokudai.ac.jp

Motivation

To understand codimension **TWO** foliations and dynamical systems.

Background

Remage(1962) [R] $\exists R$ -closed homeomorphism on \mathbb{S}^2 has a minimal set which is not a circle but a **circloid**.

Definition 7. A minimal set \mathcal{M} on a surface homeomorphism $f : S \rightarrow S$ is an extension of a Cantor set

if there are a surface homeomorphism $F : S \rightarrow S$ and a surjective continuous map $p: S \rightarrow S$ which is homotopic to the identity such that $p \circ f = F \circ p$ and $p(\mathcal{M})$ is a Cantor set which is a minimal set of F.

Main results

Surface homeomorphisms

Let f be an *R*-closed homeomorphism on an orientable connected closed surface M. Write $\exists R$ -closed C^{∞} diffeomorphism of \mathbb{S}^2 has a $O(x) := \{f^n(x) \mid n \in \mathbb{Z}\}$ the orbit of x of f. Then the following statements hold [Y2]:

Surface flows

Let v be a continuous vector field of a closed connected surface M. Then the following relations holds [Y2]: pointwise recurrent pointwise almost periodic (MIN or CPT)

Herman(1986) [H]

pseudo-circle as a minimal set

Mason(1973) [M]

Each non-periodic orientation-preserving R**closed** homeomorphism on \mathbb{S}^2 has exactly two fixed points and every non-degenerate orbit closure is a homology 1-sphere.

Let G be a flow or a homeomorphism on a compact Hausdorff space.

The following are equivalent:

1. G is pointwise almost periodic

2. each orbit closure of G is minimal.

3. The set of orbit closures of G is a decomposition.

Moreover, the dynamical system G satisfies the following relations:

R-closed

Case (genus(M) > 1) -Each minimal set is either a periodic orbit or an extension of a Cantor set. In particular, it is not a circloid.

Case $(M = \mathbb{T}^2)$ -**One of the following statements holds:** 1) f is minimal. 2) f is periodic (i.e. $f^k = id$ for some k > 0). 3) Each minimal set is a finite disjoint union of essential circloids. 4) There is a minimal set which is an extension of a Cantor set.

Case $(M = \mathbb{S}^2)$ **Suppose that** *f* **is orientation-preserving** (resp. reversing). One of the following stateKey ideas of the proof

1. The union of closed orbits is open.

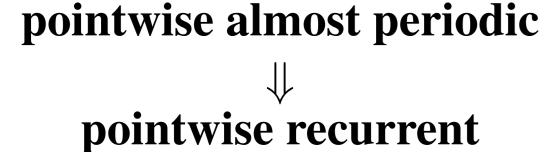
2. There are no exceptional minimal sets.

Foliations

Let \mathcal{F} be a foliation on a compact manifold and M/\mathcal{F} the leaf space. We define the equivalence relation \sim by $L \sim L' \Leftrightarrow \overline{L} = \overline{L'}$ for leaves L, L'. The quotient space is called the (leaf) class space and denoted by M/\mathcal{F} . Put $\hat{\mathbf{L}} := \bigcup \{ L' \in \mathcal{F} \mid \overline{L} = \overline{L'} \}$, called the (leaf) class of L. As dynamical systems, we can define R-closed (resp. pointwise almost periodic, pointwise **recurrent, non-wandering**) foliations in the similar fashion. Then the following statements hold [Y3]:

 $\mathcal{F}: R\text{-closed} \Leftrightarrow M/\hat{\mathcal{F}}: \text{Hausdorff} (i.e. T_2).$ \mathcal{F} : pointwise almost periodic $\Leftrightarrow M/\hat{\mathcal{F}}$: T_1 . $\mathcal{F}: \operatorname{compact} \Leftrightarrow M/\mathcal{F}: T_1.$

Question $L \in \mathcal{F}$ is proper $\Leftrightarrow \hat{L}$ consists of a single leaf? In particular,



Preliminaries

Topological dynamics

Let M be a topological space with a G-action, where G = \mathbb{R} or \mathbb{Z} . Write $O(x) := \{t \cdot x \mid t \in G\}.$

Definition 1. G is **pointwise almost periodic** if for any neighborhood U of each point x, there is a positive number K such that $O(x) \subseteq [0, K]U$, where [0, K]U = $\{g \cdot y \mid g \in [0, K], y \in U\}.$

```
[Y]:
Definition 2. G is R-closed if R := \{(x, y) \mid y \in \overline{O_x}\} is
closed w.r.t. the product topology.
```

Definition 3. *G* is **pointwise recurrent** if $x \in \alpha(x) \cap$ $\omega(x)$ for each point $x \in X$, where $\alpha(x)$ (resp. $\omega(x)$) is an alpha (resp. omega) limit set of x.

