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The volume of a hyperbolic 3-manifold is a topological invariant. The structure
of the set of the volumes of hyperbolic 3-manifolds is known by the Jørgensen-
Thurston theorem.

Theorem (Jørgensen-Thurston [6, Ch. 6])� �
The set of the volumes of orientable hyperbolic 3-manifolds is a well-ordered
set of the type ωω with respect to the order of R. The volume of an orientable
hyperbolic 3-manifold with n-cusps corresponds to an n-fold limit ordinal.� �
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Figure 1: The set of the volumes of orientable hyperbolic 3-manifolds

This theorem gives rise to a problem: What are the minimal volume ori-
entable hyperbolic 3-manifolds with n cusps? The answers are known in
the cases where 0 ≤ n ≤ 2 ([1], [3], [5]). Agol [1] conjectured which manifolds
have the minimal volume in the cases where n ≥ 3. We present the result
that we determined it in the case where n = 4.

Main Theorem [7]� �
The minimal volume orientable hyperbolic 3-manifold with 4 cusps is home-
omorphic to the 84

2 link complement. Its volume is 7.32... = 2V8, where V8 is
the volume of the ideal regular octahedron.� �

Figure 2: The 84
2 link

The 84
2 link complement is obtained from two ideal regular octahedra by gluing

along the faces. Hence we need a lower bound on the volume of an orientable
hyperbolic 3-manifold with 4 cusps. The proof relies on Agol’s argument used
to determine the minimal volume hyperbolic 3-manifolds with 2 cusps [1].

Let M be a finite volume hyperbolic 3-manifold, and let X be a (non-
necessarily connected) essential surface in M . After we cut M along X, the
relative JSJ decomposition can be performed by cutting along characteristic
annuli. The obtained components are characteristic or hyperbolic.� �
• characteristic part — T 2 × I, S1 × D2 or I-bundle

• hyperbolic part — “guts”� �
The union of hyperbolic components is called the guts of M − X and de-
noted by Guts(M − X). The guts admit another hyperbolic metric with totally
geodesic boundary. Then we can obtain a lower bound of the volume of M .

Theorem (Agol-Storm-Thurston [2])� �
Let L be the guts of M −X. Then vol(M) ≥ vol(L) ≥ V8

2 |χ(∂L)|, where vol(L)
is defined with respect to the hyperbolic metric of L with totally geodesic
boundary. Moreover, L is obtained from ideal regular octahedra by gluing
along the faces if the equality holds.� �

Therefore it is sufficient that we estimate the Euler characteristic of the bound-
ary of guts. Let M be a finite volume hyperbolic 3-manifold with 4 cusps
T0, . . . , T3.

Proposition� �
There exists an essential surface X in M such that Guts(M − X) have 4
(torus or annulus) cusps.� �

(sketch of proof.) We start from an essential surface X0 which does not in-
tersect T1, . . . , T3. Its existance is proved by character variety [4]. After per-
forming annular compressions (i.e. surgery along an annulus between ∂M
and X0) for X0 to T1, . . . , T3 as many times as possible, we obtain an essential
surface X1 such that Guts(M − X1) intersect T1, . . . , T3.
If Guts(M − X1) is not a component of M − X1, there is more one cusp of
Guts(M − X1).
If Guts(M − X1) is a component of M − X1, we perform annular compression
for the component of X1 intersecting Guts(M − X1) as many times as possi-
ble. Then we obtain an essential surface X such that Guts(M − X) intersect
T0, . . . , T3. �

We need to estimate the volume of a hyperbolic manifold L with totally
geodesic boundary and 4 cusps.

Theorem� �
Let L be a hyperbolic manifold with totally geodesic boundary and 4 cusps.
Then vol(L) ≥ 2V8.� �

(sketch of proof.) If χ(∂L) ≤ −4, vol(L) ≥ 2V8. Assume that χ(∂L) = −2.
Purely homological arguement shows that L has a non-separating essential
surface Y0. Beginning from this surface, we construct an essential surface Y
in L such that χ(∂Guts(L− Y )) ≤ −4. Since Agol-Storm-Thurston’s inequality
holds for L by doubling L, vol(L) ≥ 2V8.

The geodesic boundary of L must intersect guts or I-bundle. χ(∂Guts(L −
Y0) ∩ ∂L) = 0,−1 or −2.
Suppose that χ(∂Guts(L− Y0)∩ ∂L) = −2. Then χ(∂Guts(L− Y0)) ≤ −4 since
∂Guts(L − Y0) contains more than the part in ∂L.
Suppose that χ(∂Guts(L − Y0) ∩ ∂L) = 0. Then we can modify the surface
Y0 and remove I-bundle on a half of ∂L. Therefore it is reduced to the case
χ(∂Guts(L − Y0) ∩ ∂L) = −1.
Suppose that χ(∂Guts(L − Y0) ∩ ∂L) = −1 and χ(∂Guts(L − Y0)) = −2. Then
we can modify the surface Y0 and remove Y0∩∂Guts(L−Y0). After performing
this construction as many times as possible, we obtain an essestial surface
Y such that χ(∂Guts(L − Y )) ≤ −4. �
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