Definition 4. We define the equivalence relation \sim by $O \sim O' \Leftrightarrow \overline{O} = \overline{O'}$ for orbits O, O' of G. The quotient

ments holds:

1) *f* is periodic.

2) The minimal sets of f (resp. f^2) are exactly two fixed points and a family of (nullhomotopic) circloids and the orbit class space $\mathbb{S}^2/\widehat{f}\cong [0,1].$

Key ideas of the proofs

1. The union of circloids is open. 2. Each connected component of the boundaries of the set of circloids is an element of \mathbb{S}^2/\hat{f} .

On the other hand, the following dichotomy holds

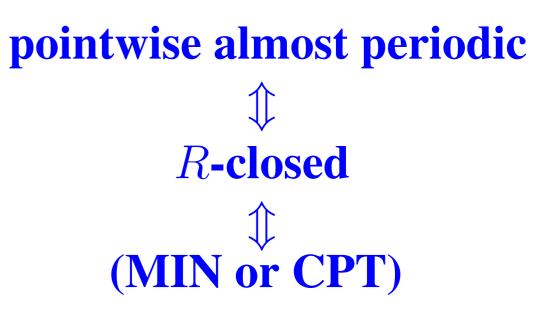
Proposition 1. One of the following statements holds for a suspension flow v_f of f: **1. Each orbit culousre of** v_f **is toral. 2.** ∃minimal set which is not locally connected.

Recall that a subset U of a topological space is toral if U is some dimensional torus \mathbb{T}^k , and is locally connected if every point of U admits a neighbourhood basis consisting of open connected subsets.

 \mathcal{F} : proper \Leftrightarrow each class consists of a single leaf? (i.e. \mathcal{F} : proper $\Leftrightarrow M/\mathcal{F}$: T_0 ?)

Codimension one foliations

Let \mathcal{F} be a codimension one foliation on a compact manifold. Then the following relations holds [Y3]:



Codimension two foliations

We have the following inclusion relation [Y3]:

{**MIN or CPT**} \subseteq {*R*-closed}

Example(A *R*-closed fol which is neither MIN nor CPT) Considering S^2 as a unit sphere in R^3 , let f be any irrational rotation on S^2 around the z-axis. Then the suspension foliation of f is an R-closed foliation which is neither MIN nor CPT

space is called the orbit class space and denoted by M/G. Put $\hat{O} := \bigcup \{ O' \mid \overline{O} = \overline{O'} \}$, called the **orbit class** of O.

By a continuum we mean a compact connected metrizable space.

Definition 5. A continuum $A \subset X$ is said to be **annular** if it has a neighborhood $U \subset X$ homeomorphic to an open annulus such that U - A has exactly two components, both homeomorphic to annuli.

Definition 6. We say a subset $C \subset X$ is a *circloid* if it is an annular continuum and does not contain any strictly smaller annular continuum as a subset.

Key ideas of the proof

[BNW]

1. f: R-closed $\Leftrightarrow f^k: R$ -closed for all $k \in \mathbb{Z}$. 2. f: pointwise almost periodic $\Leftrightarrow f^k$: pointwise almost periodic for all $k \in \mathbb{Z}$. Use characterizations of locally con-3. nected minimal sets for surface homeomorphisms

References

[BNW] A. Biś, H. Nakayama, P. Walczak, *Locally connected exceptional minimal sets* of surface homeomorphisms Ann. Inst. Fourier, vol. 54 (2004), 711-732.

[H] M. R. Herman, Construction of some curious diffeomorphisms of the Riemann sphere J. London Math. Soc. 34(1986) 375-384.

[M] Mason, W. K., Weakly almost periodic homeomorphisms of the two sphere Pacific J. Math. 48 (1973), 185–196.

[R] Remage R. Jr., On minimal sets in the plane Proc. Amer. Math. Soc. 13 1962 41-47.

[Y] T. Yokoyama, Minimal sets of R-closed surface homeomorphisms Comptes Rendus Mathematique. Academie des Sciences. Paris, Ser.I, **350** (2012) 1051 1053. [Y2] T. Yokoyama, R-closed homeomorphisms on surfaces Topology and its Applications to appear.

[Y3] Yokoyama, T., Recurrence, almost periodicity and orbit closure relation for topological dynamics preprint (2012), arXiv:1205.3635.

Address for correspondence: Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan The author is partially supported by the JST CREST Program at Department of Mathematics, Hokkaido University.